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Background: The impacts of direct-to-consumer personal genomic testing (PGT) on health behaviors such as diet
and exercise are poorly understood. Our investigation aimed to evaluate diet and exercise changes following PGT
and to determine if changes were associated with genetic test results obtained from PGT.

Methods: Customers of 23andMe and Pathway Genomics completed a web-based survey prior to receiving PGT
results (baseline) and 6 months post-results. Fruit and vegetable intake (servings/day), and light, vigorous and strength
exercise frequency (days/week) were assessed. Changes in diet and exercise were examined using paired t-tests and
linear regressions. Additional analyses examined whether outcomes differed by baseline self-reported health (SRH) or

content of PGT results.

Results: Longitudinal data were available for 1,002 participants. Significant increases were observed for vegetable intake
(mean A=0.11 (95% Cl =005, 0.17), p=0.0003) and strength exercise (A =0.14 (0.03, 0.25), p = 0.0153). When stratified by
SRH, significant increases were observed for all outcomes among lower SRH participants: fruit intake, A=0.11 (002, 0.21),
p=00148; vegetable intake, A =0.16 (0.07, 0.25), p = 0.0005; light exercise, A =0.25 (0.03, 047), p = 0.0263; vigorous exercise,
A=023 (006, 041), p=0.0097; strength exercise, A =0.19 (0.01, 0.37), p = 0.0369. A significant change among higher SRH
participants was only observed for light exercise, and in the opposite direction: A =-0.2468 (-0.06, -044), p=0.0111. Genetic
results were not consistently associated with any diet or exercise changes.

Conclusions: The experience of PGT was associated with modest, mostly positive changes in diet and exercise.
Associations were independent of genetic results from PGT.
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Background

Direct-to-consumer (DTC) personal genomic testing (PGT)
services persist, despite continued concern and interven-
tions from regulatory agencies. Most notably, the Food and
Drug Administration (FDA) sent a warning letter to
23andMe, Inc. in 2013, ordering the company to cease mar-
keting of its health-related PGT services until it received
EFDA approval [1]. The FDA raised concerns about the val-
idity of the information returned to consumers and the
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potential for inappropriate medical actions post-PGT.
However, some have argued that PGT could enhance indi-
vidual health autonomy and may motivate positive lifestyle
changes [2—4]. This could be particularly beneficial, as a re-
cent analysis across four studies concluded that a healthy
lifestyle reduced the relative risk of coronary artery disease
by nearly 50% among those at high genetic risk [5]. In
February 2015, the FDA approved the first 23andMe health
report and as of October 2015 the company is returning
carrier status reports (a subset of its previous offerings) to
customers [6].

The first regulatory approval of DTC-PGT in the United
States has reignited academic interest in the impact and
utility of returning genomic information without health-
care professional involvement. One key question is
whether or not PGT has the potential to motivate diet or
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exercise changes that could prevent lifestyle-related
chronic diseases, such as heart disease and type 2 diabetes
[7]. Previous studies examining this question have re-
ported that PGT is not associated with diet or exercise
changes [8, 9] or that the PGT experience generally,
including the personal context in which testing is sought
(but not the individual genetic risk information received),
is associated with non-specific, positive health behavior
changes [10]. These prior investigations have been limited
by selected convenience samples [8] or the use of general
survey items that did not measure specific diet or exercise
variables both pre- and post-PGT [10]. In addition, not all
previous work has considered baseline health status and/
or disease risk perception as factors that could influence
diet and exercise changes following PGT. These are
important limitations because health behavior has been
shown to vary by health status as well as self-perceived
health [11], and it is unknown if perceptions of personal
disease risk impact diet and exercise following PGT.

The Impact of Personal Genomics (PGen) Study is a
longitudinal survey assessment of actual PGT customers
from two companies, 23andMe, Inc. (23andMe) and
Pathway Genomics Corp. (Pathway). Specific diet and
exercise variables were measured both before and after
PGT, and self-reported health status (SRH) and disease
risk perception were also measured. Participants’ PGT
results were linked to their survey responses. Here we
present an analysis using PGen Study data that examines
changes to self-reported fruit and vegetable intake and
exercise frequency following PGT. Prior evidence sug-
gests that DTC-PGT users are particularly motivated to
undergo PGT for purposes of health improvement [10],
yet commentary on DTC-PGT often assumes that its
users are likely already to be in good health (ie. the
“worried well”). For this reason, we were interested not
only in whether the PGT experience could motivate
health behavior change, but whether its effects would
differ by user health status. We hypothesized that diet
and exercise would change from pre-PGT to post-PGT,
and further investigated whether the changes would vary
by baseline SRH, actual genetic testing results received,
or disease risk perception.

Methods

Study design and procedures

The design, recruitment and data collection procedures
in the PGen Study have been previously reported [12].
Briefly, new customers of 23andMe and Pathway were
recruited online after ordering PGT between March and
July 2012. Following online consent, participants were
invited to three web-based surveys administered by Sur-
vey Sciences Group, LLC (now SoundRocket): at base-
line (prior to receipt of results), 2 weeks, and 6 months
after results were viewed. In total, 1,464 participants
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completed the baseline survey and were eligible for
follow-up; of these, 1,046 (71.4%) and 1,042 (71.2%) sub-
mitted the 2-week and 6-month surveys, respectively.
PGT results were provided by the companies and linked
to individual-level survey data. The PGen Study was
approved by the Partners Human Research Committee
and the University of Michigan School of Public Health
Institutional Review Board.

Survey instruments

At baseline, participants reported their demographic infor-
mation and SRH was assessed using a validated 5-point
scale from the SF-36 Health Survey [13]. At baseline and
6 month follow-up, daily fruit and vegetable servings were
assessed using a validated 2-item food frequency question-
naire [14] (responses: None, <1, 2, 3, 4, >5 servings/day)
and the number of days per week of engaging in light/
moderate, vigorous, and strength exercises for at least
10 min were assessed using items adapted from the vali-
dated National Health Interview Survey [15] (responses:
0-7 days/week). At 6 month follow-up, respondents were
asked “Did you make any of the following health or well-
ness changes that were specifically motivated by your
PGT results?” and they selected Yes/No for each of “Diet”
and “Exercise”. Because the median time to follow-up sur-
vey initiation in the PGen Study was 6.3 months [12],
most participants responded to the baseline and 6 month
surveys in opposing seasons (i.e., Spring and Fall, or Sum-
mer and Winter, depending on date of PGT). While par-
ticipants were not able to complete the 6 month survey
early, some participants did complete and submit the
6 month survey late, and so experienced a less significant
change in seasonality between surveys. To account for the
fact that change in seasonality could contribute to health
behavior changes, we created a variable for significant
season change (yes/no) based on season of baseline and
6 month survey submission. Survey season was assigned
according to the month of survey submission (Spring =
March-May; Summer = June-August; Fall = September-
November; Winter = December-February), and significant
season change was coded as “yes” for a change to a non-
consecutive season (e.g., Spring to Fall, or Summer to
Winter), and as “no” for a change to a consecutive season
(e.g., Spring to Summer, or Summer to Spring) or no
change in season.

Personal genomic testing results

We have previously described how genetic risk estimates
were reported and how a threshold relative risk (RR)
was selected for analysis in the PGen Study [16]. Briefly,
23andMe participants received a genotype-derived nu-
meric RR estimate for each condition, compared to an
individual of the same age, gender and ethnicity; and
Pathway participants were assigned, based on RR, a
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qualitative risk category for each condition (below
average risk, average risk, and three levels of above aver-
age risk). To harmonize genetic risk information across
companies and analyses, a threshold RR level of 1.2 was
selected to distinguish average or below average genetic
risk (23andMe RR < 1.2; two lowest Pathway categories)
from above average genetic risk (23andMe RR>1.2;
three highest Pathway categories). This threshold was
consistent with the reporting standards of both compan-
ies, and endorsed by PGen Study researchers as appro-
priate in the context of testing common, low-penetrance
genetic variants.

Genetic risk scores and risk perception
Since PGT results were linked to participants’ survey re-
sponses, we were able to examine whether specific genetic
risk information was associated with changes to diet and
exercise. Because diet and exercise can modify risk of car-
diometabolic diseases, we first created an additive cardio-
metabolic genetic risk score based on PGT-derived risk
estimates for obesity, type 2 diabetes (T2D), and coronary
heart disease (CHD). This score was the sum of the num-
ber of above average PGT risk results (referred to as "ele-
vated risk") a participant received for the three
cardiometabolic conditions (i.e. either 0, 1, 2 or 3 elevated
risk results). To examine the aggregate impact of all PGT-
derived disease risk estimates received, we created an
additive total genetic risk score corresponding to the num-
ber of above average (elevated) risk results received across
all health conditions in a participants PGT report. De-
pending on gender, ethnicity, and DTC-PGT company,
participants received risk estimates for between 25 and 29
health conditions, which included the cardiometabolic
conditions mentioned above, various cancers, neurological
disorders, autoimmune disorders and others (total risk
score = 0-29; complete details of the conditions included
in the score are reported by van der Wouden et al. [17]).
In addition to genetic risk, we examined whether per-
ceived risk of cardiometabolic disease influenced
changes to diet and exercise. At both baseline and
6 month follow-up, participants were asked to rate their
perceived risk of developing obesity, T2D and CHD on a
5-point scale (much lower than average=1 to much
higher than average =5, with average=3). An additive
disease risk perception score was created by summing
participant responses for perceived risk of all three con-
ditions at both baseline and follow-up. This yielded two
scores that could range from 3 to 15 (one for baseline
risk perception and one for follow-up risk perception).
Change in risk perception was calculated by subtracting
the follow-up score from the baseline score and thus the
variable for change in risk perception could range from
-12 to 12 (see Carere et al. for details of how risk
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perception and change were measured in the PGen
Study [16]).

Statistical analyses

Data were obtained from participants who submitted
both the baseline and 6-month survey, and had available
responses for the items described above. Merged data
are presented for the two PGT companies because a
general agreement was made between company repre-
sentatives and researchers to avoid presenting company-
specific data when results could be perceived as relating
to market research [18]. Descriptive statistics were used
to characterize baseline demographic characteristics.
Two-sided paired t-tests were used to test for significant
changes in each diet and exercise item in the full sample,
and within subsamples stratified by SRH (poor/fair/good
vs. very good/excellent). We performed linear regression
with a Tukey-Kramer test for pairwise comparisons to
determine if diet or exercise changes significantly
differed between SRH subgroups. These models were ad-
justed for the specific baseline behavior (i.e. the corre-
sponding diet or exercise variable), PGT company, age,
gender, education, income, race, ethnicity (Hispanic or
non-Hispanic), BMI, SRH, and season change. To assess
consistency between the measured diet and exercise var-
iables and general self-reported dietary and exercise
changes, we used two-sided t-tests to compare mean
changes in fruit/vegetable intake and exercise frequency
across groups stratified by general self-reported changes
(Yes/No diet or exercise change).

Linear regressions of change in fruit/vegetable intake
and exercise frequency on the cardiometabolic genetic risk
score and total genetic risk score were conducted with
adjustment for the baseline behavior, PGT company, age,
gender, education, income, race, ethnicity, BMI, SRH, and
season change. We used similar linear regression models
of diet/exercise change on change in risk perception of
cardiometabolic disease, but also adjusted for baseline risk
perception in addition to the covariates listed previously.
Analyses were conducted using SAS software (version 9.3;
SAS Institute, Cary, NC), and linear regression models
were fitted using PROC GLM. Statistical significance for
all analyses was set at p < 0.05.

Results

From the 1042 participants who submitted both a baseline
and 6-month survey, complete data required for our ana-
lyses were available from 1002 participants. Demographic
characteristics of the analytic sample are reported in Table 1.
Baseline diet and exercise variables did not differ between
baseline responders eligible for follow-up (1 =1464) and
the final analytic sample (n = 1002). Among the 1002 par-
ticipants with complete data, modest, but statistically sig-
nificant increases in vegetable intake and strength exercise
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Table 1 Baseline demographics stratified by self-reported health
Variable Baseline responders eligible for  Baseline responders with Poor/Fair/Good Very Good/
follow-up (n=1464) complete data SRH Excellent SRH
(n=1002) (n=449) (n=551)
n (%)
Male 567 (38.7) 401 (40.0) 156 (34.7) 245 (44.5)
Race
White 1234 (84.3) 860 (85.8) 383 (85.3) 475 (86.2)
Black 37 (2.5 23 (23) 11 (25) 12 (2.2)
Asian 50 (34) 3232 8(1.8) 24 (44)
Other/Multi-Ethnic 143 (9.8) 87 (8.7) 47 (10.5) 40 (7.3)
Hispanic 81 (5.5 50 (5.0) 25 (5.6) 25 (4.5)
Education
Less than College 319 (21.8) 204 (20.4) 117 (26.1) 87 (15.8)
College Degree 448 (30.6) 305 (30.4) 118 (26.3) 186 (33.8)
Some Graduate Degree 513 (35.0) 359 (35.8) 162 (36.1) 196 (35.6)
Doctoral Degree 84 (12.6) 4 (13.4) 52 (11.6) 82 (14.9)
Annual Income
< $40,000 242 (16.5) 171 .(17.1) 102 (22.7) 69 (12.5)
$40,000-$69,999 272 (18.6) 183 (18.3) 84 (18.7) 98 (178)
$70,000-$99,999 288 (19.7) 205 (20.5) 96 (21.4) 108 (19.6)
$100,000-$199,999 457 (31.2) 303 (30.2) 121 (27.0) 182 (33.0)
= $200,000 184 (12.6) 128 (12.8) 38 (8.5) 90 (16.3)
Missing 21 (14) 12 (1.2) 8(1.8) 4(0.7)
PGT company
23andMe 947 (64.7) 620 (61.9) 232 (51.7) 386 (70.0)
Pathway Genomics 517 (35.3) 382 (38.1) 217 (48.3) 165 (30.0)
Mean =+ standard deviation (Range)
Age 47.5£155 (19 - 94) 469+156 (19 - 94) 476+15.1 (19 -91) 46.2+159 (19 - 94)
BMI 269+60 269+60 288+ 7.1 253+44
(154 - 62.0) (16.1 - 62.0) (16.1 - 62.0) (166 —47.3)
Fruit Servings per Day (0-5+) 20+ 1.1 20+1.1 19+ 1.1 22+1.1
Vegetable Servings per Day (0-5+)  2.5+1.2 2512 23+1.1 2712
Light Exercise per Week (0-7) 35+23 35+23 33+22 37+22
Vigorous Exercise per Week (0-7) 23+£21 24+21 18+20 28+21
Strength Exercise per Week (0-7) 14+18 14+18 11+18 17+18

frequency were observed (Table 2). Vegetable intake
increased by an average of 0.11 servings per day and fre-
quency of at least 10 min of strength exercise increased by
an average of 0.14 days per week. When stratified by SRH,
significant increases in all diet and exercise behaviors were
observed among the lower SRH group, while a significant
decrease in light exercise frequency was observed among
the higher SRH group (average decrease in frequency of
0.25 days per week). Adjusted linear regression models
with the Tukey-Kramer pairwise comparison demon-
strated that only change in light exercise differed

significantly between the two SRH subgroups (p=
0.0452). The direction of the observed change in light
exercise was opposite between the two groups (i.e. in-
crease in frequency among the lower SRH group, de-
crease in frequency among the higher SRH group).

Thirty percent of participants reported making a
change to their diet that was specifically motivated by
their PGT results, and 26% reported changing their exer-
cise based on their PGT results (Table 3). The subset of
respondents  that reported diet changes had
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Table 2 Self-reported diet and exercise changes after PGT
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Full Sample Poor/Fair/Good Very Good/Excellent Tukey-Kramer adjusted
(n=1,002) SRH (n = 449) SRH (n=551) p-value®
Change % Paired t-test % Paired t-test % Paired t-test
Fruit servings per days
Decrease 240 A=0.06 21.2 A=011 26.1 A=001 0.7191
(-0.005, 0.12) (0.02,021) (-0.07, 0.10)
No Change 490 p=007 50.1 p=00148 483 p=077
Increase 27.0 28.7 256
Vegetable servings per day
Decrease 21.2 A=0.11 198 A=016 223 A =006 0.7032
(0.05, 0.17) (0.07,0.25) (-0.01, 0.14)
No Change 498 p=00003 506 p = 0.0005 490 p=0.11
Increase 290 296 28.7
Light exercise
Decrease 352 A=-002 31.2 A=025 387 A=-0.25 0.0452
(-0.16, 0.13) (0.03, 047) (-0.06, -0.44)
No Change 31.0 p=080 323 p=00263 300 p=00111
Increase 338 36.5 313
Vigorous exercise
Decrease 287 A=0.09 245 A=023 323 A=-002 0.1236
(-0.02,0.21) (0.06, 041) (-0.18,0.13)
No Change 406 p=0.11 445 p=00097 374 p=076
Increase 30.7 31.0 303
Strength exercise
Decrease 21.6 A=014 174 A=019 25.1 A=0.10 0.2690
(0.03, 0.25) (0.01,037) (-0.05, 0.24)
No Change 532 p=00153 57.2 p=00369 49.7 p=018
Increase 25.2 254 252

?Adjusted for baseline behavior, company, age, gender, education, income, race, ethnicity, baseline BMI, baseline self-reported health, season change

corresponding significant increases in intakes of fruit
and vegetables (an average increase of 0.19 and 0.31
servings per day, respectively), while the subset that re-
ported exercise changes had corresponding significant
increases in the frequency of at least 10 min per day of
vigorous and strength exercise (an average frequency in-
crease of 0.58 and 0.47 days per week, respectively).
Summary information about the additive genetic risk
score for cardiometabolic conditions and the additive gen-
etic risk score for all health conditions is shown in Table 4.
The mean number of elevated test results for the three
cardiometabolic conditions was 0.48 + 0.64 (mean + SD).
No significant associations were found between the car-
diometabolic genetic risk score and change in any diet or
exercise variable (Table 5). Taking all tested conditions
together, the number of elevated test results ranged from
0 to 13 and the average number of elevated test results for
all health conditions was 5.6 + 2.2 (mean + SD). The total
genetic risk score was inversely associated with change in
fruit servings per day (f=-0.03 (-0.06, -0.01), p =0.02)
(Table 5). From baseline to follow-up, the average change
in overall risk perception of cardiometabolic disease
increased (0.60 + 2.2 (mean + SD)), and this change in risk
perception was inversely associated with change in vigor-
ous exercise (=-0.08 (-0.14, -0.02), p=0.01) (Table 5).

Table 3 Comparison of changes in diet and exercise variables
to self-reported general wellness changes

Did you make any of the following health or wellness changes that
were specifically motivated by your PGT results?

Diet Yes No
N =301 (30%) N =701 (70%)
Fruit Servings per Day A=019 A=0001
(0.03,031) (-0.07, 0.07)
p=0.0027 p=0.96
Vegetable Servings per Day A=031 A=0.02
(0.19,042) (-0.04, 0.09)
p < 0.0001 p=050
Exercise Yes No
N =255 (26%) N =747 (74%)
Light Exercise per Week A=0.18 A=-009
(-0.11, 047) (-0.26, 0.08)
p=022 p=030
Vigorous Exercise per Week A=058 A=0.08
(0.33,0.83) (-0.20, 0.05)
p < 0.0001 p=0.25
Strength Exercise per Week A=047 A=003
(023 0.71) (-0.10,0.15)
p =0.0002 p=069
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Table 4 Distribution of elevated risk PGT results

Number of Elevated Results

n (%)

Cardiometabolic diseases
0 536 (56.9%)
1 333 (35.3%)
2 70 (7.4%)
3 3 (0.3%)
All diseases (including cardiometabolic)
0 1 (0.1%)
14 (1.5%)
40 (4.3%)
89 (9.5%)
150 (15.9%)
165 (17.5%)
179 (19.0%)
( )

125 (13.3%
93 (9.9%)
48 (5.1%)
10 23 (2.4%)
11 9 (1.0%)

12 5 (0.5%)
13 1(0.1%)

O 0 N O 1 A W N

While these two effects were significant, the inclusion of
genetic risk scores or perceived risk did not explain any
more variance in self-reported diet and exercise changes
than the covariate-only model (Table 5).

Discussion

In a longitudinal study of actual DTC-PGT customers,
we found modest, but statistically significant, increases
in self-reported vegetable consumption and strength ex-
ercise frequency post-PGT. There appears to be a differ-
ence in diet and exercise changes when participants are
separated by self-reported health status, as the lower
SRH group also demonstrated a significant increase in
fruit consumption and frequency of light and vigorous
exercise, while a decrease in the frequency of light exer-
cise was observed among the higher SRH group.
Although nearly a third of participants reported making
diet and exercise changes that were directly motivated
by their PGT results, there was no consistent evidence
that specific genetic risk information received from PGT,
or post-PGT change in cardiometabolic disease risk per-
ception, were associated with the specific diet and exer-
cise variables that we measured. The two significant
findings observed in our analyses of genetic risk infor-
mation and change in risk perception deviate from an
overall pattern of null results that suggest that the risk
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Table 5 Impact of genetic test scores and risk perception on
changes in diet and exercise

Variable B (95% Cl), p-value R’
Cardiometabolic genetic test score

3=-0.04 (-0.14, 0.06), p =042 0.18
B=-0.02 (-0.11,0.08), p=0.73 0.14
3=-001 (-0.22, 0.20), p=0.90 0.28
3=-0.09 (-0.26, 0.08), p=0.29 0.23
=002 (-0.14,0.18), p=0.82 023

Fruit Servings per Day

Vegetable Servings per Day

Light Exercise per Week

Vigorous Exercise per Week

Strength Exercise per Week
Total genetic risk score

Fruit Servings per Day 3=-0.03 (-0.06, -0.01), p=0.02 0.18
=-0007 (-0.03,002), p=063  0.14
3=001 (-0.05, 0.07), p=0.73 0.28
3=-0.03 (-0.08, 0.02), p=0.28 0.23

=-0.005 (-0.05,0.04), p=082  0.23

Vegetable Servings per Day
Light Exercise per Week
Vigorous Exercise per Week
Strength Exercise per Week
Change in risk perception?
Fruit Servings per Day 3=-0.004 (-0.04, 0.03), p=0381 0.20
3=0.005 (-0.03, 0.04), p=0.75 0.15
B=-004 (-0.11, 0.04), p=031 0.28
3=-0.08 (-0.14, -0.02), p=0.01 0.26
=0.004 (-0.06, 0.06), p=0.91 023

Adjusted for: baseline behavior, company, season change, age, gender,
education, income, race, ethnicity, baseline BMI, baseline self-reported health
{3 estimates are raw coefficients

?Also adjusted for baseline perceived riskNote: The presented model R? values
(with genetic risk score/risk perception) are all equivalent to the covariate-only
R? values for each fitted model

Vegetable Servings per Day
Light Exercise per Week
Vigorous Exercise per Week

Strength Exercise per Week

variables we evaluated were not associated with observed
changes in diet and exercise following PGT.

The consistent observation of diet and exercise im-
provements within the lower SRH group, but not within
the higher SRH group may reflect the fact that individ-
uals with higher baseline SRH were already engaging
more frequently in healthy diet and exercise behaviors
before PGT; moreover, they may in fact be objectively
healthier than the lower SRH group, and have a lesser
(or at least perceived lesser) need to improve their diet
and exercise. The apparent reduction in frequency of
light exercise in this group is also of interest, for if
accurate, this could represent an undesirable effect of re-
ceiving genetic risk information among individuals with
high SRH. We cannot determine whether health behav-
ior changes we observed were a consequence of the
PGT experience, or if the decision to pursue PGT was
part of a broader goal to improve one’s health that incor-
porated an intention to modify diet and exercise. Finally,
although we did not find any consistent evidence that
cardiometabolic or total genetic risk burden were associ-
ated with diet or exercise changes post-PGT, it is pos-
sible that some other genetic information returned by
the  companies (e.g, results pertaining to
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pharmacogenomics or non-medical physical traits) could
motivate diet and exercise behavior change. In fact, it
may be the case that no single genetic result is univer-
sally motivating to PGT consumers, but rather that cer-
tain individuals may be inclined to change their diet
based on an elevated risk of type 2 diabetes, while others
(perhaps owing to personal context or family history)
may be more immediately motivated by an elevated gen-
etic risk of breast cancer. Nevertheless, the recent report
of reduced coronary events among individuals with high
genetic risk who were noted to follow good lifestyle
habits [5] highlights the importance of efforts to use
genetic testing as a tool to motivate positive lifestyle
changes.

Prior studies of the effect of genetic risk information on
health behavior change have not typically reported signifi-
cant post-testing changes to diet or exercise [8—10]. For
example, Bloss et al. followed approximately 2000 Navi-
genics customers over a year and examined changes in diet-
ary fat intake and exercise [8, 9]. In that study, no
significant changes were observed at either the 3-month or
12-month follow-up; however, participants in this study
were employees of a personalized medicine research insti-
tute, and had a PGT experience that was facilitated by the
research team (e.g., participants could ask questions of re-
searchers during the testing process). Kaufman et al. re-
ported a cross-sectional post-PGT survey of 23andMe,
deCODEme, and Navigenics customers, of which one third
reported that they were being more careful about their diet
and 14% reported they were exercising more. In addition,
they found evidence that self-reported behavior change var-
ied by self-perceived health status (e.g., the poorer self-
perceived health group was more likely to report changes
to supplement use) [10]. A major limitation of these find-
ings, however, is that the data were collected at only one
time point, and no specific diet or exercise behavior vari-
ables (e.g., frequency, intensity) were measured.

In addition to the observational studies described
above, systematic reviews of randomized controlled trials
(RCTs) and other trials have demonstrated few effects of
disclosing genetic risk information on health behavior
[19, 20]. (However, it is important to note that most
studies examining the impact of genetic information are
not comprised of PGT consumers). For example, a 2010
Cochrane review examined the effects of communicating
DNA-based risk estimates on diet, physical activity and
smoking cessation from 13 studies [19], and the authors
concluded that the information had little or no effect on
physical activity and smoking cessation, but might have
a small effect on diet. A recent update to this systematic
review examined 18 studies (of which 7 examined diet
and 6 examined physical activity) and concluded that
DNA-based risk estimates did not change any of the
health behavior outcomes that were assessed [20].
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However, despite this conclusion, the pooled analysis of
the dietary study was borderline significant (p =0.05)
and the authors noted that there may be a small effect
of genetic risk communication on diet. Indeed, a number
of RCTs and intervention studies have demonstrated
dietary changes following disclosure of genetic informa-
tion [21-24]. While our investigation utilized a prospect-
ive observational design, it is worthwhile to note some
consistency of results between the different research ap-
proaches. Moreover, there is likely a substantial degree
of heterogeneity among both observational studies and
RCTs in the specific type of genetic information that is
returned, the presentation of the information, and the
health-related recommendations that are given to indi-
viduals. Heterogeneity may contribute to some varied
observations and effects that have been reported in the
literature on this topic.

Our results support the position that DTC-PGT has
the potential to motivate health behavior change in
users who may benefit from diet and exercise modifi-
cations, although the small magnitude of observed
diet and exercise changes (on the order, for example,
of a few to a dozen additional days of exercise per
year) indicates that genetic risk information — at least
as provided through a commercial, DTC model - is
likely limited in its power to effect change. Nonethe-
less, we are encouraged by the dual findings that
nearly a third of participants reported making diet or
exercise changes on the basis of their DTC-PGT re-
sults, and that food intake and exercise frequency
measurements were consistent with reported changes,
particularly among those participants who rated
themselves as having lower health status. If DTC-PGT
can effect behavior change, it is likely because its
users are already sufficiently health-conscious, and in some
cases specifically motivated to obtain testing as a means to
learn about and improve their health [17, 25-28]. There-
fore, rather than its consumers responding to specific gen-
etic risk information or accompanying recommendations, it
may be the case that DTC-PGT motivates behavior change
via a “halo effect” [29] participants emerge from the
PGT experience (considered to begin when they first
learn of commercial genetics and engage in decision-
making about testing, and to continue through to their
extended contemplation and sharing of results with
friends, family, and health care providers) with a re-
minder of the importance of certain health behaviors
and a motivation to play an active role in their health
management. This interpretation is consistent with the
fact that DTC-PGT reports contain dozens of results,
contextualized within broad educational components
addressing disease etiology, both genetic and non-
genetic risk factors, and genetic mechanisms of disease
[30]. For example, DTC-PGT reports commonly
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summarize the results of a prior epidemiology studies,
present population disease statistics, and orient con-
sumers to the concepts and interpretation of odds ra-
tios and relative risk; moreover, these reports are
carefully personalized to the consumer (e.g., by repeat-
edly using their name, referring to their gender and
age, and describing their unique genetic makeup),
which may make the information feel more relevant
and valuable to the individual consumer. Within this
enriched, educational, and highly personalized context,
DTC-PGT as a health education activity may have a
unique ability to impact how individuals perceive
health, and how they make decisions regarding their
health behaviors and medical care.

Limitations of this study include its reliance on self-
reported data and observational design. However, the
consistency we observed across survey items measur-
ing similar effects (i.e. change in specific diet and ex-
ercise variables and general self-report of diet and
exercise changes) is reassuring. Moreover, our study
improves upon limitations of previous observational
work, particularly in its measurement of pre- and
post-disclosure changes to specific diet and exercise
variables using validated tools, consideration of base-
line health status, measurement of participants’ per-
ceptions of their own disease risks, and our sample of
customers who sought commercial PGT online [18].
While the PGen Study sample is somewhat homoge-
neous (e.g., largely White), there is evidence to sug-
gest that PGen Study enrollees are broadly
representative of the typical DTC-PGT consumer [12].
Our findings are not intended to be generalizable to
the general U.S. population, but rather to the individ-
uals who pursue commercial DTC-PGT. The changes
we observed to diet and exercise were self-reported
and just fractions of a dietary serving and exercise
frequency, so the significance of these observations as
they relate to health outcomes is uncertain. We also
did not distinguish between variable factors such as
exercise duration or type of fruit or vegetable. More-
over, it is unclear to what extent reporting may have
been influenced by social desirability or persisted lon-
ger than 6 months. However, modest improvements
in diet and exercise have been shown to be associated
with population health [31-33]. Finally, because this
was an observational study, the design does not en-
able us to have accounted for all factors that could
have influenced our outcome variables of interest.
Moreover, we cannot rule out the possibility that our
findings were due to chance, particularly given the
number of hypothesis tests performed. We also note
that the DTC-PGT climate in the United States has
changed since the PGen Study was conducted [1],
and that 23andMe no longer offers consumers the
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disease risk estimates reported here, while Pathway
Genomics has left the DTC market altogether. Thus,
our findings do not accurately reflect a current prod-
uct on the market, but have the advantage of captur-
ing a consumer experience about which the FDA has
requested additional research, and which may be rein-
troduced in the future, pending FDA approval.

Conclusions

Our sample of PGT consumers made diet and exercise
changes following PGT. These changes were independent
of both cardiometabolic genetic risk and total genetic risk,
and were also independent of changes in disease risk per-
ception. As advanced genomic technologies (e.g., whole
genome/exome sequencing) become more accessible to
consumers, it will be important to assess whether or not
these technologies have a similar impact on diet and exer-
cise behaviors.
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