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Abstract
An internet protocol (IP) address is the foundation of the Internet, allowing connectivity between people, servers, Internet
of Things, and services across the globe. Knowing what is connecting to what and where connections are initiated is crucial
to accurately assess a company’s or individual’s security posture. IP reputation assessment can be quite complex because
of the numerous services that may be hosted on that IP address. For example, an IP might be serving millions of websites
from millions of different companies like web hosting companies often do, or it could be a large email system sending and
receiving emails for millions of independent entities. The heterogeneous nature of an IP address typically makes it challenging
to interpret the security risk. To make matters worse, adversaries understand this complexity and leverage the ambiguous
nature of the IP reputation to exploit further unsuspecting Internet users or devices connected to the Internet. In addition,
traditional techniques like dirty-listing cannot react quickly enough to changes in the security climate, nor can they scale
large enough to detect new exploits that may be created and disappear in minutes. In this paper, we introduce the use of
cross-protocol analysis and graph neural networks (GNNs) in semi-supervised learning to address the speed and scalability
of assessing IP reputation. In the cross-protocol supervised approach, we combine features from the web, email, and domain
name system (DNS) protocols to identify ones which are the most useful in discriminating suspicious and benign IPs. In
our second experiment, we leverage the most discriminant features and incorporate them into the graph as nodes’ features.
We use GNNs to pass messages from node to node, propagating the signal to the neighbors while also gaining the benefit
of having the originating nodes being influenced by neighboring nodes. Thanks to the relational graph structure we can use
only a small portion of labeled data and train the algorithm in a semi-supervised approach. Our dataset represents real-world
data that is sparse and only contain a small percentage of IPs with verified clean or suspicious labels but are connected. The
experimental results demonstrate that the system can achieve 85.28% accuracy in detecting malicious IP addresses at scale
with only 5% of labeled data.
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Introduction

Year after year, the Internet continues to see drastic growth in
new users. It is reported that the number of users has grown
from 3.65 billion in 2018 to 4.66 billion in January of 2021
[1]. Not only are there more users, but there are significantly
more devices connecting. Smartphones, refrigerators, home
security cameras, and even light bulbs contribute to the grow-
ing Internet of Things network and are now fully connected to
the Internet and consuming Internet protocol (IP) addresses.
Unfortunately, many of these devices are not designed with
cybersecurity as a priority and hence, are vulnerable to
exploitation. McAfee responds to billions of requests to pro-
vide security assessments of IP addresses each day. A com-
plete assessmentmust be carried out based on the information
about the individual IP address itself and any additional infor-
mation regarding its neighboring IP addresses.

In the security assessment stack, IP reputation is one of the
earliest reputations that can be used to quickly identify risk
and proactively warn about the potential maliciousness of a
download or alert about visiting a web page that may lead to
the user’s computer getting infected. Malicious IP addresses,
malware hashes, and malicious URLs are the three key indi-
cators of compromise (IoC) inmodern cybersecurity defense.
Malware infections and advanced persistent threats can be
identified when the associated IP addresses are detected as
malicious. In addition, phishing attacks can be prevented by
blocking suspicious websites associated with malicious IP
addresses.

Today, the approach of dirty-listing IP addresses is widely
used. For instance, a host sending information to a dirty-listed
IP address may be investigated for infection. The drawbacks
of dirty-listing are limited scalability as the lists need to
be continuously updated when new malicious IP addresses
emerge. It is often also a reactive approach as an IP is added
to the dirty-list only after it is observed as suspicious. As a
result, attackers can easily bypass an IP dirty list by using new
IP addresses that have not been employed in malicious activ-
ities. The new IP address will often exhibit similar behaviors
or present similar IoCs as the original IP, but dirty-listing
techniques cannot scale to protect from the growing exploits
and zero-day attacks.

Traditional detection techniques look at each protocol and
do not accurately account for all protocols served by an IP
address. For example, a web reputation might include the
reputation for web traffic but does not account for the overall
reputation of the entire IP. Likewise, the email reputation can
account for email traffic. Ideally, a comprehensive assess-
ment of all services associated with an IP address would
give a holistic view of its nature; however, the IP reputation
should account for all the neighboring IP address reputations
as well. Using graph neural networks (GNNs) to help prop-
agate the IP’s reputation to its neighbors and vice versa can

improve holistic knowledge about the IP address and improve
accuracy.

There are many challenges to detect malicious IP
addresses, including the dynamic nature of IP addresses that
are prone to change quickly, the lack of labeled data, and
the negative impact of high false positives. Additionally, the
voluminous nature of the IPv4 address space is challenging,
while the IPv6 address space would be nearly impossible
to use in training due to the approximately 3.4 × 1038 IP
addresses. The nature of the data suggests that an intelligent
algorithm for detecting clusters is needed even to be con-
sidered feasible. Without proper assessment, over-blocking
may occur since IP addresses can provide services for mul-
tiple unrelated companies.

To address these challenges, we develop a cross-protocol
approach for detecting malicious IP addresses by leverag-
ing metadata from the web, email and domain name system
(DNS) protocols using a supervised learning approach. In
addition,webuild on thefirst experiment by creating relation-
ships between IP addresses to establish a path for reputations
to propagate throughout the graph and have related IPs
influence each other’s reputation. We experiment these rela-
tionships by connecting IPs using several methods based on
subnet-C, subnet-B, and subnet-A membership, connecting
by geolocation and autonomous system (AS) memberships
and attributes associated with the IP address such as known
botnet family membership. By constructing graph edges that
reflect such memberships, we can apply graph convolutional
networks (GCNs) model to follow the edges and aggregate
data from neighbors during training. As a result, we generate
predictions that reflect what we know about each IP and the
neighbors of those IPs.

Our goal is to perform a large-scale classification of
malicious IP addresses that leverage cross-protocol teleme-
try to produce a context-aware security assessment. The
key contributions include (1) performing cross-protocol fea-
ture extraction using a supervised learning approach that
demonstrates high performance in a real-world data set, (2)
constructing a graph of IP addresses, and (3) conducting
embedding extraction usingGCNs in a semi-supervisedman-
ner with only 5% labeled data for classifying malicious IP
addresses at scale.

Related work

This section reviews related works in the area of IP repu-
tation assessment and statistical graphical analytic research.
For contrast, our method is compared to other works which
have various limitations. Our research draws inspiration from
state-of-the-art experiments, builds on the best components
transferable to designing a solution for our problem, and
solves the limitations of existing technologies.
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IP dirty-listing approach

IP dirty-listing is common in the cybersecurity industry to
defend against adversaries. Dirty lists are developed by ana-
lyzing various cyber threat intelligence frommany resources,
including third-party houses. Traditional security approaches
apply this methodology to block malicious IP addresses
[2–5]. Zhang et al. [6] proposed a page-rank algorithm
called highly predictive blacklisting, which ranks adversarial
attempts based on the compiled threat intelligence insights.
Soldo et al. [7] presented an implicit recommendation sys-
tem that extended Zhang’s work by examining the temporal
patterns of cyber-attacks to rank attack sources. However,
these dirty-listing approaches have scalability challenges and
are difficult to maintain. Therefore, they are not practical to
tackle evolving threats.

Feature extraction for detectingmalicious IPs

Cyber security companies, Internet service providers (ISPs),
and cyber law enforcement have researched malicious IPs
by isolating commonly shared features among threats. These
features can then be detected during incoming network traf-
fic to disposition whether blocking that IP should occur or
not. Renjan et al. [8] collected IP metadata (e.g., ASN, ISP,
geolocation, user disposition) as features. They combined
their data with other reputation data sources and used the
new reputation score to classify new IPs. However, they
determined that, for malicious IPs, a large quantity of the
feature information was unavailable. McGrath et al. [9] pro-
posed several other features (e.g., number of IP addresses
with a domain, number of ASs, DNS record TTL) while
Moghimi and Varjani [10] proposed a set of even differ-
ent features (e.g., number of dots in URL, SSL certificate,
URL length, dirty-listed keywords for phishingURLs). Bilge
et al. [11] proposed a system to detect malicious domains
using four different sets of features: time-based features,
DNS answered-based features, TTL value-based features,
and domain name-based features.

Other researchers developed methods including time-
series aggregated data and analytics specific to exposure and
blocking malicious activity online [8,12–18]. For example,
Esquivel et al. created a spam-focused reputation system for
IPs that send emails by exploring the reverse DNS (RDNS)
and sender policy framework (SPF) [12]. They categorized
each IP over time to establish a benign or malicious labeled
reputation, assessing this reputation efficacy to identify email
spam from a real-world dataset. Bajaj et al. [14] concluded
that filtering reputation is fundamental to email anti-spam
efforts, noting a critical need to create self-learning anti-spam
filters combined with automated update procedures.

In contrast to these works, we leveraged cross-protocol
telemetry from port 25 for email, ports 80 and 443 for the

web, and port 53 for DNS. We combined the features associ-
ated with spam, malicious websites and DNS to enhance the
signals detecting malicious IP addresses.

Statistical graph analysis to detect malicious IPs

Some research works have demonstrated that suspicious
activities are not uniformly dispersed over the Internet; they
often bunch together, forming high-risk ecosystems. Coskun
et al. [18] examined Internet traffic between source and des-
tination IPs using a graph database, utilizing weighted edges
between connections. They compared IP addresses’ statisti-
cal residuals with dirty lists to determine if the larger cluster
had a statistical dependency or divergence with the dirty-
list data, uncovering previously undetected maliciousness.
Moura et al. [19] introduced Internet bad neighborhood and
identified high-risk networks that hostedmalicious activities.
A network was considered high risk if the count of malicious
activities exceeded a specified threshold. Collins et al. [20]
examined network spatial and temporal data to predict IP
address malicious botnets. Stone-Gros et al. [21] authored
finding rogue networks, identifying the highest amount of
malicious activities via the responsible IPs.

These papers inspired us to leverage the idea that mali-
cious activities tend to be clustered. Therefore, we created
graph structures of IP addresses.

Machine learning to detect malicious IPs

Machine learning (ML) has been applied to detect malicious
IP addresses [16,22,23]. However, most research focuses on
only one protocol (e.g., web, URL) for a targeted use case. In
the work of [22], malicious domains and IP addresses were
detected based on web data using a graphical approach—a
loopy belief propagation algorithm was used to infer each
domain and IP reputation. They utilized a real-world data
set, assessing the efficacy with 75 M node and 185 M-edge
graph. The algorithm served as an in-field tool for initial
ML classification and training. Antonakakis et al. [16] used
an ML classifier to train DNS record features to establish a
reputation. Their model created clusters of real-world DNS
records utilizing a decision tree with logit-boost as the repu-
tation function. Their reputation approach categorized, with
high accuracy, newly created domains. Huang et al. [23] pro-
posed a cross-protocol method to leveragemultiple signals to
enhance the detection of malicious IP addresses using super-
vised learning. In our work, we extend the traditional ML
approach to build a graph-based detection system that will
scale and be dynamic with only a small portion of labeled
data.
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Graph neural networks

GNNswere initially introduced by Scarselli et al. [24], which
built on neural networks (NNs) representing process data
in graph form. Several survey papers provided an overview
of GNN algorithms and applications. Wu et al. [25] work
described a wide range of GNN applications and an in-depth
synopsis, including GCNs, graph attention networks, graph
autoencoders, graph generative networks, and graph spatial-
temporal networks. Zhou et al. [26] explored variants and
their applications of GNNmodels, notably spectral methods,
non-spectral methods, graph attention networks, and gated
GNNs while categorizing by graph, propagation, and train-
ing types.

GNNs have received growing attention recently, and have
been well-explored, including computer vision, text mining,
molecular structure, physical systems, and knowledge graphs
[25–29]. Some interesting applications include an anti-abuse
detection system at YouTube [30], Covid-19 pandemic fore-
casting [31], and social networks [32]. In more recent work,
Halcrow et al. [30] designed a new approach for addressing
the problem of constructing large-scale graphs with sparse
data for optimal semi-supervised learning. Targeted towards
big data, Halcrow’s method solves the scalability challenge
by employing locality sensitive hashing techniques to reduce
the number of edges that require scoring. It learns a task spe-
cific model and builds a high-performing nearest neighbor
graph. Thismethodology iswidely used atGoogle, especially
for detecting abuse onYouTube. It also could be a good appli-
cation for building graphs that detect exploits on the Internet
where labeled data is very sparse. During the global Covid-
19 pandemic GNNs [31] were used in a novel forecasting
approach. Widely available temporal data was enriched with
spatial data like inter-region interactions allowing the model
to learn complex dynamics. To accurately capture the spatial
interactions the researchers used availableGPSdata collected
from mobile devices. The resulting algorithm was used as a
powerful tool to understand the spread and evolution of the
virus during the pandemic. Epasto et al. [32] introduced an
unsupervised graph embedding method called Splitter which
allows graph nodes to have multiple embedding to increase
encoding of their multi-community membership (i.e., the
social network users). The application of this work can be
extremely useful in link prediction, visual discovery, and
exploration of the multi-community node membership.

In addition, DeepWalk [33] learns hidden social repre-
sentations of vertices in a network where information from
truncated random walks is input to learn representations that
encode structural regularities. The method has been demon-
strated to be effective in challenging multi-label network
classification tasks. Message passing neural networks can be
applied to molecular graphs in chemical compounds to pre-
dict quantum properties of organic molecules [34]. Another

application is usingGNNs to predict a patient’s risk of cancer.
In this case, there is typically a very small quantity of labeled
data, so a skip-gram solution was proposed to leverage edge
features to infer patient similarity [35].

Based on the real-world challenges, many researchers
have investigated how to improve GNN performance for
large-scale data. One negative side effect of using graphs
is that performance can degrade significantly as graph size
or the amount of relationships within the graph increase. To
improve performance, Page Rank can be computed prior to
training such that it does not need to be calculated on each
layer saving valuable computational cycles [36].

One possible negative side effect of combining node fea-
tures and connections information is a new bias. Metadata
orthogonal node embedding training (MONET) removes bias
by training embeddings on a hyper-plane orthogonal to that
of the node features. Bias is reduced by partitioning the graph
to provide the ability to interpret results and separating the
topology embeddings from metadata embeddings [37].

Despite numerous types of GNNs, GCNs are an emerg-
ing field. Zhang et al. [38] provides an exhaustive survey
on GCNs, including spectral-based and spatial-based mod-
els. These models depend on convolution type and their
applications (e.g., computer vision, natural language pro-
cessing, and social networks). A number of pioneering
works generalized well-established convolution neural net-
works on arbitrarily structured graphs [39–42]. Inspired by
[39,41], Kipf and Welling [42] proposed a simplified GNN
model, called a GCN, whose graph datasets achieved excep-
tional performance for classification. GCNs were applied to
semi-supervised learning on node classification [42], graph
classification [43], and link prediction [44]. In this work, we
used GCNs for semi-supervised learning on node classifica-
tion to detect malicious IP addresses.

GNNs have received growing attention and have been
explored in a wide range of applications, including computer
vision, text mining, molecular structure, and social networks.
We apply GCNs to address IP reputation assessment, a novel
application within the critical domain of cybersecurity.

The cross-protocol analysis method

Data collection

In the first phase of our research, we developed a cross-
protocol scheme to detect malicious IP addresses (Fig. 1).
The scheme incorporated a typicalmachine learningpipeline:
a collection of personal identifiable information (PII) -
protected data fromapplicable ports, pre-processing of email,
web and DNS data, feature engineering, labeling of the
records, classification, and finally evaluation.
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Fig. 1 Framework for the
cross-protocols analysis

Table 1 Datasets

Dataset Sample size Features Feature size

1 57,494 Email, web 242

2 200,085 Email, web, DNS 245

Data was collected via telemetry from port 25 (email IP
addresses), port 80 and 443 (web IP addresses), and port 53
(DNS IP addresses). There were two datasets as described in
Table 1. The first dataset consisted of email and web data.
It had 57,494 samples (40,347 benign, 17,147 malicious ).
The feature set had 125 email features and 117 web features.
The second dataset consisted email, web and DNS data. It
had200,085 samples (183,539benign and16,546malicious).
The feature set had 100 email features, 95 web features and
50 DNS features.

Feature extraction

In the feature extraction phase, we targeted the derivation
of the highest relevant and most effective features, which
also had properties of extraction simplicity, transformation
invariance, and contributed to the segregation of malicious
and benign IP addresses. Tables 2, 3, and 4 depict, respec-
tively, a sampling of web-derived, email-derived features and
DNS-derived features. As described in Table 1, in our first
dataset, we identified a set of 242 features derived from email
and web IP addresses. In our second dataset, we identified a
set of 245 features from email, web and DNS IP addresses.
Asserting the most applicable features was also a building
block for further experimentation with GCNs.

Table 2 Sampling of email IP
features

Email IP features

‘d_g_msg_rate’

‘d_mo_msg_rate’

‘d_msg_count’

‘d_spam_count’

‘d_wk_msg_rate’

‘mo_msg_count’

‘newsender’

‘wk_msg_count’

‘rate_d_msg_count’

‘rate_mo_msg_count’

‘rate_wk_msg_count’

‘wk_g_msg_rate’

‘wk_mo_msg_rate’

Table 3 Sampling of web features

Web IP features

‘alexaRanking’

‘associatedIpCount’

‘associatedIpData’

‘associatedReputationSpam’

‘associatedReputationSpamAvg’

‘associatedReputationSpamMax’

‘catserverCategoryExactMatch’

‘catserverReputationExactMatch’

Random forest classification

The cross-protocol solution employs a random forest (RF)
algorithm [45]. As most ML models do, its performance
depends on data that embodies high-quality labels and appro-
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Table 4 Sampling of DNS IP
features

DNS IP features

‘verynewdns’

‘newdns’

‘newishdns’

‘source_change60’

‘source_change30’

‘source_change7’

‘d7cmax’

‘d7cmin’

priate features to optimize a predictive output. Our study
ensured high-quality labels and features that are relevant
and effective to take advantage of multi-protocol IP sources.
We obtained connected samples for email, web and DNS
IP addresses in the data collection phase. After data pre-
processing and applicable labeling, the total sample size for
the first dataset was 57,494 (40,347 benign, 17,147malicious
) and the total sample size for the seconddatassetwas 200,085
(183,539 benign and 16,546 malicious). The data were ran-
domly split 70/10/20 for training, validation and testing sets.
During a training process, the forest was built with numerous
trees with randomly sampled features as input, applying the
same distribution for any tree in the forest and controlling
variance. The resulting prediction was determined by major-
ity or weighted voting. There are many advantages of RF,
which motivated us to apply it to our solution. Some of them
include resistance to over-fitting, a low number of control
and model parameters, feature elimination during training,
ability to handle a large number of features, robustness to

noise and outliers, and most importantly, the model’s vari-
ance decreases as the number of trees increases, but the bias
remains steady.

Random forest evaluation

The evaluation metrics for our study included: root mean
square error (RMSE), receiver operating characteristic
(ROC) curve, F1-score, precision, recall, and area under the
curve (AUC) in the ROC. The “positive” means malicious IP
and “negative” means benign IP.

The graph neural networkmethod

Graph construction

In researching security threats, we know that IP addresses
that exhibit similar malicious behavior are often related to
each other in some manner. Data collection of IP behavior
can document suspicious and malicious behavior but does
not reflect the relationships that can better inform us.

To represent relationships between IP addresses, in the
secondphase of our research,we constructed a network graph
for IP data (Fig. 2). IP addresses are the nodes, and IP con-
nections are the edges. The IP address dataset consists of
binary classes of IP metadata. The number of IP addresses
is N , and the feature dimension is D, where N = 45,995
and D = 242. The class label is C = 0 (benign) and C = 1
(malicious). The total edge number E = 112,182.

Fig. 2 IP addresses graph structure with IPs as nodes and ASN and Class C-subnet groups as edges
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The input to the GCN model was created in two parts.
The first part was an input file for the nodes (or vertices) of
the graph network, named node file. The second part was an
input file for the edges between the nodes, named edge file.
We constructed the nodes and edges as follows. The node
file consisted of node and associated features for each node.
Each line in this file was a single data point, an IP address.
The first columnwas the IP address, followed by 242 features
and the last column is the label for the node. The edge file
consisted of two connected nodes for that edge.

Node File:
< I P_address >< meta_data >< class_label >

Edge File:
< I P_i >< I P_ j > if IP i has connection to IP j .

Convolution filters are designed to examine sub-graphs of
the larger graph to recognize patterns better. Furthermore,
in a fully representational network graph, the intermediate
entities (e.g., countries, ASNs, etc.) do not generate feature
data because, in practice, those intermediate entities are not
endpoints themselves. Because they are not endpoints, inter-
mediate entities have no behavior data to record.

A convolutionmodel is configured to look at the surround-
ing neighborhood of a data point during training. The nodes
that are directly connected are the first-order neighbors in the
graph, the second-order are the nodes that are neighbors of
those neighbors. The GCN model weights the feature infor-
mation of the node itself first, then the first-order neighbors
at a reduced weight, and then the second-order neighbors at
a further reduced weight.

The first convolution cycle had no feature information for
the first-order neighbors when we attempted to utilize inter-
mediate entities as nodes in our network graph. Although
second-order neighbors contributed feature information for
training, the contribution was so weakened that the outcome
had poor training results. The resulting convolutions were as
follows:

Original node (IP address, 242 features)
< − > 1st-order neighbor (intermediate entity, zero features)
< − > 2nd-order neighbor (IP address, 242 features).

Rather than including featureless intermediate entities as
nodes in our model, we removed them, leaving only the
IP addresses themselves. We then constructed direct edges
between IP addresses that had relationships because they
belonged to the same groups (e.g., country, ASN etc.). The
resulting convolutions were as follows:

Original node (IP address, 242 features)
< − > 1st-order neighbor (IP address, 242 features)
< − > 2nd-order neighbor (IP address, 242 features).

We ensured that each convolution had valid feature infor-
mation for computation using this approach. This further
resulted in improved accuracy after training. It also confirmed
two initial conclusions for using a GCN model. First, we
needed to remove intermediate entities from the node input
file, leaving only IP addresses. Second, we needed to con-
struct direct IP to IP edges for those nodes when they shared
a relationship.

The next inquiry for the construction of our GCN was to
determinewhat kind of edges to include in our edge input file.
We answered this question by first constructing a series of
edge lists based on different relationship types, and then test-
ing each edge list individually, and in combination. Another
constraint we encountered was the size of the edge list and
its negative impact on computation time. In fact, the size of
the edge list eventually exceeded the memory capacity of our
hardware platform.We then explored ways to reduce the size
of our edge list during training experiments.

Semi-supervised node classification using GCNs

We selected the GCNs developed by Kipf and Welling [42].
The model encoded both the graph structure and node fea-
tures, in a semi-supervised training structure. For a GCN
model, f (X , A), X ∈ R

N×D is a input feature matrix,
where N is sample size and D is feature dimension. A
is a graph adjacency matrix with added self-connections,
where Ã = A + IN and IN is the identity matrix. In
GCN model, a convolution operation inputs the node infor-
mation for itself (i.e., a self-loop), as well as the node
information of its immediate neighbors. Mathematical oper-
ations on such irregular input data results in exploding or
vanishing gradients, resulting in numerical instability and
unsatisfactory results [42]. To properly handle this insta-
bility, GCNs introduced a re-normalizing trick, utilizing a
simplifiedChebyshev approximation technique [46],with the
following equation.

Z = D̃

(
− 1

2

)
ÃD̃

(
− 1

2

)
XΘ, (1)

where Θ ∈ R
D×F is now a matrix of filter parameter, F is

filters and feature maps, Z ∈ R
N×F is the convolved signal

matrix, and D̃ii = ∑
Ãii .

In Fig. 3 the local structure of the network graph is rep-
resented in this equation by the adjacency matrix A. The
adjacency matrix records which nodes share an edge with
the input node, leading to the computation of the node infor-
mation for all those neighbors. As part of the Chebyshev
approximation, this equation introduces the node identity to
the adjacencymatrix, effectively including the information of
the node itself (i.e., a self-loop) into the computation of node
features. In order to regulate the output of the node informa-
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Fig. 3 Graph-based
semi-supervised learning
framework using GCN model on
node classification for IP
reputation

tion, GCN utilizes a re-normalization trick which multiples
the results of the node computations by the “inverse recipro-
cal exponent” of the node degree. The node degree is defined
by the number of edges a node has; thus, a node with a larger
number of edges will have a higher degree, and the computa-
tion of more node information is multiplied by the reciprocal
inverse exponent of the degree number. By doing this the
influence of an adjacent node is reduced according to how
many other adjacent nodes are in that convolution.

After aggregating and normalizing the feature informa-
tion from the node neighborhood, the information is put into
the neural networks. Our model was configured for two lay-
ers. Each layer consisted of 16 neurons. At each layer, the
parameterswere shared for all nodes. Because the underlying
data is non-Euclidean, the preferred method was to activate
the neurons in a way that was appropriate for complex data.
Rectified linear unit (ReLU) activation was used to process
the aggregated node neighborhood representations through
the neural network and continue training. After activation,
each hidden layer established hidden weight matrices and
sent the data forward to an output layer. Between the con-
volution layers, dropout was introduced. The dropout both
reduced the possibility of overfitting and conserved compu-
tational resources.

The problem of GCN node classification of IP addresses
can be framed as graph-based semi-supervised learning. The
label information was smoothed over the graph via graph-
based regularization using a graph Laplacian regularization
term in the loss function. The assumption was that the con-
nected nodes in the graph were likely to share the same label.
In this work, we encoded the graph structure directly using
a model f (X , A), and trained on a supervised target loss for
all nodes with labels. The adjacent matrix A of the graph
allowed the model to distribute gradient from the supervised

loss and enabled the model to learn representations of both
types of nodes, with and without labels.

There are two steps in node classification as shown in
Fig. 3. The first step is to automatically extract the embed-
ding using a GCNmodel. The objective is to learn a function
of features on a graph. The main idea is to pass messages
along the edges of graph, agglomerate and transform. The
input was feature matrix X ∈ R

NxD and adjacency matrix
A ∈ R

NxN . The feature matrix consists of input features
for nodes. N is the sample size and D is the feature dimen-
sion. The adjacency matrix A is the representation of graph
structure. It uses binary values 0 or 1 which represent ‘no
connection’ or ‘has connection’ between node i and node j .
The neural network hidden layers perform layer-wise prop-
agation Hl+1 = f (Hl , A). The output is a feature matrix
Z ∈ R

DxF . The feature matrix is the embedding of the out-
put features for nodes. F is the feature embedding dimension.
The second step is to perform classification and map to prob-
abilities for each node using the softmax function.

In this work, a GCN model is applied to the large-scale
network graph, consisting of 45,995 nodes and 112,182
edges. The nodes are IP addresses, each of which may have
only a few neighbors or hundreds of neighbors. Figure 3
shows the GCN network architecture for node classifica-
tion. The input consists of feature matrix X and adjacency
matrix A. A hidden layer encapsulates each node’s represen-
tation by aggregating feature information from its neighbors.
After feature aggregation, a nonlinear transformationReLu is
applied to the resultant outputs. We use Adam optimizer and
Chebyshev polynomials basis filters with polynomial order
= 4. The output layer from the first step was Z . The sec-
ond step is to perform node classification. The final output
is a probability score for each node belonging to the target
class.

123



Complex & Intelligent Systems

Fig. 4 Feature importance for the top 10 features

GCN evaluation

We experimented with several GCN hyperparameters. We
also performed experiments by making changes to both the
node and edge files of the graph network. We focused on a
sample of the data, as doing an exhaustive IP toASNmapping
with all theweb and email metadata is too large of a dataset to
realistically process. To evaluate the relative performance of
these experiments, we computed both an accuracy score and
a cross-entropy loss score. We arrived at the optimal combi-
nation of hyper-parameters and graph network configuration
using these scores.

Experimental results

Cross-protocol analysis

The cross-protocol analysis was performed using connected
email, web and DNS data that was sampled from McAfee
network traffic. We conducted two experiments on cross-
protocol analysis based on the two datasets as described in

Table 1. The first experiment used email and web features.
The second experiment used email, web and DNS features.
In paper [23], the classification results of the first experiment
were presented. We only reported the classification results of
cross-protocol analysis for the second experiment in “Clas-
sification results of cross-protocol analysis”.

Feature analysis in cross-protocol analysis

We visualized the feature importance for the model and
drew a histogram of the top features for the combination of
malicious and benign samples. The feature importance was
computed based on Gini importance or mean decrease impu-
rity from the random forest structure. Figure 4 shows the
feature importance of the top ten features based on training
on the first dataset with email and web and features. As an
example, we took ’geolocationcountry_cn’ and visualized it
on a histogram in Fig. 5. The feature has a clear discriminant
power for distinguishing malicious and benign IP samples
because high density of dirty appears in ’geolocationcoun-
try_cn’ compared to other geolocations. Even though other
geolocations were represented in the data, none were iden-
tified as important features. Security researchers confirmed
that the feature importance was valid.

Classification results of cross-protocol analysis

We performed four experiments. First, we trained three RF
models using only email, only web and only DNS features.
Second, we trained a model using a combination of email,
web and DNS features. Table 5 shows the test performance
metrics for the four experiments in terms of the AUC, F1-
score, and RMSE. The model incorporating cross-protocol
features has the highest AUC, the highest F1-score, and the
lowest RMSE compared to models with only one protocol.

Figure 6 shows the RF classifier test ROC for email &
web & DNS data. The two operating points, which are high-
lighted in red in the curve, are associated with two sensitivity

Fig. 5 Histogram of country
code
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Table 5 Random forest testing
results

Experiment Feature size AUC F1-score RMSE

Email & Web & DNS 245 0.9896 0.9773 0.0614

Email only 100 0.9748 0.9312 0.1081

Web only 95 0.6647 0.2233 0.6944

DNS only 50 0.5140 0.1561 0.9441

Fig. 6 RF test set ROC for email & web & DNS data

levels. The model achieved a detection rate of TPR/recall =
94.56% at FPR = 0.1% with precision score = 98.85%
and F1 score = 96.66%. With a higher tolerance for falses
of FPR = 1.0% the model achieved TPR/recall = 99.85%
with precision score = 89.68% and F1 score = 94.49%.

To further demonstrate test data and test classification
results, we used the t-SNE visualization of the features for
perplexity = 75, iteration = 3000, and learning rate = 700
as shown in Fig. 7. The plot shows the top 100 malicious IPs
(red dots) and the top 100 benign IPs (green dots) in the test
set. A clear separation of the malicious IPs (1) and benign
IPs (0) for the test set can be seen. A few samples that are
not well separated show classification errors.

GCN results

The graph neural network analysis was performed using
connected email andwebdata.Weconducted theGCNexper-
iments on the first dataset as described in Table 1 using email
and web features. To fit the memory limit, we randomly
selected 80% data to construct the graph with 45,995 nodes,
where 13,753 were malicious and 32,242 were benign.

Fig. 7 The t-SNE visualization of the features in the test set (0 = benign,
malicious)

Graph structure experimentation and GCN optimization

In our first experiments with the GCNmodel, we constructed
a graph for IPs by creating relationships between IP addresses
by linking them by Subnets (Class C, B, and A), ASNs,
geopolitical codes, and, if the data existed by botnet identifi-
cation. However, not having any restrictions on the graph led
to poor results. After further investigation, it was determined
that IPs identified as “non-endpoints” were not assigned to
individual hosts and lacked behavioral features; thus, they
did not contribute during training. Therefore, we removed
the sparse data to solve this problem and built a final “nodes
file” of 45,995 IPs.

Next, we experimented with the type and degree of edges
used to construct the graph. In our data set, we related IPs in
one of four ways. In the first relationship type, an IP belongs
to a relationship of ASN, which is the most extensive inclu-
sion set of IPs. In the second relationship type,we also related
the IPs based on class C-subnet in the second type of rela-
tionship. All class C-subnet relations exist within the same
ASN, but anASNcontainsmultiple classC-subnets.All class
C-subnets typically reside within approximate geolocation.
In the third relationship, we used the geolocation of the IP
address. In the fourth relationship, we used a security feature
to group IPs based on the same botnet family participation.
We made a separate relationship edge list for each type of
relationship to test them individually and then subsequently
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Table 6 Test results for
different graph structures and
filters

Node # Edge # GCN filter Edge Accuracy

45,995 222,264 Local pool Sub-C, botnet 0.6991

45,995 222,264 Chebyshev Sub-C, botnet 0.8559

45,995 1,722,108 Chebyshev Sub-C, botnet Memory error

45,995 112,182 Chebyshev Sub-C, ASN 0.8952

Table 7 Test results on GCN GCN filter Edge Accuracy Precision Recall F1 score

Chebyshev Sub-C, botnet 0.8528 0.8890 0.5803 0.9022

test each relationship in combination. One drawback to this
approach is that the relationship combinations can produce
massive data sets, which cause memory errors when train-
ing. To resolve this problem, we applied a solution of data
reduction. Running experiments on graph construction, we
concluded that no matter which network structure we tried,
class C-subnet had to be an essential part of the graph to
achieve ultimate results. One explanation could be that IPs
that are close numerically are more likely to be part of the
same subnet and, therefore, exhibit similar behavior.

In addition, we reviewed GCN hyper parameters while
training. The parameter that provided the most significant
impact was the pooling operation. Specifically, the Cheby-
shev filter produced better accuracy.

GCN classification results on different graph structures

The summary of the results for Graph structure and GCN
hyperparameter selection is shown in Table 6. We conducted
all the combinations of different graph structureswith dozens
of experiments. We only report four results here based on
page limitations. We split training, validation and test sets
into 15%, 15% and 70%. There were 6900 nodes for training,
6900 nodes for validation, 32,195 for test. Training the GCN
model on the feature-rich data set with local pool filter and
sub-C botnet edges produced a baseline accuracy of 0.6991.
With the same edge setting, the Chebyshev filter produced
better accuracy of 0.8559. Training the full set of edges with
the relationship combinations caused a memory error.

We achieved the highest accuracy when we combined a
reduced data set using the Subnet-C relation with ASN rela-
tions. Training the model on a complete set of IPs resulted in
memory exhaustion errors; therefore, we reduced the ASN
data set to 30 percent of the edges. By further reducing the
ASNdata set to two percent, we discovered it would decrease
the accuracy score by only one-tenth of a percent. The accu-
racy was 0.8952 under the conditions of Chebyshev filter and
Subnet-C relation with ASN and half-edge number.

GCN classification with small number of labeled data

After we selected the graph structure and GCN filter type,
we conducted experiments to compare the test performance
with a different number of labeled training data. In the exper-
iments, we used the graph structure of 45,995 nodes and
112,182 edges under the conditions of Chebyshev filter and
Subnet-C relation with ASN Table 7. For the 45,995 nodes,
13,753 were malicious and 32,242 were benign.

The goal of this experiment is to verify theGCNclassifica-
tion performance with only a small number of labeled nodes.
To produce our results, we randomly selected 5% training,
5% validation, and 90% test data. There were 2299 nodes
for training, 2299 nodes for validation, 41, 397 for test. The
accuracy on the test set achieved was 0.8528 with a preci-
sion of 0.8890, recall of 0.5803, and F1-score of 0.9022 as
shown in Table 7. To reiterate, that was training on only 5%
labeled data. This result is promising and highlights the abil-
ity of using a graph-based semi-supervised approach to detect
malicious IP addresses. We re-ran the experiments with dif-
ferent ratios of training, test, and validation and achieved
similar results.

Conclusion and future work

This paper demonstrated a two-phased approach to devel-
oping a scalable graph-based IP security assessment. In the
first phase, we built a Random Forest model with an innova-
tive approach towards features used to identify malicious IP
addresses. Our cross-protocol approach combined targeted
features from email and web protocols.

We further tackled the problem of detecting malicious IP
addresses at scale, where only a small subset of labels was
available. We framed the challenge as a graph-based semi-
supervised learning problem. The optimal feature set from
the cross-protocol assessment was used as node features in
the graph. As far as we have researched, this innovative
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approach of combining traditional machine learning with
semi-supervised graph-based detection for malicious IPs has
never been attempted.

In conclusion, traditional IP filters that are applied to sin-
gle protocol reputation systems are not sufficient to protect
against malicious activity in the current threat landscape.
A combination of protocol feature vectors can be used by
connecting the related IP addresses into a graph network to
improve context and increase accuracy compared to non-
connected feature vectors. Given a set of nodes (IPs), node
features, and edges between nodes (connected IP addresses),
aGCNmodel follows the provided edges and aggregates data
from neighbors during training. Such a system produces pre-
dictions that reflect what we know about each IP and what
we know about the neighbors of those IPs. Our final model
achieved an accuracy of 0.8528 and F1 score of 0.9022 with
training on only 5% labeled data. The innovation of adding
knowledge about relationships, in the form of graph edges
has demonstrated to improve context awareness for Internet
security.

In the future, we will explore more edge categories and
use weighted edges in training to enhance feature expres-
siveness. To accommodate even larger data sets, we will also
explore approximation methods, such as mini-batch strate-
gies. In addition,wewill explore inductive learning on graphs
(opposed to our current transductive learning GCN frame-
work), such as GraphSAGE [47], to tackle the challenge of
dynamic IP graphs.
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