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Peroxisome proliferator-activated receptors (PPAR) are members of the superfamily of nuclear hormone receptors involved
in embryonic development and differentiation of several tissues including placenta, which respond to specific ligands such as
polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to
achieve different biological functions. The PPARs also control a variety of target genes involved in lipid homeostasis. Similar to
other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation but also by crosstalk with
other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene
expression. In addition, several mechanisms underlying negative regulation of gene expression by PPARs have been shown. It is
suggested that PPARs are key messengers responsible for the translation of nutritional stimuli into changes in gene expression

pathways for placental development.

1. Introduction

Peroxisome proliferator-activated receptors (PPARs) are a
family of ligand activated transcription factors belonging to
the nuclear hormone receptor superfamily, which mainly
regulate the expression of target genes involved in lipid
and energy metabolism [1-3]. Three PPAR isotypes have
been identified in mammals termed PPAR«, PPARp/S, and
PPARYy [4, 5]. Each isotype is a product of a separate gene,
and each one has a distinct tissue distribution relating to
the distinct functions. The PPARs play key roles in the
metabolic syndrome and overall health of organisms includ-
ing regeneration of tissues, differentiation, lipid metabolism,
and immune response [6]. From a nutritional viewpoint,
the PPARs are of importance because of their ability to be
activated by long chain fatty acids and their metabolites
[7]. Therefore, the PPARs are recognized as candidates in
order to improve metabolism and health through suitable
diet. In addition, several evidences show the important role
of PPARs in reproductive organs [8, 9]. PPARy expression
has been found in the granulosa, theca, and luteal cells [10].
The PPARy may regulate the differentiation and prolifera-
tion of the ovarian cells, steroidogenesis, angiogenesis, and
prostaglandin production [11], indicating that PPARs mod-
ulate the estrous cycle and pregnancy. Retinoic X receptor

(RXR) is a functional partner of PPAR. RXR«a and PPARy
function potently in metabolic diseases and are both impor-
tant targets for antidiabetic drugs. Coactivation of RXR« and
PPARy is believed to synergize their effects on glucose and
lipid metabolism [12]. The RXRa and PPARy are essential
for mouse placentogenesis [13, 14]. PPARy is important for
mouse placenta morphology [15]. In addition, PPARs have
also been implicated in several aspects of early pregnancy
development including implantation, placentation, and tro-
phoblast differentiation [16-18]. Furthermore, PPARy and
RXRa are essential for cytotrophoblast cell fusion into a
syncytiotrophoblast, which is obligatory for placentation, and
these expressions are deregulated in pathological placenta
[19]. So, the PPARs may be a link between energy metabolism
and reproduction, which is frequently associated with insulin
resistance. This paper will focus on the evidences of PPARs
functions in placenta. We will also highlight the effects of co-
modulators such as RXRs with PPARs in the experimental
models.

2. Expression and Characteristics of PPAR

PPARs (a, f3, and y) are nuclear hormone receptors that are
known to regulate gene transcription and protein expression
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FIGURE 1: Schematic structure of PPARs protein. The predicted con-
sensual important domain structures for each PPAR are depicted,
which are common in fish species. AF-1 = activation function-1,
DBD = DNA binding domain, HD = hinge domain linking DBD
and LBD, LBD = C-terminal ligand binding domain.

levels of fatty acid transport and metabolism mediating
proteins through the formation of a DNA binding het-
erodimer complex [2-4]. All distinct PPAR subtypes share
a high degree of structural homology with other members
of the superfamily, particularly in the DNA-binding domain
and ligand-binding domain (Figure 1). PPARs exhibit wide-
ranging and isotype-specific tissue expression pattern [3-5].
PPAR« is expressed at high levels in tissues that catabolize
fatty acids [20], as in the adult liver, heart, kidney, large
intestine, and skeletal muscle. PPARS/6 mRNA is ubiqui-
tously distributed with a higher expression in the digestive
tract and the placenta [21]. PPARy is mostly expressed in the
adipose tissue [22] and immune system. The three isotypes
are expressed as early as week 7 of gestation in endodermal
and mesodermal origin cells [23]. There are limiting data
describing the PPARs expression in endometrial tissue of
animal species through the estrous cycle. PPAR« and PPARf
transcript levels show similar profiles during the estrous cycle
[23-26]. PPARy mRNA level is quite stable during entire
estrous cycle [24-26]. However, the precise role of PPARs
in the uterus is not well known, although PPAR«, PPARS,
or PPARy expressions have been known in uterus of various
species. High levels during the luteal phase and low during
the follicular suggest the association with steroids function.

A wide variety of compounds have been identified as
PPARs ligands. Among the synthetic ligands, fibrates and
thiazolidinediones are PPAR«x and PPARy agonists, respec-
tively [27]. PPARy is also activated by prostaglandins and
leukotrienes. In the presence of ligands, conformational
changes of the ligand binding domain result in the recruit-
ment of coactivator proteins, release of corepressor proteins,
and subsequent assembly of a protein complex that enhances
transcription of the target genes [28, 29]. A PPAR« specific
ligand (8S-HETE), a PPARy ligand (15-deoxy-deltal2, 14-
prostaglandin J2), and a peroxisome proliferator (clofibrate)
are all able to induce expression of both PPAR« and PPARy
[30-32]. Subsequent work has led to the identification of var-
ious PPAR ligands that include eicosanoids, hypolipidemic
agents, and antidiabetic drugs [33, 34].

Ligand activated PPARs bind as heterodimers with the
RXRs on PPAR response elements. A number of PPAR target
genes have been characterized to date. Most of these genes
are known to have roles in lipid and glucose metabolism
[35]. The endometrium is a possible place where PPARs
may regulate cyclooxygenase- (COX-) 2 which catalyzes
prostaglandin production [36]. They are critical to sustain
the function of corpus luteum during the estrous cycle. The
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PPAR response element has been found upstream of the
COX-2 transcriptional site. So, the activation of PPARs affects
COX-2 expression in the epithelial cells. In COX-2 deficient
mice, failures during the implantation and decidualization
may be restored by administration of PPARf agonists [37],
suggesting common pathways of these molecules. Moreover,
studies suggest that PPARs participate in uterine functions
such as steroidogenesis, cytokine production, and angio-
genesis during the estrous cycle and/or pregnancy [38, 39].
Interestingly, PPARs also downregulate nitric oxide synthase
(NOS) in human cardiac myocytes and in human prostate
cells [40]. As PPARs are expressed as cytotrophoblasts and
syncytiotrophoblasts in the placenta, the activation of PPARs
may stimulate the production and secretion of hormones
such as gonadotropin required during pregnancy and fetal
development [41, 42]. Thus, PPARs is essential for the mat-
uration of a functional placenta.

3. Interaction with Retinoid X Receptor
for Transactivation

PPARs bind to a variety of PPAR response elements (PPREs)
present in the promoter regions of the responsive genes. The
transcriptional regulation by PPARs requires heterodimer-
ization with the retinoid X receptor (RXR) (Figure 2).
Retinoic acid affects a broad spectrum of physiological pro-
cesses, including cell growth, differentiation, morphogenesis,
reproduction, and development [43], through the action of
two types of receptors, the retinoic acid receptors (RARs)
and the retinoid-X-receptors (RXRs). When activated by
a ligand, the heterodimer modulates transcription activity.
The transcriptional control by the PPAR/RXR heterodimer
also requires interaction with coregulator complexes [44].
Thus, selective action of PPARs in vivo results from the
interplay at a time point of each of the cofactors available.
The RXRs are able to influence the transcription of a wide
variety of genes, because they can activate gene transcription
by binding to specific sites on DNA as homodimers and/or
as the heterodimers with other related nuclear receptors
including the PPARs, vitamin D receptor, and thyroid hor-
mone receptors [45-47]. The temporal and spatial patterns of
expression of PPARs and RXRs isoforms in the developing
placenta have been elucidated [48]. In the human placenta,
PPAR«, PPARp, and PPARy are observed, while RXRp is
not detected. Immunocytochemistry staining results also
determine the presence of PPARa, PPARf, PPARy, RXRa,
and RXRy to be specific to the trophoblast layer of the human
chorionic villi [49]. The presence of PPAR and RXR isoforms
in placenta suggests that PPAR and RXR isoforms are poten-
tial regulators of placental lipid transfer and homeostasis.
The PPARs/RXRs heterodimers may play a key regulatory
role in placental development. It has been suggested that
the PPARs/RXRs heterodimers may also function in the
modulation of trophoblast invasion. There was no significant
difference in PPARs or RXRs protein expression in both
amnion and choriodecidua, which have been identified in
gestational tissues [50-52].
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FIGURE 2: Schematic depiction of the model of mechanism of PPAR
action. Similar to other nuclear hormone receptors, PPARs act as a
ligand activated transcription factor. PPARs in response to the ligand
binding heterodimerize with RXR and bind PPRE DNA sequences
in the promoters of target genes, which are often involved in the lipid
metabolism. Note that some critical molecules have been omitted for
clarity.

4. Functional Interplay for the
Transrepression of PPARs

The NAD(+)-dependent histone deacetylase Sir2 regulates
life-span in various species [53]. Mammalian homologs of
Sir2 are called Sirtuins (SIRTI-SIRT7) [54]. PPAR«a and
SIRT1 coordinately suppress genes involved in mitochondrial
function [55] (Figure 3). Calorie restriction extends lifespan
in organisms ranging from yeast to mammals. Upon food
withdrawal, SIRT1 protein binds to and represses genes
controlled by the fat regulator PPARy, including genes
mediating fat storage. SIRT1 represses PPARy by docking
with its cofactors nuclear receptor corepressor and silencing
mediator of retinoid and thyroid hormone receptors [56, 57].
The repression of PPARy transactivation by SIRT1 inhibits
lipid accumulation in adipocytes. SIRT1 also regulates angio-
genesis signaling [58], which is expressed in the vascula-
ture during blood vessel growth. Loss of SIRTI function
blocks sprouting angiogenesis and branching morphogen-
esis of endothelial cells with consequent downregulation
of genes involved in blood vessel development and vas-
cular remodeling. Human SIRT1 and SIRT2 are localized
in the syncytiotrophoblast layer and the cytotrophoblasts
of the placenta, amnion epithelium, trophoblast layer of
the chorion, and decidual cells [59]. Resveratrol decreases
proinflammatory TNE IL6, and IL8 gene expression and
resultant prostaglandin release from the gestational tissues
[59]. SIRT1 also modulates gene expression in target tissues
by regulating transcriptional coregulators or by directly
interacting with transcription factors. SIRT1 overexpression
prevents cytokine-mediated cytotoxicity, nitric oxide (NO)
production, and inducible NO synthase expression. PPARs
and SIRT1 may play a pivotal role in regulating pregnancy and
parturition [59].

Many of the anti-inflammatory effects of PPARy are
caused by antagonizing the activities of the transcription
factors including nuclear factor-kappa B (NF-«B) (Figure 3).
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FIGURE 3: A hypothetical schematic implication of some of the
PPAR regulatory network. Examples of molecules known to interact
with PPARs pathway in mammals are shown. Hammerheads mean
inhibition. Note that some critical pathways have been omitted for
clarity.

NF-«xB
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EPA inhibited the NF-«xB pathway in myotubes in a PPARy-
dependent manner. In one way for the inhibition, PPARs
and these transcription factors bind each other via protein-
protein interactions and prevent binding to their response
elements. The ligand-activated PPARs have been shown to
interfere with DNA binding of both AP-1 and NF-«B activity
[60]. Furthermore, the mitogen-activated protein kinase
(MAPK) pathway is also regulated by PPARs at different
levels [61]. In addition, activation of PPARy reduces c-Jun
N-terminal kinase (JNK) and p38 MAPK activation, leading
to downregulation of proinflammatory gene expression [62].
The transcription factors NFxB, CCAAT/enhancer-binding
protein (CEBP), and AP-1 are important transcription factor
families that are involved in immune and inflammatory
functions as well as in cell growth and differentiation. Human
placenta is rich in diverse bioactive molecules, whose extract
induces interleukin mRNA and protein expressions in a
dose-dependent manner. For example, the IL8 promoter
contains binding sites for the NFxB, AP-1, and CEBP. The IL-8
expression is inhibited by an inhibitor of JNK [63, 64].

Interestingly, the transcriptional expression levels of
fatty acid binding proteins are upregulated in males and
downregulated in females [65]. A similar trend between sexes
occurs for PPARs and CEBPs, which may be the upstream
regulatory elements [65]. Estrogen-related receptors have
been identified as PPAR coactivators, which upregulate the
expression of PPAR« and PPAR«-regulated genes. Estrogen
has not been reported to be a PPAR ligand, but interactions
between PPARs and ER proteins and their response elements
have been described [66]. These interactions might be due to
estrogen induced production of PPAR activating metabolites.
Studies have found that 17beta-estradiol upregulates the
expression of PPAR« in skeletal muscle of rats [67].

A direct relationship between the PPARSs activation and
the inhibition of STAT5 mediated transcription has been



reported [68, 69]. The PPARs do not block STATS5 tyrosine
phosphorylation or do not inhibit DNA-binding activity but
inhibit the transcriptional activity of STATS5. Conversely,
activated STATS5 is able to inhibit PPAR-regulated gene
transcription. In other words, STAT5-activating hormones
and cytokines may modulate the responsiveness of PPARs to
the chemical ligands. The cross-inhibition between PPAR and
STATS5 proceeds in a synchronized and bidirectional manner
(Figure 3). Exposure to environmental chemical activators
of PPARs may thus lead to alteration of hormone induced
STATS5-regulated gene expression in tissues such as placenta,
where both transcription factors are expressed.

5. Perspective

PPARs are lipid-activated transcription factors that have
emerged as key regulators of both lipid metabolism and
inflammation, and they exert positive and negative controls
over the expression of a range of genes. However, the
range of transcription factors affected and the molecular
mechanism involved may be different for each PPAR isoforms
and cell types. Furthermore, peroxisome proliferators induce
numerous alterations in lipid metabolism. A comparative
approach to bring together physiological and nutritional
roles of PPARs across species appears critical. It is now
clear that PPARs are important in the control of placen-
tal development. PPARs may play a key role in linking
lipid metabolism and reproduction systems. In addition,
the PPARy/RXR« signaling is important in human cytotro-
phoblast and cell fusions. A disturbed PPARy/RXRa pathway
could contribute to pathological human pregnancies. SIRT1
expression is downregulated by proinflammatory cytokines.
Possessing anti-inflammatory action in human gestational
tissues, the SIRTI expression is downregulated by proin-
flammatory cytokines. The natural polyphenol resveratrol
inhibits cytokine and prostaglandin release via the SIRT1
activation. Both mRNA and protein levels of SIRT1 are
shown to decrease in placenta and fetal membranes after
labor onset, which may contribute to uterine contractions
associated with labor. It would be of interest to investigate the
impact of different types of fatty acid, integrated into food,
on ovulation capacity and fetal development. Further study of
PPARs, RXRs, and SIRTs functions in placenta may indicate
pathways that are common to critical processes, providing
additional focus for research in important human placental
diseases. In parallel, defining more specific mode of action by
identifying the endogenous coactivators and modulators of
these transcription factors in animal models will help to build
more efficient therapeutic strategy for the diseases. Future
studies using functional genomic approaches will be required
to more clearly establish the complicated mechanisms by
which PPARs exert their actions. Additional insight is also
needed into endogenous PPAR and RXR ligands, how these
molecules are formed, and how they are delivered to the
nucleus in placenta. Furthermore, additional experiments are
required to increase the knowledge of the way in which lipid
metabolism influences reproductive functions.
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JNK: c-Jun N-terminal kinase
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