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Dendritic cells (DCs) bear robust antigen-presenting func-
tions, acting like natural-borne adjuvant to triggering
antigen-specific naı̈ve-T-cell responses, besides stimulating
and orchestrating the innate-vs.-adaptive immunity and
downstream sequelae. To date, contributions of DCs, from
their ontogeny to immune-regulations, have involved wide
arrays of homeostatic interactions vs. balance or dys-
regulation of bone remodeling at the skeletal/osteo-
immune interface [i.e., Receptor-activator-of-nuclear-fac-
tor-kappa-B-ligand (RANKL)-Receptor-activator-of-nuclear-
factor-kB (RANK)-Osteoprotegerin (OPG)-triad, etc.], impli-
cating in arthritic and osteoporotic conditions such as oste-
oporosis and periodontitis, etc.1 It is clear that classical
osteoclasts (OCs) derive from the myeloid lineage of he-
matopoietic stem cells in bone marrow (BM; i.e., mono-
cytes/Mo & macrophages/Mf); yet, DCs are heterogeneous
with plasticity, whose specific subsets can develop into
functional OCs and precursors (OCp) both in murine and
human, in-vitro & in-vivo, suggesting the alternative
pathway for osteoclastogenesis.1e3

It is evident that RANKL/RAMK-OPG-triad is critically
responsible for OC development and osteoclastogenesis,
whose adaptor called:TRAF6 (Tumor-necrosis-factor-recep-
tor-associated-factor-6), is principally involved in immune-
osteotropic signal-cascades, such as: TNF-receptor
(TNFR),Toll-like-receptor (TLR)/Interleukin-1-receptor (IL-
1R), Transforming-growth-factor-b-receptor-1 (TGF-bR1), T-
cell-receptor (TCR) & Toll/IL-1-receptor-domain-containing-
adaptor (TRIF) via IL-1R-associated-kinase (IRAK), TGF-b-
activated-kinase (TAK), Interferon-regulatory-factor (IRF),
Mitogen-activated-protein-kinases (MAPK), Apoptosis-signal-
regulating-kinase (ASK), Inhibitory-kB-kinase (IKK)/Mitogen-
extra-cellular-activated-protein-kinase-kinase (MEKK), Phos-
phatidylinositol-4,5-bisphosphate-3-kinase (PI3K), CCAAT/
enhancer-binding-protein-bd(C/EBPbd), NFkB-activator-
1(Act1), Myeloid-differentiation-factor-88 (MyD88), etc.,
intermediate-pathways before triggering transcriptional
factors for gene activations.4 We have reported that murine
BM/spleen-derived “immature”-myeloid-DC precursors car-
rying CD11cþ-CD11b�F4/80-Ly6C�CD31�MHC-IIe/or/lowCD80/
86--phenotype are capable of developing to active OCs
(termed: mDDOCp) bearing TRAPþ-CT-Rþ-Cathepsin-Kþ-
RANKþ-GM-CSFR--Integrin-avb3

þ hallmarks in-vitro & in-vivo
to resorbing bone in a RANKL/RANK-dependent manner,
where their differentiation signals vs. kinetics & morphology
carrying multinucleation/>3-nuclei with dendrites are
notably unique.1,3e5 Importantly, once committed to be
maturing upon-activation or microbial-stimulation (i.e.,
TLRs/LPS-signals), mDDOCp loses the osteoclastogenic po-
tential.6 Further, via genome-wide microarray-screening,
confirming the resultant TGF-bRII on differential-signaling
and parallel-neutralization assays in-vitro-&-in-vivo, we
pioneered that endogenous TGF-b is critically involved in
developing mDDOCp, as OCp, once passing beyond M-CSF/c-
FMS-mediated survival-signals.1,3,5 Herein, to explore and
decipher the molecular interactions and role of TGF-b/TGF-
bRII signaling in mDDOCp (as OCp without any influence from
Mo/Mf-derived classical-OCs) for osteoclastogenesis, which
remains unclear to date, we employed our established pro-
tocols to generate “immature”-CD11cþmDDOCp (>98-99%-
pure) lacking TRAF6-mediated signaling in BM/splenic-cells
(termed: T6KO_BMChi-DC) prepared from >6-wk-old
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C57BL/6-chimeric mice post-lethal-irradiations and recon-
stituted with BM-or-fetal-liver cells of 4-to-6-wk-old tooth-
less-TRAF6(�/�)-mice in-vivo (via genomic-screening of the
bred-offspring from TRAF6(þ/�)-breeding-pairs),7 then sub-
jected to co-cultures with-or-without syngeneic/splenic-
naı̈ve-CD4þT-cells (or mRANKL:50e100 ng/ml) and Aggrega-
tibactor Actinomycetemcomitans/JP2-strain sonicate-Ag (in-
short: Aa-Ag), where exogenous mTGF-b vs. anti-TGF-b-
neutralizing-Mab or mIL-17 was added individually for 4.5e5
days in-vitro, followed by enumerating surface areas of
TRAPþ-CD11cþDC/mm2 in resorptive-pits.1,3e5 Immature
CD11cþ-mDDOCp prepared from wild-type TRAF6(þ/þ)-mice
(termed: WT_BM-DC) were set as the control, and both
splenocytes-&-Con-A vs. WT_BM-DC-cells plus mM-CSF-
&-mRANKL in co-cultures were employed as positive-control,
individually (Fig. 1: upper colored-panel, lower panel of bar-
diagrams & Fig-1-legend).

Interestingly, the results showed that: i) T6KO_BMChi-DC-
cells (as mDDOCp prepared from BM/spleen of chimeras
reconstituted with TRAF6(�/�)-BM/fetal-cells without Mo/
Mf-derived-OCs in-vivo) co-cultured with mRANKL-&-mM-
CSF did not produce or develop any significant TRAP(þ)>3-
multinucleated OC-like activities, compared to that of
WT_DC did in-vitro [by surface-areas: upper-&-lower panels
labeled -3 & -2)], suggesting TRAF6-&-related signaling-
cascades were associated with mDDOCp-mediated osteo-
clastogenesis; ii) while WT-DC þ T-cells þ Aa-Ag & WT-
DCþ RANKLþ Aa-Ag yielded comparably high-level of robust
TRAP(þ)-mDDOCp/OC activity [Fig. 1: label-6 & -7],
compared to those of significantly lowered TRAP(þ)DC-
measured in label-8) when pan-specific anti-TGF-b-neutral-
izing-Mab was added into co-cultures of label-6/7)
[PZ 0.025], as to that of label-7) when WT_BM-DC cells
were replaced with T6KO_BMChi-DC-cells in-vitro [Fig. 1:
label-9; PZ 0.002], consistent with our prior findings that
TGF-b is critically involved in developing mDDOCp activity at
OCp-stage;1,3,7 iii) adding mTGF-b into T6KO_BMChi-
DC þ RANKL þ Aa-Ag co-cultures (Fig. 1: label-10) robustly
rescued the lowered TRAP(þ)-DC activity detected in label-9)
[PZ 0.006]; whereas, adding mIL-17 (Fig. 1: label-11;
PZ 0.041) further enhanced such lowered TRAP(þ)-DC ac-
tivity measured (in label-9), significantly higher than that of
label-10), suggesting that TGF-b and IL-17 individually or
synergistically mediated TRAF6-independent rescue-
signaling onto mDDOCp development; iv) further, addition
of anti-TGF-b-neutralizing-Mab (Fig. 1: label-12) in co-
cultures of label-11 or replacing mRANKL with naı̈ve-
CD4þT-cells in the presence of Aa-Ag for activation (Fig. 1:
label-13) significantly reduced TRAP(þ)-DC activity detected
in co-cultures of lable-11 [PZ 0.008], suggesting that IL-17-
signal for mDDOCp development, as detected in label-11,
required TGF-b in its environmental milieu indeed, regard-
less the presence of CD4þT-cells that, post-Aa-Ag-activation,
expressed RANKL or other osteotropic factors in-situ.1

The above results are consistent with prior-findings
from others, where: i) there is surely alternative routes
for OCp differentiation independent of RANKL/RANK-
TRAF6-axis,4,7 ii) TGF-b is required to prime un-committed
OCp rendering RANKL-mediated osteoclastogenesis,8 iii)
certain DCs subsets can act like OCp via an alternative
pathway of developing into OCs in-vitro-&-in-vivo.2,7,8

Intriguingly, our new findings supported that TGF-b/TGF-



Figure 1 Exogenous TGF-b vs. IL-17 provides rescue-signaling separately or synergistically sufficient to driving mDDOCp-mediated
osteolastogenesis, devoid of TRAF6-&-related immune-osteotropic signals (without Mo/Mf-derived endogenous OCs in-vivo), as shown
by TRAP(þ)-DC staining in-situ (deep red-purple color; see the colored top-panel labeled 2e13) and quantitative surface-areas (in
mm2) measured on HA-coated-48/well-plates for 4.5-5-days in-vitro (see the lower-panel of bar-diagrams labeled 1e13).1,3e5

Details of the cells obtained/collected, culture reagents & materials sources on the protocols/ conditions employed in the present
study for co-cultures ofw3 orw4.5e5 days on HA-coated 48/well-plates (OCT-Co., CA, USA) via the automated enumerations [for the
signals of TRAP(þ)-DC-staining & surface-areas of resorptive pits in-mm2 under 150� magnification; by the mean� SEM] have all been
reported previously.1,3e5,7 The results presented were from five independent experiments in triplicates/group, where they are briefly
outlined in labels of 1-to-13, as follows: 1) 5� 105 mouse splenocytes & Con-A (5 mg/ml) co-cultured for 3-days, and 2) 2� 105 WT_BM-
DC-cells (98e99% pure) plus soluble rmM-CSF (25 ng/ml) & rmRANKL (50e100 ng/ml) co-cultured for 4.5-5-days were set as the
positive-controls; 3) 2� 105 T6KO_BMChi-DC cells (prepared from 6-wk-old mouse chimeras post lethally-irradiated & reconstituted
with BM-or-fetal-liver cells of 4-6-wk-old toothless-TRAF6(�/�)-mice7) co-cultured with soluble rmRANKL (50e100 ng/ml) & rmM-CSF
(25 ng/ml) for 4.5-5-days; 4) 2� 105 WT-DC-cells in co-cultures for 4.5-5-days, as background control; 5) 2� 105 WT-DC cells alone in
co-cultures for 4.5-5-days, as background control; 6) 2� 105 WT-DC cells plus 5� 105 syngeneic splenic-CD4þT-cells (95e97% pure; in
1:2.5 ratio) & Aa-Ag (10 mg/ml) were co-cultured for 4.5-5-days, and 7) 2� 105 WT-DC cells plus soluble rmRANKL (50e100 ng/ml) &
Aa-Ag (10 mg/ml) co-cultured for 4.5-5-days, each yielding robust level of TRAP(þ)-mDDOCp/OC activity developed and set as positive-
control for experimental comparison; 8) 2� 105 WT-DC cells plus soluble rmRANKL (50e100 ng/ml) & rmM-CSF (25 ng/ml) co-cultured
in the presence of pan-specific anti-mTGF-b neutralizing-Mab (100 ng/ml; R&D Systems) for 4.5-5-days; 9) 2� 105 T6KO_BMChi-DC
cells (same protocols as prepared in label-3 above) co-cultured with soluble rmRANKL (50e100 ng/ml) & Aa-Ag (10 mg/ml) for 4.5-
5-days; 10) 2� 105 T6KO_BMChi-DC cells (same protocols as prepared in label-3/-9 above) co-cultured with soluble rmRANKL
(50e100 ng/ml) & Aa-Ag (10 mg/ml) in the present of soluble rmTGF-b (50e100 ng/ml) for 4.5-5-days; 11) 2� 105 T6KO_BMChi-DC cells
(same protocols as in label-3/-9/-10 above) co-cultured with soluble rmRANKL (50e100 ng/ml) & Aa-Ag (10 mg/ml) in the presence of
mIL-17A (25 ng/ml; R&D Systems) for 4.5-5-days; 12) 2� 105 T6KO_BMChi-DC cells (same protocols as in label-3/-9/-10 above) co-
cultured with soluble rmRANKL (50e100 ng/ml) & Aa-Ag (10 mg/ml) in the presence of soluble rmTGF-b (50e100 ng/ml) & mIL-17A
(25 ng/ml) for 4.5-5-days; 13) 2� 105 T6KO_BMChi-DC cells (same protocols as in label-3/-9/-10-12 above) were co-cultured with
5� 105 syngeneic/ splenic-CD4þT-cells (95e97% pure) and Aa-Ag (10 mg/ml) in the presence of soluble rmTGF-b (50e100 ng/ml) &
mIL-17A (25 ng/ml) for 4.5-5-days. Later, the statistical analyses were employed using two-sided Student t-test via the IBM computing
software SPSS-Statistics (SPSS 22, IBM Corp. USA) and the differences between groups were considered significantly different with
>95% confidence, when p-value was <0.05. Note: The isotypic-control Mab applied (to that of anti-TGF-b neutralizing-Mab tested
above) did not affect the resultant TRAP(þ)-DC staining and quantitative surface-areas (in mm2) measured in-situ, thus were not
shown here (data not shown).
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bRII, besides IL-17/IL-17Rs, can transduce somewhat
rescue-signals in immature-OCp, mDDOCp; where RANKL/
RANK-TRAF6 and related-signaling complexes are notably
dispensable (Fig. 1: label 9e13), since mDDOCp manifest
maturing phenotype(s) post-activation (i.e., being-
CD11bþF4/80þGM-CSFR-MHC-IIþ/hi, etc.),5 such alternative
pathway towards osteoclastogenesis becomes un-permis-
sible.5,6 Whether TGF-b vs. IL-17-mediated rescue-
signaling in mDDOCp play any roles in homeostatic or
pathological bone remodeling-&-osteoclastogenesis in-vivo
will require further study; we already reported comparable
CD11cþ�multinucleated-TRAPþOC-like/mDDOCp existed
and significantly involved in type-II collagen-induced
rheumatoid-arthritis in DBA mice.1

TRAF6 is a key-adaptor protein to transducing RANKL/
OPG-RANK triad-signals that regulate not only OCs patho-
physiology in skeleton, but also wide ranges of immune-vs.-
non-immune interactions, including: thymic selection &
lymph-organogenesis, B-/Th-cells/T-reg tolerance &
memory-responses, myeloid-lineage (Mo-Mf & DCs) differ-
entiations, etc.4,7,9 Paradoxically, upon TRAF6-&-related
signaling deficiencies, IL-17/IL17Rs vs. TGF-b/TGF-bRII may
transduce via other adaptors, including IL-17Rs-TRAF2/5/4-
ACT1 by non-canonical signaling vs. TGF-bRII-SMAD2/3 or
-RhoA vs. -JAK2/STAT3 or -ALK1/SMAD1/5 intermediates,
respectively, for downstream events, where optional ac-
tions by direct-positive vs. indirect-negative modes or dif-
ferential sensitivity to TGF-b through IL-17-inhibitory-
signals have been suggested.8e10 For instance, we showed
that JAK/STAT-mediated pro-inflammatory pathway via
SOCS3-signaling significantly regulate the development of
CD11cþ-mDCs into TRAP (þ)-mDDOCp/OCp for osteoclas-
togenesis, independent of TRAF6-expressions;10 yet, po-
tential inter-players, i.e., TNF-a/IL-6, chemokines, etc.,
for the scenarios described above might be selective and
await closer and thorough investigations.

In summary, DCs are borne-heterogeneous, whose
certain subsets are immature with plasticity, acting as OCp
(e.g., mDDOCp), thereby developing into OCs via an alter-
native pathway for inflammation-induced osteoclasto-
genesis.1,3,8 Importantly, the novel finding presented
provide a new insight, where distinct regulation of CD11cþ-
mDDOCp deficient of TRAF6-&-related immune-osteotropic
signaling invokes TGF-b-&-IL-17-mediated rescue-signals in
the environmental milieu sufficient to driving bona-fide
osteoclastogenesis. Such permissive or non-discriminative
twist-in-turns pathway(s) will require further study to
address its in-vivo significance through animal models and
human conditions.
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