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An adaptive strategy for association analysis
of common or rare variants using entropy theory

Yu-Mei Li1,2, Chao Xu2, Yang Xiang1, Cheng Peng2,3 and Hong-Wen Deng2

Advances in DNA sequencing technology have been promoting the development of sequencing studies to identify rare variants

associated with complex traits. Adaptive strategy can be effective to reduce the noise provided by non-causal variants. However,

the existing adaptive strategies depend on many assumptions. In this paper, we proposed a new adaptive strategy using entropy

theory for association analysis. This entropy-based strategy is based on the magnitude of association between variants and

disease and does not depend on the detailed association pattern with causal variants. We considered multi-marker test and Sum

test with collapsing method to construct the entropy-based adaptive strategy. Using simulation studies, we investigated the

performance of our method for rare variant analyses as well as for common variant analyses with multi-marker test and compared

it with several existing adaptive strategies. The results showed that our method can improve the power and achieve good

performance when there is a large number of non-causal variants and effects of causal variants are in the same direction for

rare variant.
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INTRODUCTION

Genome-wide association studies have successfully identified
a large number of common genetic variants involved in common
diseases. However, most associations detected by current genome-wide
association studies only explained a limited proportion of heritability
for most complex traits.1 Recent studies showed that rare variants
(RVs) contribute to the missing heritability unexplained by the
discovered common variants.2 RVs are referred to as alternative forms
of a gene that are present with a minor allele frequency (MAF) of
less than 1% and have a larger effect size compared to common
variants. Due to the low MAFs of RVs, traditional approaches used for
analyses of common variants lack power and require large sample size
to detect the variant-disease association. With the development of
next-generation sequencing technologies, the availability of large
quantities of sequence data provides an unprecedented opportunity
for researchers to develop novel statistical methods for RV association
analyses.
Due to the low MAFs and little variation information in a single RV,

many methods have been explored to search for accumulative effects
of a group of RVs. These include the cohort allelic sums test,2 the
combined multivariate and collapsing method (CMC),3 The Sum
test,4 the weighted-sum method5 and the variable threshold method.6

The main idea of these methods is collapsing or pooling RVs across
a causal region into one ‘super’ variant to increase allele frequency and
then collectively testing their association effect as a whole. Although
these methods can improve power by combining information of

multiple RVs, they are developed with the assumption that all variants
in the region have an effect on the phenotype and the effects are at the
same direction with the same magnitude. These tests will lose power
when the set of collapsed variants includes non-causal variants or the
effects of causal variants have different directions. Various methods
have been proposed recently to overcome these limitations. These
include C-alpha score test,7 the sequence kernel association test8 and
the adaptive sum strategy.9 The adaptive strategy is to select the
importance RVs to construct statistics under some assumptions and is
considered as an effective method to overcome limitations of
collapsing methods. The variable threshold method is based on the
assumption that the MAFs of the causal RVs may be different from
those of non-functional RVs. The series of adaptive tests proposed by
Pan and Shen9 can be considered as the extension of the variable
threshold method by ordering the standardized magnitudes of
a statistic U or the locations of their corresponding RVs. However,
these adaptive methods are not uniformly most powerful. Major
reason is that they depend on specific association effect directions and
sizes, while in reality the true association pattern with causal RVs is
unknown and disease-association mutations are hard to choose.9,10

So, developing adaptive method not depending on the unknown
association pattern might be particularly useful for RV association
analyses.
As an important metrics in information theory, the Shannon

entropy11 is usually used to measure uncertainty of a random variable.
The entropy theory has an important performance: the conditional
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entropy of a variable given the knowledge of another variable is
less than or equal to the unconditional entropy and they are equal
when the two variables are independent. We can apply the entropy
theory to characterize DNA variation12 by constructing the difference
(that is, the mutual information) between the entropy of a variant and
its conditional entropy given the phenotype (affected or unaffected)
and then quantifying the magnitude of association between the variant
and the trait.
In this paper, we will propose a new adaptive strategy using

entropy theory to test the variant-disease association. Our strategy
is based on the magnitude of association but is not influenced
by the unknown association pattern between the variants and the
trait. At the same time, we expect our method is a generally
strategy which can be used for RV or common variant. So we will
consider the multi-marker test which is a powerful method for
association analysis of both common variant and RV and Sum test
to construct test statistic. Through simulation studies, we will assess
and compare the performance of our method with the existing
methods.

MATERIALS AND METHODS

Preliminaries of entropy
We consider two discrete random variables X and Y. X has the state x with
the probability p(x) and Y has the state y with the probability P(Y= y). We
let P(x|Y= y) be the conditional probability of X given Y= y. The entropy
of X and the conditional entropy of X given Y= y are defined with the following
Equations (1) and (2), respectively.

HðXÞ ¼ �
X

x

pðxÞ?log pðxÞ ð1Þ

Where p(x)·log p(x)= 0 if p(x)= 0.

HðXjY ¼ yÞ ¼ �
X

x

pðxjY ¼ yÞ?log pðxjY ¼ yÞ ð2Þ

Then the conditional entropy of X given Y is

HðXjYÞ ¼ �
X

y

pðY ¼ yÞ?HðXjY ¼ yÞ ð3Þ

It should be noted that H(X)−H(X|Y)⩾ 0 and the equality holds only
if X and Y are independent.
The concept of entropy can be used to study the relationship between

variations and disease susceptibility.13 Because multivariate test is to test
all variants simultaneously, it is a powerful method for association analysis
of common variants. In addition, multivariate test is considered to be
more robust than collapsing method for RVs analysis in the presence of
misclassification of non-functional variants. Here, first we will focus on
multi-marker test and consider how to use the entropy theory to develop an
adaptive strategy for association analysis. Then we extend it to collapsing
method for RVs analysis.

Multiple-marker test
We first briefly review the multi-marker statistic test. Assume n individuals with
nA affected and nC unaffected individuals (nA+nC=n) are sampled. Suppose
that there are k variants, each of which has two alleles A and a. We assume that
the allele A is suspected of increasing the disease risk and has the population
frequency of pi for ith variant (i= 1,…, k). To simplify our presentation, a
measure with a superscript ‘A’ indicates a measure in affected individuals, and a
measure with a superscript ‘C’ indicates a measure in unaffected individuals. Let
Xi be the number of copies ‘A’ for variant ‘i’, i= 1,…, k. Define a k-dimensional
random variable Z= (X1, X2,…, Xk)

T presenting the state of allele A at
k variants. Let

P ¼ ðsijÞk ´ k be the covariance matrix of Z, where σij is
the covariance of Xi and Xj. Let ZA

i ¼ ðXA
1i;X

A
2i;?;XA

kiÞT
and ZC

j ¼ ðXC
1j;X

C
2j;?;XC

kjÞT be the state of allele A for the ith (i= 1, 2,…, nA)
affected individual and the jth (j= 1, 2,…, nC) unaffected
individual, respectively. Let Z

A ¼ 1
nAð

PnA

i¼1 X
A
1i;

PnA

i¼1 X
A
2i;?;

PnA

i¼1 X
A
kiÞT and

Z
C ¼ 1

nCð
PnC

i¼1 X
C
1i;

PnC

i¼1 X
C
2i;?;

PnC

i¼1 X
C
kiÞT be the mean vector of ZA

i and

ZC
i , respectively. Let

P̂A
and

P̂C
be the sample covariance matrix of ZA

i and
ZC
i , respectively. Then the multi-marker statistic test is as following:14

TM ¼ ðXA � X
CÞTð

P̂A

nA
þ
P̂C

nC
Þ�1ðXA � X

CÞ ð4Þ
The statistic TM is asymptotically a χ2 distribution with the degree of

freedom of rank for
P̂A

nA þ
P̂C

nC under the null hypothesis of no association.

A new adaptive strategy for association analysis using entropy
theory
We consider a homogeneous population. Under the assumption of
random mating and thus Hardy–Weinberg equilibrium, Xi has the probability
distribution PXi0 ¼ PðXi ¼ 0Þ ¼ ð1� piÞ2, PXi1 ¼ PðXi ¼ 1Þ ¼ 2pið1� piÞ,
PXi2 ¼ PðXi ¼ 2Þ ¼ pi

2. From Equation (1), we calculate the entropy of Xi

for variant i, Hi ¼ �P2
j¼0 PXij ?log PXij . Define a variable Y as an individual’s

disease status, Y= 1 if the individual is affected, Y= 0 if the individual is
unaffected. Then the conditional entropy of Xi given Y, denoted by HCi, is

HCi ¼ pðY ¼ 1Þ?HA
i þ pðY ¼ 0Þ?HC

i , where HA
i ¼ �P2

j¼0 P
A
Xij
?logPA

Xij
and

HC
i ¼ �P2

j¼0 P
C
Xij
?logPC

Xij
are the entropy of Xi in affected individuals and

unaffected individuals, respectively. Let ∂i=Hi−HCi. ∂i is a measure of the
magnitude of association: the larger the value, the stronger the association
between variant i and disease and ∂i⩾ 0 with equality holding only if variant i is
independent with the disease. We assume that there are L (L⩽ k) variants with
∂i40. To simplify our presentation, we assume that the former L variants are
those with ∂i40. We sort these L variants in descending order of ∂i:
∂1⩾ ∂2⩾…⩾ ∂L. Let G(L) be the variant set containing these L variants:
G(L)= {i: ∂1⩾ ∂2⩾…⩾ ∂L}. It is noted that, obviously, variants not in G(L) are
those not associated with disease, and theoretically, L variants in G(L) are
associated with disease. However, because we calculate ∂i with the sample data,
those not associated with disease may have ∂i40. Thus, G(L) contains all
associated variants, and may also contain some variants not associated with the
disease. Let G(r)= {i: ∂1⩾ ∂2⩾⋯⩾ ∂r}(r= L, L− 1,⋯,1), for example,
G(L− 1)= {i: ∂1⩾ ∂2⩾⋯⩾ ∂L− 1}, G(L− 2)= {i: ∂1⩾ ∂2⩾⋯⩾ ∂L− 2}, and
G(1)= {i: ∂1}. We obtain L variant sets G(L),⋯,G(1), containing L,⋯,1
variants, respectively and the values of ∂i in G(r) are larger than those in
variant sets ahead of G(r). For each variant set G(r), we define a statistic,
denoted by TGðrÞ

M , according to Equation (4). Our test statistic, here, denoted as
TM-E, is defined as following:

TM � E ¼ min
1rrrL

P
TGðrÞ
M

ð5Þ

where P
TGðrÞ
M

is the P-value of TGðrÞ
M . The statistical significance can be

assessed by permutation.

Rare variants association analysis with the entropy-based adaptive
strategy
In addition to multi-marker test, collapsing methods are widely used for
association analysis of RVs. In order to describe how to use the entropy-based
adaptive strategy for RVs, here we focus on the statistic of Sum test proposed by
Pan4 as an example. The Sum test Tsum is defined as following:

TSum ¼ 1TUffiffiffiffiffiffiffiffiffiffiffi
1TV1

p ð6Þ

Here, 1= (1,⋯,1)T is the k-vector of all 1’s. U ¼ Pn
i¼1ðYi � Y ÞZi is the score

vector with the covariance matrix V ¼ Y ð1� Y ÞPn
i¼1ðZi � Z ÞðZi � Z ÞT ,

where Y ¼ 1
n

Pn
i¼1 Yi and Z ¼ 1

n

Pn
i¼1 Zi. Here, Zi= (X1i, X2i,⋯,Xki)

T presents

the state of allele A for ith individual. The Sum test Tsum belongs to the family
of pooled association tests or collapsing tests. Collapsing method is to collapse
all RVs across a causal region into a ‘super’ variant and then collectively test
their association effect as a whole. This method has been widely adopted to
analyze RVs. However, collapsing tests will loss power if one does not eliminate
the influence of non-causal RVs and the different directions of the causal
variants. In order to remove the influence of different directions of causal RVs
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and a large number of non-causal RVs, Price et al.6 proposed a variable
threshold test (Price-VT) based on the observed MAFs,

Price� VT ¼ max
hAH

zðhÞ ¼ max
hAH

Pn
i¼1

Pk
j¼1 x

h
j XijðYi � Y Þ

½Pn
i¼1

Pk
j¼1 ðxhj XijÞ2�1=2

ð7Þ

where H is the set of observed MAFs across all RVs and
xhj ¼ Iðh > MAF of RVjÞ. Pan and Shen9 proposed a general class of adaptive
tests aT,

aT ¼ aTðUÞ ¼ min
1rmrk

PTðUðmÞÞ ð8Þ
where U(m)= (U1,⋯,Um) is the score subvector containing the first m
components of U, T(U(m)) is the statistic based on U(m), and PTðUðmÞÞ is the
P-value of T(U(m)). The test aT depends on the order of the components of U.
They suggested two adaptive tests aT-Loc and aT-Ord by ordering the locations
of their corresponding RVs and the standardized magnitudes of a statistic U,
respectively. Here, we let aSum-Ord be the adaptive test of the Sum test based
on the standardized magnitudes of a statistic UðUj=

ffiffiffiffi
vj

p Þ We can use the
weighting scheme to improve the performance of the statistic. The commonly
used weight is wi ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npið1� piÞ

p
(here, we denote it as wMB) with

denominator representing the estimated standard deviation of the total number
of mutations in the sample.5 Here, pi ¼ nui þ1

2nuþ2 is the allele frequency of the ith
RV in unaffected individuals, where nui is the number of minor alleles of the ith
variant in unaffected individuals and nu is the number of unaffected individuals.
Following the previous symbols, we suppose that there are L(L⩽ k) variants

with ∂i40. Using these L variants we construct L variant sets G(L),⋯, and
G(1) containing L,⋯ and 1 variants, respectively. Here, the values of ∂i in
G(r) are larger than those in variant sets ahead of G(r). Then the adaptive test
for RVs analysis using entropy theory is as following:

aT ¼ aTGðrÞ ¼ min
1rrrL

PTGðrÞor aT ¼ aTGðrÞ ¼ max
1rrrL

TGðrÞ ð9Þ
where TG(r) is the statistic based on the variant set G(r), and PTGðrÞ is the P-value
of TG(r). We denote our method as aT-E. The variant set corresponding to
aT-E can be considered as the optimal set containing variants associated with
the disease. Here, aSum-E is the adaptive test of the Sum test based on the
entropy-based adaptive strategy. The statistical significance for all tests can be
assessed by permutation. It should be noted that the variable threshold test is
based on the assumption that the MAFs of the causal RVs may be different
from those of non-functional RVs.6 The aT test also depends on the order of
the components of the score vector U.9 However, different orders of the
components of the score vector U may lead to inconsistent results. Even in
practice, one can not objectively determine the effects of variants. Whether the
MAFs of the causal RVs are different from those of non-functional RVs is
generally unknown, and even if known, the magnitude of difference are
unknown. Our entropy-based adaptive strategy is based on the magnitude of
association between variants and disease. It does not need any other assumption
about the effects and MAFs of RVs, thus overcoming the problems associoated
with earlier Sum test.

RESULTS

Simulation setting
In our simulation studies, we assess the type-1 error rate and compare
the power of our method with several existing adaptive methods under

a wide range of parameter values. The simulation parameter includes
the number of variants, the MAF of each variant, the number and
effect size of causal variants, and the sample size. For common variant,
we consider k (k= 4, 10, 20, 50, 100) observed variants and an
unobserved causal variant in the middle. The MAFs for k common
variants are uniformly determined with values ranging from 0.1 to
0.4. The MAF of unobserved common causal variant is set to be 0.2.
The odds ratio (OR)= 1 for all variants under the null hypothesis of
no association and OR= 1 for all non-causal variants. Under the
alternative hypothesis of association, we let OR= 1.5 for the common
causal variant. The sample size n (= 2N)is chosen as 500, 1000, 1500
or 2000 with N affected individuals and N unaffected individuals. We
first generate haplotypes for k+1 variants with MAFs based on a latent
variable Z= (Z1,⋯,Zk+1) from a multivariate normal distribution with
covariance structure cov(Zi, Zj)= 0.8|i− j| between any two latent
components. Then we combine two haplotypes to obtain the genotype
value for each individual Xi= (Xi1,⋯,Xik+1). The disease status of an
individual is determined by the following logistic model:15

PðAffectedjXij; i ¼ 1;?; kþ 1Þ ¼ 1

1þ expð�gÞ;

g ¼ lnð c

1� c
Þ þ

Xkþ1

i¼1

lnðORiÞ?Xij ð10Þ

where c is a background chance of being affected for a subject with no
minor alleles, ORi is the effect size of variant i and Xij is the number of
copies of minor alleles at the ith variant. In Equation (10), we
let c= 0.01. We calculate the value of statistics TM, and TM-E using
k observed common variants.
For RVs, we consider 20 RVs with q rare causal variants and 20-q

rare non-causal variants. The MAFs of all variants are randomly
determined with values ranging from 0.001~ 0.01. We obtain the
genotype value for each individual in the same way as for common
variant but with covariance structure cov(Zi, Zj)= 0.4|i− j| between
various components. In order to express possible situations for the
effects of RVs, we consider three scenarios under the alternative
hypothesis of association: scenario A is that variants associated with
disease have the same OR value, scenario B is that variants associated
with disease are all deleterious but having different effects and scenario
C is that variants associated with disease can be both deleterious and
protective having different effects. In scenario A, we let OR= 3 for all
causal variants. In scenario B, we let OR∈ [1.2, 3] with increments of
1:8
q�1 for causal variant 1 to variant q. In scenario C, we let OR∈ [1.2, 3]
for half of causal variants and OR∈ [0.2, 0.8] for the rest causal
variants. At the same time, we consider weighting scheme with weight
wMB. Other parameter values are similar to those for common
variants. We calculate the statistics of Sum, aSum-Ord, Price-VT,
aSum-E, TM and TM-E. For all the statistics, P-values are estimated as
the proportion of the permutation-based statistics that are larger than

Table 1 The estimated type I error rates when there are 20 rare variants

Type I error rates

Sample size Sum aSum-ord Price-VT aSum-E TM TM-E

500 0.058 (0.002) 0.051 (0.009) 0.052 (0.006) 0.050 (0.007) 0.053 (0.007) 0.052 (0.005)

1000 0.051 (0.005) 0.056 (0.004) 0.054 (0.005) 0.047 (0.005) 0.047 (0.005) 0.049 (0.005)

1500 0.052 (0.005) 0.051 (0.004) 0.050 (0.005) 0.049 (0.004) 0.053 (0.005) 0.050 (0.004)

2000 0.053 (0.004) 0.051 (0.005) 0.052 (0.005) 0.052 (0.005) 0.051 (0.003) 0.051 (0.004)

Note: shown in parentheses is the standard error.
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the data-based statistic by 1000 permutations. For a given significance
level α (0.05), type I error rates and power are then estimated as the
proportion of rejecting the null hypothesis when P-value⩽α in 1000
replications. Here, we repeat this simulation process 100 times and
present the mean and the standard error for the estimated type I error
rates and power.

Type I error rate and power
Table 1 exhibits the estimated type I error rates of Sum, aSum-Ord,
Price-VT, aSum-E, TM and TM-E for RV, where the sample size n is
500, 1000, 1500 and 2000, respectively. As shown in Table 1, the type I
error rates are all well-controlled. We list the results of TM and
TM-E for common variant in Table 2 with the sample size of 1000. We
found that the Type I error rates are also reasonable.
The results of power are presented in Table 2 for CV and Table 3

for RV when the sample size is 1000. From Table 2, we can see that
the power of the multi-marker test TM decreases with the increasing of
the number of common variants. The entropy-based adaptive strategy
can improve the power of TM. Table 3 presents the power for six
statistics, Sum, aSum-Ord, Price-VT, aSum-E, TM and TM-E. For each
scenario, the power of these statistics decreases with the increasing of

the number of non-causal variants. For collapsing method, there are
four statistics, one is the Sum test and the other three are adaptive
methods. We observed that, when there are rare non-causal variants,
the Sum test has the lowest power, indicating that the Sum test is most
seriously affected by non-causal variants. When the number of non-
causal variants is o12, the statistic aSum-Ord has the highest power.
We noted that, for the first two scenarios, with the number of
non-causal variants increasing, the power of the aSum-E is gradually
close to that of aSum-Ord and almost the same as that of aSum-Ord
when the number of non-causal variants is 16, indicating that the
entropy-based adaptive strategy can improve the power for the
collapsing method. However, we found that, for scenario C where
causal RVs have opposite association directions, the power of aSum-E
is less than that of aSum-Ord.
For multi-marker test for RV, the power is higher than that of the

Sum test when there are rare non-causal variants. Although the power
is lower than that of collapsing method with adaptive strategy, the
deference gradually decreases when the number of non-causal variants
is increased. It can be found that the power improves by using the
entropy-based adaptive strategy and the entropy-based adaptive
strategy further decreases the difference between the multi-marker

Table 2 The estimated type I error rates and power for common variant analysis with a number of common variants where the sample size is

1000

Type I error rates Power

# of common variants # of common variants

Test 4 10 20 50 100 4 10 20 50 100

TM 0.05 (0.004) 0.05 (0.004) 0.052 (0.005) 0.051 (0.005) 0.053 (0.004) 0.908 (0.01) 0.807 (0.004) 0.766 (0.006) 0.725 (0.007) 0.614 (0.008)

TM-E 0.049 (0.004) 0.053 (0.005) 0.052 (0.005) 0.053 (0.005) 0.055 (0.004) 0.931 (0.011) 0.841 (0.009) 0.806 (0.004) 0.771 (0.008) 0.635 (0.009)

Note: shown in parentheses is the standard error.

Table 3 Empirical power for RV analysis

The number of non-causal variants in 20 RVsr

Test

0 4 8 12 16

w=1 w=wMB w=1 w=wMB w=1 w=wMB w=1 w=wMB w=1 w=wMB

Scenario A
Sum 0.970 (0.005) 0.972 (0.006) 0.761 (0.007) 0.762 (0.008) 0.549 (0.005) 0.560 (0.007) 0.349 (0.010) 0.340 (0.009) 0.210 (0.009) 0.207 (0.010)
aSum-Ord 0.958 (0.009) 0.960 (0.007) 0.902 (0.006) 0.900 (0.006) 0.811 (0.006) 0.814 (0.005) 0.705 (0.009) 0.710 (0.006) 0.571 (0.008) 0.575 (0.007)
Price-VT 0.952 (0.012) 0.958 (0.010) 0.864 (0.011) 0.866 (0.010) 0.701 (0.006) 0.700 (0.005) 0.689 (0.008) 0.691 (0.007) 0.563 (0.009) 0.561 (0.007)
aSum-E 0.951 (0.011) 0.955 (0.010) 0.898 (0.011) 0.899 (0.011) 0.806 (0.004) 0.804 (0.004) 0.717 (0.007) 0.717 (0.006) 0.611 (0.008) 0.616 (0.009)
TM 0.910 (0.006) 0.910 (0.006) 0.811 (0.009) 0.811 (0.009) 0.740 (0.010) 0.740 (0.010) 0.678 (0.012) 0.678 (0.012) 0.506 (0.013) 0.506 (0.013)
TM-E 0.929 (0.011) 0.929 (0.011) 0.840 (0.010) 0.840 (0.010) 0.758 (0.011) 0.758 (0.011) 0.687 (0.011) 0.687 (0.011) 0.571 (0.012) 0.571 (0.012)

Scenario B
Sum 0.935 (0.008) 0.936 (0.007) 0.750 (0.008) 0.768 (0.009) 0.523 (0.009) 0.529 (0.008) 0.345 (0.007) 0.343 (0.009) 0.213 (0.013) 0.212 (0.012)
aSum-Ord 0.942 (0.009) 0.947 (0.009) 0.901 (0.010) 0.919 (0.011) 0.704 (0.010) 0.702 (0.009) 0.701 (0.010) 0.707 (0.011) 0.625 (0.012) 0.630 (0.011)
Price-VT 0.918 (0.004) 0.911 (0.005) 0.850 (0.006) 0.856 (0.006) 0.669 (0.006) 0.670 (0.007) 0.678 (0.011) 0.686 (0.011) 0.579 (0.010) 0.569 (0.011)
aSum-E 0.928 (0.008) 0.931 (0.007) 0.893 (0.008) 0.895 (0.007) 0.720 (0.009) 0.722 (0.008) 0.712 (0.010) 0.716 (0.011) 0.623 (0.009) 0.628 (0.010)
TM 0.801 (0.009) 0.801 (0.009) 0.773 (0.010) 0.773 (0.010) 0.686 (0.011) 0.686 (0.011) 0.651 (0.011) 0.651 (0.011) 0.573 (0.012) 0.573 (0.012)
TM-E 0.818 (0.009) 0.818 (0.009) 0.800 (0.010) 0.800 (0.010) 0.714 (0.009) 0.714 (0.009) 0.702 (0.010) 0.702 (0.010) 0.593 (0.011) 0.593 (0.011)

Scenario C
Sum 0.300 (0.006) 0.313 (0.005) 0.267 (0.008) 0.285 (0.009) 0.216 (0.006) 0.227 (0.006) 0.187 (0.009) 0.193 (0.009) 0.168 (0.008) 0.171 (0.007)
aSum-Ord 0.519 (0.006) 0.521 (0.006) 0.449 (0.012) 0.464 (0.011) 0.420 (0.008) 0.419 (0.007) 0.402 (0.009) 0.410 (0.010) 0.300 (0.008) 0.315 (0.009)
Price-VT 0.473 (0.008) 0.477 (0.007) 0.473 (0.009) 0.480 (0.009) 0.410 (0.009) 0.417 (0.010) 0.416 (0.012) 0.413 (0.011) 0.291 (0.009) 0.287 (0.008)
aSum-E 0.405 (0.003) 0.419 (0.006) 0.373 (0.008) 0.371 (0.008) 0.333 (0.008) 0.332 (0.009) 0.302 (0.009) 0.304 (0.006) 0.218 (0.007) 0.230 (0.009)
TM 0.406 (0.003) 0.406 (0.003) 0.329 (0.008) 0.329 (0.008) 0.316 (0.006) 0.316 (0.006) 0.308 (0.008) 0.308 (0.008) 0.256 (0.010) 0.256 (0.010)
TM-E 0.426 (0.008) 0.426 (0.008) 0.353 (0.009) 0.353 (0.009) 0.335 (0.007) 0.335 (0.007) 0.330 (0.009) 0.330 (0.009) 0.311 (0.010) 0.311 (0.010)

Note: scenario A, causal variants have the same effect. OR=3; scenario B, causal variants have different effects with the same direction. OR∈ [1.2, 3] for causal variants; scenario C, causal
variants have different effects. OR∈ [1.2, 3] for half of causal variants and OR∈ [0.2, 0.8] for the rest causal variants. w=1 means no weighting and w=wMB means weighting. MAF of causal
variants∈ [0.001, 0.01]. The sample size is 1000. Shown in parentheses is the standard error.
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test and the collapsing method with adaptive strategy. We also found
that, although the power of multi-marker test decreases with the
increasing of the number of non-causal variants, multi-marker test is
least affected by non-causal variants. For example, with the number of
non-causal variants increasing from 4 to 8, the power of TM-E
decreases from 0.801 to 0.714 with the decline rate of 10.86% while
the decline rates of power for Sum, aSum-Ord, Price-VT and aSum-E
are 30.27, 21.86, 21.29 and 19.37%, respectively.
It can also be seen from Table 3 that there exists difference for the

power between three scenarios. The power in scenario A is close to
that in scenario B, and powers in scenario A and scenario B are far
higher than those in scenario C. This result showed that different
direction of the effects of causal variants severely affect the power.
Moreover, we also consider the smaller significance level. When we let
the significance level be 0.001, we found that the estimated type I error
rates are also close to the nominal levels and the results of power are
similar to those in Table 2, Table 3 and as reflected by more data not
shown here.

DISCUSSION

In this paper, we proposed a novel adaptive strategy using entropy
theory for association analysis. We used the mutual information in
entropy theory to measure the association between RVs and the
disease. The mutual information can capture all linear and nonlinear
dependencies between random variables and not just linear depen-
dence as the correlation coefficient measures. In practice, the number
of non-causal variants and the effects of causal variants are unknown.
Misclassification of non-functional variants can seriously affect the
power of collapsing methods for RV association analysis. Here, we
proposed a strategy to diminish the influence of non-causal variants
and search the optimal variants set associated with the disease in the
studied genetic region to construct the statistical test.
Different from several existing adaptive methods which depend on

the association pattern with causal variants, our method is based on
the magnitude of association between variants and disease provided by
the data. It can be used not only for common variants but also for
RVs. For common variant, we considered the multi-marker test to
construct the entropy-based adaptive strategy. We choose multivariate
test mainly because it is a powerful method for association analysis of
common variants or RVs and it is considered to be more robust than
collapsing method for RVs analysis in the presence of misclassification
of non-functional variants.3 For RV, we considered the Sum test,
a collapsing method to conduct RVs analysis. Using simulation study,
we investigated the performance of our method and compared it with
several existing adaptive methods. The results showed that our
entropy-based adaptive strategy can improve the power of multi-
marker test. At the same time, for RV analysis, our method can
improve the power for the Sum test when there are non-causal
variants and, achieve good performance similar to that of the Sum test
with adaptive strategy proposed by Pan and Shen9 when there is
a large number of non-causal variants and causal variants have positive

effects. These results indicate that our method is a general approach to
reduce the noise incurred by non-causal variants.
Although our method is for population-based design, it can be

easily extended to family-based analysis. For example, when we obtain
case-parents data, we use nontransmitted genotypes as complement of
affected offspring and construct a difference vector calculated by
comparing the genotypes of affected offspring with their correspond-
ing ‘complements’. In this way, we can transform the family-based
data and apply case–control statistical tests. In a future study, we will
focus on family-based analysis.
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