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Abstract
Prior studies have found that dopamine (DA), acting at D4 receptors, and neuregulin (NRG), likely acting at ErbB4
receptors, are involved in a form of depotentiation of long-term potentiation (LTP) at Schaffer collateral (SC) synapses
in the hippocampus. Furthermore, DA and NRG actions are intertwined in that NRG induces DA release. We previously
found that low-frequency stimulation (LFS) of temperoammonic (TA) inputs to area CA1 also depotentiates previously
established SC LTP through a complex signaling pathway involving endocannabinoids, GABA, adenosine, and
mitogen-activated protein kinases (MAPKs), but not glutamate. In the present studies, we found that TA-induced SC
depotentiation in hippocampal slices from Sprague-Dawley albino rats also involves activation of both D4 receptors
and NRG-activated ErbB receptors, but that the roles of these two modulator systems are independent with D4
receptor antagonism failing to alter chemical depotentiation by NRG1�. Furthermore, a selective D4 receptor agonist
was unable to depotentiate SC LTP when administered alone, suggesting that D4 receptor activation is necessary but
not sufficient for TA-induced SC depotentiation. Chemical depotentiation by NRG1� was inhibited by a Pan-ErbB
antagonist and by picrotoxin (PTX), an antagonist of GABA-A receptors (GABAARs), indicating that NRG likely
promotes SC depotentiation via effects on GABA and interneurons. These findings have implications for understanding
the role of DA and NRG in cognitive dysfunction associated with neuropsychiatric illnesses.
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Introduction
Hippocampal synapses operate over a dynamic range

of efficacy and are subject to both short- and long-term
forms of plasticity, including long-term potentiation (LTP)

and long-term depression (LTD), leading candidates as
synaptic memory mechanisms (Malenka and Bear, 2004;
Kandel et al., 2014, Nicoll, 2017). Because there are limits
on the degree to which hippocampal synapses can po-
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Significance Statement

Low frequency activation of temperoammonic (TA) inputs to stratum lacunosum moleculare (SLM) of hippocam-
pal area CA1 can heterosynaptically depotentiate previously established long-term potentiation (LTP) of Schaffer
collateral (SC) synapses. TA-induced depotentiation involves complex signaling via endocannabinoids, GABA
and adenosine. Other studies indicate that SC depotentiation can involve activation of dopamine (DA) D4
receptors following DA release mediated by neuregulin-1 (NRG1). In the present studies, we find that both D4
receptors and NRG1 contribute to TA-induced SC depotentiation but do so independently. These findings have
implications for understanding cognitive defects associated with psychiatric disorders.
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tentiate or depress, there is interest in determining how
synapses reset to baseline following the induction of sta-
ble synaptic plasticity. This interest is compounded by the
fact that the hippocampus is a short-term, limited capac-
ity storage system. Potential mechanisms for synaptic
resetting include homeostatic plasticity, in which syn-
apses adjust to changes in activity over time (Turrigiano,
2011), and homosynaptic resetting, in which the same
synapses that are altered instruct their own resetting (Fujii
et al., 1991; Bashir and Collingridge, 1994).

We have been interested in determining whether extra-
hippocampal inputs can instruct Schaffer collateral (SC) syn-
apses to reset heterosynaptically following successful
induction of stable LTP. We have found that low-frequency
stimulation (LFS) of temperoammonic (TA) inputs to stratum
lacunosum moleculare (SLM) in area CA1 can induce depo-
tentiation (LTP-D) of SC synapses without persistently alter-
ing baseline SC transmission or the ability of SC synapses to
undergo subsequent LTP after resetting (Izumi and Zorum-
ski, 2008). TA-induced LTP-D involves complex signaling
including activation of GABA-A receptors (GABAARs),
cannabinoid-1 receptors (CB1Rs) and adenosine A1 recep-
tors (A1Rs), and activation of mitogen-activated protein ki-
nase (MAPK) signaling, including extracellular signal-related
kinase 1/2 (ERK1/2) and p38 MAPK (Izumi and Zorumski,
2016).

Surprisingly, TA-induced LTP-D does not involve
activation of AMPA-type glutamate receptors, NMDA re-
ceptors, metabotropic glutamate receptors, or L-type
voltage-activated calcium channels (Izumi and Zorumski,
2008, 2016). These latter observations led us to consider
the role of other inputs in SLM. Besides direct glutama-
tergic inputs and long-range GABAergic inputs from en-
torhinal cortex (Basu et al., 2016), SLM receives input
from neuromodulatory systems, including monoamines
(Swanson and Hartman, 1975), and dopamine (DA) has
previously been shown to dampen direct TA glutamater-
gic inputs from entorhinal cortex but not SC pathway
responses (Otmakhova and Lisman, 1998). Other studies,
however, have shown that activation of DA D4 receptors
(D4Rs) can drive a form of SC depotentiation when acti-
vated within 30 min of LTP induction (Kwon et al., 2008).
This form of LTP-D is induced by neuregulin-1 (NRG1) and
involves activation of ErbB receptors, which in turn en-
hance DA release (Kwon et al., 2005, 2008). Similarly,
homosynaptic activation of SC inputs by theta pulse stim-

ulation can reverse SC LTP via D4Rs when administered
shortly after LTP induction (Kwon et al., 2008). Other
studies indicate that low frequency activation of DA fibers
in the hippocampus can stimulate D4Rs to dampen SC
responses via activation of parvalbumin positive interneu-
rons (Rosen et al., 2015). Based on these observations,
we examined the roles of DA and NRG in TA-induced
LTP-D.

Materials and Methods
Hippocampal slices

Protocols for animal use were approved by the Wash-
ington University Animal Studies Committee in accor-
dance with national and international guidelines.
Hippocampal slices were prepared from the septal (dor-
sal) hippocampal region of postnatal day (P)28-P32
Sprague Dawley albino rats using previously described
methods (Izumi and Zorumski, 2008; Tokuda et al., 2010).
Pregnant female rats were purchased from Charles River
(Crl:CD(SD), RRID:RGD_734476); male offspring were
raised to age 28-32 d in an approved animal care facility.
On the day of experiments, rats were anesthetized with
isoflurane, decapitated, and hippocampi were dissected.
Isolated hippocampi were placed in ice-cold artificial CSF
(ACSF) containing 124 mM NaCl, 5 mM KCl, 2 mM
MgSO4, 2 mM CaCl2, 1.25 mM NaH2PO4, 22 mM
NaHCO3, 10 mM glucose, bubbled with 95% O2-5% CO2

at 4-6°C, and cut into 450-�m slices using a rotary tissue
slicer. The slices were cut to include a significant portion
of entorhinal cortex to keep TA inputs to SLM in the CA1
region intact to the extent possible (Izumi and Zorumski,
2008, 2016). In the present experiments we did not mon-
itor field potentials in SLM directly because these poten-
tials reflect a combination of several inputs from
entorhinal cortex and other regions (Basu et al., 2016;
Swanson and Hartman, 1975), although prior studies in-
dicate that repeated LFS of the TA pathway, akin to what
we use in this study, produces LTD of these inputs
(Dvorak-Carbone and Schuman, 1999). After preparation,
slices were allowed to recover from dissection in an incu-
bation chamber containing gassed ACSF for 1 hr at 30°C
before experiments.

Hippocampal slice physiology
At the time of study, slices were transferred individually

to a submersion-recording chamber. Experiments were
done at 30°C with continuous ACSF perfusion at 2 ml/
min. Extracellular recordings were obtained from the api-
cal dendritic layer (stratum radiatum) of the CA1 region for
analysis of EPSPs using glass electrodes filled with 2 M
NaCl (5-10 M� resistance).

EPSPs were evoked using 0.1-ms constant current
pulses through a bipolar stimulating electrode in the SC
pathway. A second stimulating electrode was placed in
the TA pathway to activate inputs to CA1 in SLM. A
control input-output curve was obtained to determine
stimulus intensities for subsequent studies. Responses
were monitored by applying single stimuli to the SC path-
way every 60 s at half maximal intensity. After establishing
a stable baseline for at least 10 min, SC LTP was induced
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by a single 100 Hz � 1 s high-frequency stimulus (HFS)
using the same intensity stimulus. Input-output curves
were repeated 60 min following tetanic stimulation. TA
stimulation to induce SC depotentiation was administered
as a 1 Hz � 15 min LFS at half maximal intensity based on
prior results (Izumi and Zorumski, 2008, 2016).

Materials and Methods
Chemicals and pharmacological agents were obtained

from Tocris or Sigma (St. Louis MO). NRG1� was ob-
tained from R&D Systems. Concentrations of all agents
used in this study (agonists and antagonists) and dura-
tions of exposure were based on published literature and,
more specifically, on the lack of effect on baseline SC
transmission under the conditions of our experiments.
The exception to this was picrotoxin (PTX), a GABAAR
antagonist that induced changes in basal EPSPs even at
the low concentration (1 �M) used for the experiments in
Figure 5. Because of the changes in basal transmission,
PTX was washed on at the initiation of the recordings and
included in ACSF for the duration of these experiments.

Statistical analysis
Data were collected and analyzed using PClamp soft-

ware (Molecular Devices). Data in the text are expressed
as mean � SEM. A two-tailed Student’s t test was used
for comparisons between groups. Statistical comparisons
were based on analysis of input-output curves at the 50%
maximal point at baseline and sixty minutes following

tetanic or 1-Hz stimulation, with p � 0.05 considered
significant (Izumi and Zorumski, 1995). Figure 1A shows
an example of this type of analysis. The time course
graphs in all figures display results from continuous mon-
itoring of EPSPs using the 50% maximal stimulus from the
baseline IO curve as the 100% response. Data presented
in the text are derived from analysis of IO curves as noted
above. Analyses were done using commercial software
(SigmaStat, Systat Software).

Results
In prior studies, we found that 1 Hz � 15 min LFS of TA

(perforant path, P) inputs to area CA1 produces only a
transient depression of baseline transmission of SC syn-
apses (Izumi and Zorumski, 2008). This same TA LFS,
however, persistently depotentiates previously estab-
lished LTP in the SC pathway when TA stimulation is
administered an hour or so following induction of stable
LTP (Fig. 1A; 143.0 � 7.0% change in EPSP slope 60 min
following HFS vs 80.7 � 8.5% change 60 min following TA
LFS, p � 0.0001, N � 7). Because prior studies have
shown that activation of D4Rs are involved in homosyn-
aptic LTP-D and NRG1-mediated chemical depotentia-
tion of SC LTP at short intervals following LTP induction
(Kwon et al., 2008), we were interested in determining
whether D4Rs also contribute to TA-induced SC LTP-D
an hour or more following LTP onset. To test this, we first
examined the effects of clozapine, an antipsychotic drug
that inhibits D2-like DA receptors with higher affinity for

Figure 1. TA-induced LTP-D is blocked by the DA receptor antagonist, clozapine. A, The left graph shows the time course of changes
in EPSPs following SC HFS (arrow) and depotentiation by TA/perforant path LFS (PLFS, bar). Note that data in A include control slices
done in our prior manuscript (Izumi and Zorumski, 2016) with additional slices added. The right graph in A depicts an analysis from
a single slice based on changes in the IO curve. Black circles are baseline IO results, while red circles depict changes 60 min after
SC HFS, and red squares show reversal of LTP following PLFS. B, The ability of PLFS to depotentiate SC LTP is completely blocked
by 1 �M clozapine (white bar). Upper traces to the right show representative EPSPs at baseline (black lines) and 60 min following SC HFS
(redlines) while lower traces show baseline (black lines) compared to 60 min following PLFS (red lines). Calibration: 1 mV, 5 ms.
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D4Rs (Sanyal and Van Tol, 1997). We found that 1 �M
clozapine did not alter the transient synaptic depression
observed during 1-Hz TA stimulation but completely
blocked the ability of this stimulation to persistently de-
potentiate SC synapses (143.7 � 10.5% change in EPSP
slope 60 min following HFS vs 139.8 � 11.9% change 60
min following TA LFS, p � 0.507, N � 5; Fig. 1B).

We extended observations with clozapine using more
selective antagonists against D2-type receptors. Unlike
clozapine, L-741,626 (0.2 &micro;M), a selective D2 re-
ceptor antagonist (Bowery et al., 1996), had no effect on
TA-induced LTP-D (134.7 � 3.8% change in EPSP slope
60 min following HFS vs 96.0 � 6.3% change 60 min
following TA LFS, p � 0.0012, N � 5; Fig. 2A). In contrast,
the D4R-selective antagonist, L-745,870 (Clifford and
Waddington, 2000), blocked LTP-D at a concentration of
0.1 &micro;M (134.2 � 1.4% change in EPSP slope 60
min following HFS vs 123.0 � 4.7% change 60 min fol-
lowing TA LFS, p � 0.306, N � 6; Fig. 2B). These results
with D4R antagonists also prompted us to examine
whether D4Rs contribute to homosynaptic depotentiation
in the SC collateral pathway. Consistent with prior stud-
ies,we found that 1 Hz � 900 pulse LFS of SC inputs
reliably depotentiated SC LTP when administered an hour
or more following LTP induction (142.0 � 15.1% 60 min
after SC HFS and 96.4 � 5.5% 60 min after SC LFS, N �
5, p � 0.022; Fig. 3A; Izumi and Zorumski, 1993). This
homosynaptic SC LTP-D was completely blocked by 0.1
&micro;M L-745,870 (155.9 � 10.4% 60 min after SC HFS
vs 209.0 � 42.1% 60 min after L-745,870, N � 5, p �
0.312; Fig. 3B). Taken together, these results indicate that

D4Rs contribute to synaptically driven SC depotentiation
resulting from either heterosynaptic TA or homosynaptic
SC LFS, even 1 h or more following LTP induction.

Earlier studies indicated that a selective D4R agonist
alone was able to mimic the effects of homosynaptic SC
LFS and NRG1 at early time points (30 min) after LTP
induction (Kwon et al., 2008) but that NRG1 itself was
ineffective when administered at later time points after
LTP induction (60 min; Kwon et al., 2005).We found that
the selective D4R agonist, PD-168,077 had no effect on
LTP when administered alone an hour or more following
SC LTP induction at either 0.2 �M (148.1 � 6.7% 60 min
after SC HFS vs 141.8 � 9.1% 60 min after PD-168,077,
p � 0.581, N � 5; Fig. 4A; Kwon et al., 2008) or 10
&micro;M (138.2 � 6.0% 60 min after SC HFS vs 132.2 �
8.2% after PD-168,077, N � 5, p � 0.409). We did find,
however, that administration of 1 nM NRG1� for 15 min
depotentiated SC LTP when administered 60 min follow-
ing LTP induction (140.5 � 7.8% of baseline 60 min
following HFS vs 96.2 � 7.8% following NRG1�, p �
0.002, N � 6; Fig. 4B). NRG1�-induced depotentiation
was not inhibited by the D4R antagonist (149.9 � 2.8% 60
min following HFS vs 91.4 � 5.9% after NRG1� �
L-745,870, p � 0.0001, N � 5; Fig. 5A), indicating that
NRG1�-induced LTP-D does not require D4R activation
at late time points after LTP induction.

NRG1�-induced depotentiation was blocked by 10 �M
PD-158,780, a pan ErbB antagonist (133.4 � 3.9% after
HFS vs 128.5 � 2.3% after NRG1�, p � 0.130, N � 5; Fig.

Figure 2. TA-induced LTP-D involves D4Rs. A, The graph shows
the inability of a selective D2R antagonist (0.2 �M L-741,626) to
block PLFS induced depotentiation of SC LTP. SC HFS was
delivered at the arrow; PLFS was administered during the
hatched bar. B, In contrast, a selective D4R antagonist (0.1 �M
L-745,870) completely inhibited depotentiation. Traces to the
right show representative EPSPs as in Figure 1. Calibration: 1
mV, 5 ms.

Figure 3. A D4R antagonist blocks homosynaptic SC depoten-
tiation. A, The graph shows the ability of SC LFS [SLFS (1 Hz �
15 min), hatched bar] to depotentiate previously established SC
LTP. SC HFS was administered at the arrow. B, The D4R antag-
onist, 0.1 �M L-745,870, blocked homosynaptic SC depotentia-
tion. For reasons that are uncertain, we observed an increase in
variance of EPSPs during perfusion of the D4R antagonist in this
set of studies but not in the studies shown in Figure 2. Traces to
the right show representative EPSPs as in Figure 1. Calibration:
1 mV, 5 ms.
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5B) and by 0.1 �M AG-1478, a more selective ErbB4
antagonist (158.7 � 7.5% vs 149.0 � 10.5%, p � 0.474,
N � 5; Li et al., 2007). Because earlier studies indicated
that activation of ErbB4 can stimulate GABA release from
interneurons (Woo et al., 2007) and we previously found a
role for GABAARs in TA-induced LTP-D (Izumi and Zorum-
ski, 2016), we examined the effects of PTX, a GABAAR
antagonist, on chemical depotentiation by NRG1�. We
found that administration of 1 �M PTX overcame the effects
of NRG1� on previously established SC LTP (150.3 �
15.2% after HFS vs 133.9 � 3.7% after NRG1� � PTX, p �
0.235, N � 5; Fig. 5C).

The ErbB antagonist, PD-158,780, also blocked TA-
induced LTP-D (135.7 � 11.1% of baseline 60 min follow-
ing HFS vs 136.6 � 7.2% following TA LFS, p � 0.916,
N � 5; Fig. 6A), but did not alter homosynaptic SC depo-
tentiation (144.9 � 6.1% after HFS vs 97.4 � 5.1% after
SC LFS, N � 5, p � 0.0003, Fig. 6B). These findings
suggest common mechanisms in NRG-induced and TA-
induced LTP-D, but not homosynaptic LTP-D.

In our prior studies of TA-induced LTP-D, we found that
activation of endocannabinoid CB1Rs and adenosine
A1Rs contribute to the cascade of events leading to
synaptic resetting, with CB1Rs involved earlier in the
pathway than A1Rs (Izumi and Zorumski, 2008). These
observations prompted us to examine whether D4R
blockade alters the effects of pharmacological activation
of either CB1R or A1Rs on SC LTP. We found that the
endocannabinoid agonist, 2-arachidonoylglycerol (2-AG,
20 �M) depotentiated SC LTP in the presence of the D4R

antagonist, L-745,870 (141.5 � 7.9% of baseline 60 min
after HFS vs 105.6 � 3.7% after 2AG, p � 0.0034, N � 5;
Fig. 7A). Similarly, in the presence of 1 &micro;M cloza-
pine, 10 nM cyclopentyladenosine (CPA), an A1R agonist,
readily reversed SC LTP (136.7 � 4.2% of baseline 60 min
after HFS vs 82.3 � 5.4% after CPA, p � 0.0004, N � 5;
Fig. 7B). Interestingly and unlike the D4R antagonist, the
ErbB antagonist, PD-158,780, completely blocked 2AG-
mediated depotentiation (156.4 � 16.9% of baseline 60
min following HFS vs 159.5 � 13.4% 60 min after 2AG,
p � 0.542, N � 5; Fig. 7C). Taken together with our prior
studies (Izumi and Zorumski, 2008, 2016), these results
indicate that both CB1R and A1R activation likely occur
downstream of D4R activation and that ErbB receptor
activation occurs downstream of CB1Rs but upstream of
A1Rs.

Discussion
Hebbian plasticity in the hippocampus is thought to

play a key role in learning and memory (Kandel et al.,
2014; Nicoll, 2017), but has the limitation that this type of
use-dependent synaptic change is saturable unless there

Figure 4. Exogenously administered NRG1�, but not a D4R
agonist, depotentiates SC LTP. A, A selective D4R agonist,0.2
�M PD-168,077 (black bar), failed to depotentiate SC LTP when
administered for 15 min 60 min following LTP induction. SC HFS
was administered at the arrow. B, In contrast to the D4R agonist,
1 nM NRG1� (black bar) induced chemical depotentiation of SC
LTP. Traces to the right show EPSPs as in Figure 1. Calibration:
1 mV, 5 ms.

Figure 5. Depotentiation by NRG1� is insensitive to D4R antag-
onism but blocked by an ErbB antagonist and PTX. A, In the
presence of 0.1 �M L-745,870 (white bar), 1 nM NRG1� (black
bar) induces SC depotentiation. SC HFS was administered at the
arrow. B, C, In contrast to the D4R antagonist, a pan-ErbB
antagonist (10 �M PD-158,780, white bar) blocks NRG1�-
induced depotentiation (B), as does the GABAAR antagonist, 1
�M PTX (C). Traces show representative EPSPs as in Figure 1.
Calibration: 1 mV, 5 ms.
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are mechanisms by which synapses can be reset for
future plasticity and learning (Turrigiano, 2011). Hence,
there has been interest in understanding mechanisms by
which synapses depotentiate following LTP induction, in-
cluding homeostatic changes, and forms of homosynap-
tic and heterosynaptic depotentiation. We previously
found that LFS of direct TA (perforant path) inputs to area
CA1 can depotentiate previously established SC pathway
LTP, without having persisting effects either on baseline
transmission or the ability of subsequent stimulation to
induce LTP or LTD at SC synapses (Izumi and Zorumski,
2008). TA-induced SC depotentiation involves complex
signaling mechanisms including GABAARs, CB1Rs and
adenosine A1Rs along with activation of two MAP ki-
nases, ERK1/2 and p38 MAPK (Izumi and Zorumski, 2008,
2016).Surprisingly, this form of synaptic plasticity does
not appear to involve activation of glutamate receptors
(Izumi and Zorumski, 2016). In the present work, we pro-
vide evidence that TA-induced SC depotentiationinvolves
activation of D4 type DA receptors and ErbB signaling.

Prior studies indicate that DA plays a key role in mod-
ulating hippocampal function, including long-term forms
of synaptic plasticity (Furth et al., 2013). Intriguingly, DA
innervation of area CA1, particularly afferents arising from
DA cell bodies in the ventral tegmental area to SLM, is
relatively sparse, with an absence of DA transporters but
significant expression of DA receptors in SLM (Kwon
et al., 2008; Smith and Greene, 2012; Kempadoo et al.,
2016). Other work indicates that adrenergic terminals in
the hippocampus can release DA and that afferents from
the locus coeruleus may be critical for providing DA sig-
nals to the CA1 region (Smith and Greene, 2012; Kempa-

doo et al., 2016). Additionally, norepinephrine can directly
activate D4Rs providing another way that the adrenergic
system can stimulate DAreceptors to modulate CA1 func-
tion (Root et al., 2015; Sánchez-Soto et al., 2016). If
norepinephrine is the key monoamine transmitter driving
TA-induced SC depotentiation, our present results indi-
cate that its effects on SC LTP involve D4Rs. We previ-
ously found that exogenous norepinephrine, acting at
adrenergic receptors, prevented rather than promoted
homosynaptic SC depotentiation (Katsuki et al., 1997),
indicating that norepinephrine alone does not mimic the
effects of TA stimulation.

Buonanno and colleagues previously demonstrated a
role for D4Rs in a form of chemical depotentiation of SC
LTP induced by NRG1� and involving activation of ErbB
receptors (Kwon et al., 2005, 2008). They also found that
NRG1� promoted release of DA in the CA1 region, indi-
cating that the effects of NRG and DA are intertwined.

Figure 6. An ErbB antagonist blocks TA-induced, but not ho-
mosynaptic SC depotentiation. A, In the presence of 10 �M
PD-158,780, TA stimulation (PLFS, hatched bar) fails to induce
persistent SC depotentiation. SC HFS was administered at the
arrow. B, In contrast, the ErbB antagonist fails to block depo-
tentiation induced by homosynaptic SC LFS (SLFS, hatched
bar). Traces show representative EPSPs as in Figure 1. Calibra-
tion: 1 mV, 5 ms.

Figure 7. D4R antagonism does not block chemical depotentia-
tion by CB1R or adenosine A1R activation, but ErbB antagonism
blocks the effects of a CB1R agonist. A, In the presence of the
D4R antagonist, L-745,870 (white bar), the endocannabinoid, 20
�M 2-AG (black bar), reversed SC LTP. SC HFS was adminis-
tered at the arrow. B, Similarly, clozapine, a DAR antagonist with
selectivity for D4Rs (white bar), failed to block depotentiation by
10 nM CPA, a selective A1R agonist (black bar). C, The effects of
2AG on SC STP were blocked by the ErbB antagonist, PD-
158,780. Traces show representative EPSPs as in Figure 1.
Calibration: 1 mV, 5 ms.
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D4Rs also contributed to homosynaptic SC depotentia-
tion following theta pulse stimulation administered short-
lyafter LTP was induced (Kwon et al., 2008).These forms
of depotentiation, particularly NRG1�-induced LTP-D,
were observed within 30 min of LTP induction, but not 50
or more min after stable LTP had been established. Prior
studies have found that LTP is more readily reversed early
(�30 min) after induction rather than later after induction
(an hour or more; Izumi and Zorumski, 1993; Barr et al.,
1995; Stäubli and Chun, 1996; Kwon et al., 2005, 2008).
Several factors may contribute to the stability of LTP over
time and the ease with which LTP can be reversed, in-
cluding the stimuli used to induce LTP (e.g., single vs
multiple HFS), the conditions under which LTP was in-
duced (e.g., ionic conditions, age of animals; Huang et al.,
1996; Huang and Kandel, 2005) and the type and duration
of stimulation used to induce depotentiation (briefer HFS
trains vs LFS of varying durations; Fujii et al., 1991; Izumi
and Zorumski, 1993; Bashir and Collingridge,1994; Wag-
ner and Alger, 1995; Kwon et al., 2005). In our studies we
used a single 100 Hz � 1 s HFS to induce LTP that
remained stable for over an hour in P30 rat hippocampal
slices and reversed this LTP using 15 min 1-Hz LFS; the
LFS used for depotentiation was selected based on a
standard LFS that has been used to induce homosynaptic
LTD (Dudek and Bear, 1992) or LTP-D in the SC pathway
(Izumi and Zorumski, 1993). These differences in stimula-
tion paradigms may contribute to the fact we were able to
reverse SC LTP an hour or more after induction.

In the hippocampus, ErbB4 receptors are a predomi-
nant NRG receptor (Li et al., 2007) and are expressed on
GABAergic interneurons (Vullhorst et al., 2009; Neddens
and Buonanno, 2010; Bean et al., 2014). NRG1� disinhib-
its interneurons via ErbB4 and promotes release of GABA
(Woo et al.2007). Consistent with this, we found that
NRG1�-induced SC depotentiation was blocked by a
GABAAR antagonist, suggesting that NRG1-induced
GABA release may be critical for this form of synaptic
resetting. The effects of NRG1� on stable LTP were not
reversed by a D4R antagonist, suggesting that mecha-
nisms contributing to early and later LTP reversal by
NRG1� and D4R activation likely differ. Other evidence
indicates that D4Rs, like ErbB4, are expressed on some
interneurons (Mrzljak et al., 1996), and recent work has
shown that low DA release evokes feedforward inhibition
in CA1 that is mediated by D4Rs on parvalbumin (PV)-
positive interneurons (Rosen et al., 2015). Despite the fact
that TA-induced LTP-D is blocked by a D4R antagonist,
we found that a D4R agonist alone failed to depotentiate
SC LTP when administered 1 h after LTP induction, al-
though NRG1� was effective. At present we do not know
which interneurons contribute to TA-induced SC depoten-
tiation, but note that several types of interneurons have
dendrites in or extending to SLM, including PV� interneu-
rons (axo-axonic and some basket cells), cholecystokinin-
positive interneurons and neurogliaform cells (Klausberger
et al., 2003; Klausberger and Somogyi, 2008; Klausberger,
2009; Overstreet-Wadiche and McBain, 2015) along with
longer-range GABAergic inputs from entorhinal cortex to
SLM (Basu et al., 2016).

Based on the effects of selective agonists and antago-
nists, we have proposed a scheme for TA-induced SC
depotentiation in which activation of ERK1/2, diacylglyc-
erol lipase, and endocannabinoid synthesis are involved
relatively early in the cascade, with activation of
GABAARs, p38 MAPK, and A1Rs participating as more
downstream effectors (Izumi and Zorumski, 2016). Our
present results indicate that D4Rs act more proximally in
the depotentiation scheme than endocannabinoids,
NRG1 or adenosine. D4Rs can also stimulate ERK1/2
(Bitner et al., 2006; Oak et al., 2001), which we have found
is involved relatively early in the depotentiation scheme
(Fig. 8). Consistent with Kwon et al. (2005, 2008), we also
found that a D4R agonist alone was not capable of induc-
ing depotentiation when administered an hour or more
after LTP had been established. These findings suggest
that D4R activation is necessary but not sufficient to
induce TA-mediated synaptic resetting, and that D4Rs
and ErbB receptors act independently in the cascade.
Based on experiments to date, adenosine is the most
distal signal in the cascade yet identified. We have tested
some messengers linked to A1R-induced LTD (Brust
et al., 2006; Chen et al., 2014) in our prior work and found
a role for p38 MAPK (Izumi and Zorumski, 2016). How-
ever, in our experiments p38 MAPK appeared to act
upstream of A1Rs and did not block the effects of chem-
ical depotentiation by CPA.

The involvement of D4Rsand NRG1� in TA-induced SC
depotentiation provides a possible link to the role of the
DA and NRG systems in cognitive defects associated with
psychiatric illnesses such as schizophrenia, major de-
pression, substance use disorders, and attention deficit
hyperactivity disorder (Buonanno, 2010; Shamir et al.,
2012; Penzes et al., 2013). D4Rs in the hippocampus
modulate gamma oscillations that are important in atten-

Figure 8. The diagram depicts a current scheme for TA-induced
SC LTP-D based on prior studies (Izumi and Zorumski, 2008,
2016) and the present results. Agents that promote chemical
depotentiation are shown in green while agents that inhibit TA-
induced SC depotentiation are shown in red.
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tion and information processing (Andersson et al., 2012).
Similarly, by altering the ability of synapses to reset fol-
lowing LTP, changes in DA and NRG function could be
important in driving changes in hippocampal input-output
relationships observed in animal models of psychiatric
illnesses (Airan et al., 2007), and perhaps in the ability to
learn and remember new information. The net effects of
changes in DA and NRG modulation, even within the CA1
region, likely depend on input-specific actions and the
subtypes of receptors that are stimulated, as well as on
the state of glutamate synapses at the time of modulator
release. In Drosophila, DA plays complex roles in memory
and is required for both learning and forgetting (Berry
et al., 2012); furthermore, sleep has been found to pro-
mote memory in Drosophila by impairing DA-driven for-
getting (Berry et al., 2015). From the perspective of D4Rs,
hyperdopaminergic tone would be expected to promote
reversal of hippocampal and cortical LTP, perhaps lead-
ing to defects in longer-term memory storage (Xu et al.,
2009), while lower DA tone could result in more persisting
LTP in the CA1 region, perhaps dampening the ability of
synapses to reset for future potentiation and learning.
Thus efforts to modulate D4Rs and NRG signaling could
have unique effects in a range of neuropsychiatric ill-
nesses depending on the state of glutamate synapses,
perhaps leading to novel ways to dampen the cognitive
dysfunction that underlies illness-related disability.
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