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Abstract: The U3 small nucleolar RNA (snoRNA) is an essential player in the initial steps of ribosomal
RNA biogenesis which is ubiquitously present in Eukarya. It is exceptional among the small
nucleolar RNAs in its size, the presence of multiple conserved sequence boxes, a highly conserved
secondary structure core, its biogenesis as an independent gene transcribed by polymerase III, and its
involvement in pre-rRNA cleavage rather than chemical modification. Fungal U3 snoRNAs share
many features with their sisters from other eukaryotic kingdoms but differ from them in particular in
their 5’ regions, which in fungi has a distinctive consensus structure and often harbours introns. Here
we report on a comprehensive homology search and detailed analysis of the evolution of sequence
and secondary structure features covering the entire kingdom Fungi.

Keywords: small nucleolar RNA; pre-rRNA processing; RNA secondary structure; spliceosomal introns;
RNA–RNA interactions; evolution

1. Introduction

The U3 small nucleolar RNA (snoRNA) is a box C/D snoRNA with an exceptional structure.
Like many other snoRNAs it is involved in pre-rRNA processing. However, in contrast to typical
box C/D snoRNAs [1,2] it does not guide 2′O-methylation. Instead it acts as a an RNA-chaperone
mediating structural changes to ensure the correct pre-rRNA cleavage. A comprehensive survey
showed that it is ubiquitously present in Eukaryotes [3]. Although its sequence is overall only loosely
conserved, it harbours eight highly conserved box motifs including the box C, C′, D, and D′ motifs
characteristic for box C/D snoRNAs. The molecule also exhibits a strongly constrained secondary
structure that nevertheless shows lineage-specificity of the canonical 10 stems as well as frequent
extensive expansions [3]. U3 snoRNAs share important features with small nuclear RNAs (snRNAs).
In particular, they are independently transcribed using a promoter comprising a TATA box and
a Homol D box [4]. In addition they feature a 2,2,7-trimethylguanosine cap [5].
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Fungal U3 snoRNAs deviate from the eukaryote consensus in particular close to their 5′ end,
see Figure 1 below. The region consisting of two leading hairpins interacts with the rRNA
precursor [6–8]. Specifically, the 5′ half of hairpin 1 (including box A′ and in part box A) forms base
pairs with a region at the 5′ end of the later mature 18S rRNA (U9 to C25 in Saccharomyces cerevisiae),
while the hinge between the first and the second hairpin binds to the 5′ external transcribed spacers
(ETS). A special feature of fungal U3 snoRNAs is the presence of introns, first discovered in both
S. cerevisiae U3 genes, which are excised by the canonical pre-mRNA splicing machinery [9]. Similarly,
there are three intron-interrupted copies in Neurospora crassa [7]. In contrast, both U3 genes in fission
yeast are intronless [10]. So far, the U3 snoRNA and the U6 snRNA [11–13] are the only small structured
RNAs that are known to be often interrupted by an intron.
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Figure 1. Overview map of U3 snoRNAs. The schematic overview on the left (redrawn from Marz and
Stadler [3]) defines the nomenclature of the 10 stem and hairpin regions, and indicates the location
of the conserved box motifs. The detail on the right, summarizes the particular features of fungal U3
snoRNAs, including the more complex structure of M1. It also indicates the insertion points of introns,
which are predominantly located within the 5’ arm of the stem-loop structure M1. The lengths of the
bars and the corresponding numbers give the number of species with introns at a particular location,
the color indicates their membership in one of the major clade. The drawing was constructed using
R2R [14].

2. Methods

2.1. Homology Search

We surveyed a total of 147 fungal genomes from Microsporidia, Mucoromycotina,
Blastocladiomycota, Basidiomycota, and Ascomycota; a complete list is supplied in the Supplemental
Material (http://www.bioinf.uni-leipzig.de/publications/supplements/16-018). The 54 fungal U3
snoRNAs from 52 distinct organisms reported in [3] were used as initial query set. These were aligned
with muscle [15] and subsequently used to construct a covariance model (CM) to search the 147 fungal
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organisms with infernal v1.1 [16,17]. In the second step, dedicated CMs were constructed for each of
the major fungal clades starting from muscle alignments comprising both previously published U3
sequences and the homologs detected in the initial infernal search. Novel sequences found by these
CMs were furthermore added to the alignments.

2.2. Secondary Structure Prediction

Structural models were computed and iteratively improved using mLocARNA [18], RNAz [19],
as well as RNAsubopt and RNAalifold from the ViennaRNA package [20] as well as some manual
curation. Lineage-specific, structure annotated alignments are provided in the Supplemental Material
and have been submitted to the Rfam (http://rfam.xfam.org/) database.

2.3. U3-Target Interactions

Base pairing between U3 and potential target sites were computed with RNAduplex a component
of the ViennaRNA package [20] designed to compute RNA-RNA interactions. The experimentally
validated U3 interaction region in budding yeast covers the first 30 nucleotides of the budding yeast
18S rRNAs [8]. Homologous sequences were retrieved from 85 fungal species for which the complete
18S rRNA sequences were available. To simplify the interaction prediction only the 5′terminus of the
U3 snoRNA was used since RNAduplex does not handle complex internal structures of the interaction
partners. As a control we used random sequences with the same length and nucleotide background
distribution as the 18S rRNA fragments.

2.4. Characterization of Sequence Motifs

Introns were identified using meme [21] to retrieve motifs of length 7 nt (5′splice site and branch
site) and 5 nt (3′splice site), respectively. A survey of 11.000 introns from five fungal species [22] reports
typical properties of fungal introns such as length distributions and sequence patterns of splice and
branch sites. These patterns are used for comparison with the predicted U3 intron sequences.

3. Results

U3 snoRNA genes were identified in all 147 genomes included in this study, supporting the
indispensable nature of U3 in rRNA biogenesis. We found a total of 310 genes, i.e., the U3 snoRNAs,
similar to snRNAs, tend to appear in multiple genomic copies. Almost all investigated genomes contain
three or fewer copies. Notable exceptions are Schizosaccharomyces japonicus and Allomyces macrogynus
with 11 and 10, resp., nearly identical paralogs. Duplications are evolutionarily recent and appear
to be species- or genus-specific. There is no evidence for diverged families of paralogs. Instead,
paralogous copies are presumably subject to concerted evolution [23] similar to other ncRNA families
including tRNAs.

3.1. Sequence and Structure Motifs

The secondary structures of U3 snoRNAs vary substantially between kingdoms [3]. Even within
Fungi there are extensive lineage-specific peculiarities such as additional stem-loop elements,
missing helices, and large unstructured insertions, see Table 1 for a detailed summary. All fungal
sequences share the distinctive two-hairpin motif (marked as M1 and M2 in Figure 1) at the 5′ end and
the following two stems M3 and M4. Microsporidia share a stem-loop structure including helix M5
and a loop region containing the C box motif. In contrast, helix M5 is missing in Hypocreomycetidae
and Saccharomycotina. These feature instead a large multi-branch loop harbouring the box B and C
motifs. The following structures including stems M6 through M10 are subjected to major lineage and
even species-specific changes. Several lineages evolved M6 (Blastocladiomycota, Dothideomycetes) or
M9 (Blastocladiomycota, Taprhinomycotina) into a single hairpin. In cases where either one or both of
these hairpins are disrupted by an interior loop with at least two unpaired nucleotides on both sides,

http://rfam.xfam.org/
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the original helix is split into a double-helix-hairpin combination (M6/M8 and M9/M10). This variation
concerns in particular the majority of the Eurotiomycetes. In Saccharomycotina, Leotiomycetes,
and Sordariomycetes, an additional hairpin M7 emanates from the interior loop between helices M6
and M8. The basidiomycete Rhodotorula minuta has a 50 nt insert in the loop of stem M6, the yeast
Kluyveromyces lactis shows an even larger 80 nt insert in M8, while another yeast, Candida glabrata has
an extra stem of about 50 nt between M9 and M10.

Table 1. Variation of U3 snoRNA secondary structures across the major fungal lineages.
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M1 • • • • • • • • • • •
M2 • • • • • • • • • • •
M3 • • • • • • • • • • •
M4 • • • • • • • • • • •
M5 • • • • • • − • • • • ∓
M6 − • • • • • − • • • •
M7 − − − − − • • − − • •
M8 − • • − − • • − • • •
M9 − • • • • • • • • • •

M10 − − − − • − • * • • † • −
# organisms 10 3 2 2 26 6 29 12 25 7 25

# intron - - - - 15 - 7 10 23 7 16

The nomenclature of hairpins and stem-loop follows Marz and Stadler [3], see the r.h.s. panel in
Figure 1. Variations in subclades are indicated as follows: * not present in Saccharomycetaceae; † not
present in Penicillium; ∓ not present in Hypocreomycetidae.

The characteristic sequence motifs offer no surprises in the fungal kingdom. Motif A′ = TACTY
is nearly perfectly conserved, while A = GYATCW is more variable. Both C and C′ largely adhere to the
consensus RTGATGA typical for box C/D snoRNAs. As in other box C/D snoRNAs, box C′ allows more
variability and is better represented by the more relaxed consensus WYGATGA. The pattern for box B
is quite variable at both ends but conserves the core motif AGYGA. Box D = CTGA is very stringently
conserved and matches the pattern perfectly in almost all of the 310 sequences. Not unexpectedly,
box D′ has the same consensus with higher levels of variation. Appendix A summarizes the box motifs
in graphical form.

The guiding potential of the predicted U3 snoRNA genes can be quantified by the number of
base pairs and the interaction energy between the 5′ region of the U3 snoRNA and the 5′ end of the
18S rRNA. A comparison with a random control shows that the interaction is consistently more stable
(∆G = −12.17 kcal/mol) and comprises more base pairs (` = 13.5) compared to the randomized
control (∆G = −7.30 kcal/mol and ` = 8.9). In fact, Figure 2 shows that the distribution observed for
the U3:pre-rRNA interactions is well separated from the randomized background.
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Figure 2. U3:pre-rRNA interactions are significantly more stable than random RNA:RNA interactions
with the same sequence composition. Energies and minimum free energy interaction structures
are computed with RNAduplex. The scatter plot shows the expected correlation between interaction
energies and number of base pairs.

3.2. Introns within U3 snoRNA Genes

Of the 310 genes from 147 organisms 138 from 78 genomes are interrupted by at least one
intron. Intron-bearing genes are not found in early branching lineages such as Microsporidia,
Mucoromycotina, Chytridiomycota, or Blastocladiomycota. They are broadly distributed across
the Basidiomycota but not present in Taphrinomycotina. In Pezizomycotina they are found in
the vast majority of analyzed organisms. Among the Saccharomycotina, only Saccharomycetaceae
have introns. U3 genes both with and without introns are present in the Kluyveromyces genus [24].
A more detailed summary is included in Table 1. Four genes in three species appear to contain
two introns per transcript (Baudoinia compniacensis, Cucurbitaria berberidis, and both U3 genes in
Rhodotorula graminis). In eight genomes we observed multiple copies of the U3 gene of which at
least one is intronless and another one contains an intron, e.g., Coprinopsis cinerea, a basidiomycete,
carries two U3 transcripts where one is intron interrupted. The remaining seven species are
spread over Dothideomycetes (Alternaria brassicicola, 2/1), Leotiomycetes (Sclerotinia sclerotiorum,
2/1; Botrytis cinerea, 2/1), and Sordariomycetes (Fusarium oxysporum, 3/1; Fusarium verticillioides, 3/1;
Nectria haematococca, 3/2; Acremonium alcalophilum, 2/1).

The U3 introns have an average length of 92 nt, approximately matching the typical intron length
in most fungi [22]. Almost all introns (136, i.e., 98.54%) have canonical 5′GT-AG3′ junctions. The two
exceptions are 5′GC-AG3′ in Pyrenophora tritici-repentis and 5′GC-GG3′ in Nadsonia fulvescens. Notably,
GC-AG junctions have been observed a common exception also in large surveys of fungal introns [22,25].
Nearly two thirds (88/136) of the canonical donors share the consensus pattern GTRWGT, where the
underlined nucleotides are absolutely conserved. Almost all of the remaining donor have a mismatch
in exactly one of the other three positions. All except one acceptor sites share YAG with a strong
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preference of CAG over TAG (129 versus 8 introns). The patterns conform very well to the consensus
motifs derived from large sets of introns [22,26]. The branch site within the intron provides an
adenosine to perform the first nucleophilic attack at the donor site and is essential for lariat formation.
Its consensus sequence motif in fungi is RCTRAY [22]. The predicted U3 introns exhibit a matching
consensus pattern RCTRAC in 129/138 cases. The distance between branch and acceptor sites is strongly
constrained, varying between 6 to 36 nt in fungal intron [22,27]. The average distance for the U3
introns is 15 nt and only 4% have a branch point to acceptor distance exceeding 36 nt. More detailed
information including splice site positions, splice site and branch site motifs can be found in the
supplement material. The U3 consensus splice site and branch points motifs are shown in Appendix
A. In summary, the computational analysis of U3 introns consistently shows that they are normal
spliceosomal introns although direct experimental evidence so far is available only for S. cerevisiae and
N. crassa [7,9].

The introns are inserted almost exclusively in the most-5′ stem-loop structure M1, which also
harbours the essential box A and A′ motifs ( Figure 1). 133 of 138 introns are placed in the 5′ half.
Three distinct positions are characteristic for nearly all introns found in Basidiomycota, Eurotiomycetes,
and Saccharomycetaceae/Sordariomycetes. All other positions are rarely used. Three of the four 2nd
introns are located on the 3′ side of the stem-loop M1. The only exception is the 2nd intron in Baudoinia
compniacensis, which is inserted in stem M3 upstream of box C′.

The tight clustering of intron locations in the U3 snoRNA sequence suggests that at least large
groups of the introns are homologous, dating back to the same insertion event. Due to the rapid rate
of sequence evolution in introns direct evidence for a common origin can be obtained from sequence
similarity however only for closely related species. Introns with the Penicillium or Saccharomyces
genera, for example exceed 75%. Between Aspergillus and Penicillium we still observe between 40%
and 60%. On the other hand there is also evidence for intron sliding [28]. The intron sequences of
Dothideomycetes show high levels of sequence similarity but vary slightly in their insertion position.
These variations do not seem to be correlated with the relationships among the Dothideomycetes but
appear essentially random. Introns in paralogs almost always have very similar sequences pointing
at recent, lineage-specific duplication events at the DNA level. In the four species with two introns
there is no recognizable homology between the 1st and the 2nd intron. A detailed heatmap showing
pairwise intron sequence similarities is given in the supplement material. The congruence of intron
similarities with major phylogenetic groups is also consistent with only a few, early intron gain events.

4. Discussion

The U3 snoRNA is much better conserved in fungi and in eukaryotes in general than all other
box C/D snoRNAs. Despite the presence of several important, well-conserved sequence motifs and
well conserved core secondary structure elements, it shows extensive variability and clade-specific
peculiarities. Among its well-preserved key features is also the propensity of its 5′-terminus to interact
with the pre-18S rRNA. The observed flexibility of the U3 snoRNA sequence is consistent with the
high throughput screening of fitness effects random mutations within the U3 snoRNA gene of about
60,000 S. cerevisiae strains, which found that typically effects of individual mutations are small but may
have very large epistatic effects acting in particular to maintain base pairing patterns [29].

Fungal U3 genes are the only snoRNAs that are frequently interrupted by introns. These share
canonical pre-mRNA splice sites and are clearly processed by the spliceosomal machinery. Introns have
been inserted almost exclusively in the 5′-side of the first stem-loop structure, which also harbours the
site of interaction with the 18S rRNA precursor. It is unlikely that the intron has an impact on the role
of U3 in rRNA maturation since closely related species and even paralogs from the species may differ
in the presence of the intron.

U3 introns appear only in the crown group fungal lineages. Introns may have been inserted
only a single time in fungal history [7]. If this was the case, they have been lost independently in
many lineages. The variation in the intron position then has to be explained as the result of intron
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sliding. Intron sliding, however, is rare in yeasts [30]. It is unlikely, furthermore, that sliding could
explain the distant insertion sites on the 3′ side of M1. Alternatively, there may have been independent
insertion events. These two scenarios cannot be distinguished based on the available data because
intron sequences have diverged beyond detectable similarities between major clades.

Although the 5′ part of the U3 gene, including helices M1–M3, is fairly well-conserved among
the fungi, their 3′ end is subject to major lineage-specific variations. Furthermore, several species
developed large unstructured or hairpin-like inserts indicating an ongoing expansion of the transcript
size. However, neither these significant structural diversities nor the recurrent insertion of intronic
sequences seem to impede or decrease the base pairing potential of U3 in with the rRNA precursor.
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Appendix A. Conserved Box Motifs
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Figure A1. Sequence logos of conserved sequence elements in U3 snoRNAs (above) and in introns
located in U3 snoRNA genes (below). All motifs were inferred with meme from all available U3 RNAs
and introns, resp. The exact position of the splice junctions are indicated.
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