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Abstract

The liver and heart are deeply interdependent organs, yet their pathological interplay in 

cardiometabolic disease has only recently emerged as a key driver of morbidity and mortality. 

Evidence now positions the liver-heart axis as a central, bidirectional contributor to a spectrum of 

clinical conditions—including heart failure with preserved (HFpEF) and reduced ejection fraction 

(HFrEF), atherosclerotic cardiovascular disease, metabolic dysfunction-associated steatotic liver 

disease (MASLD), alcohol-associated liver disease (ALD), metabolic ALD (MetALD), and 

cirrhosis.

These diseases do not just coexist – they converge through shared mechanisms such as insulin 

resistance, chronic inflammation, lipotoxicity, and hemodynamic stress. MASLD, for example, 

accelerates HFpEF development through myocardial remodeling and diastolic dysfunction, while 

HFrEF promotes hepatic injury via hypoperfusion and venous congestion. ALD and MetALD 

amplify cardiovascular risk through oxidative stress, endothelial dysfunction, and prothrombotic 

states. Cirrhosis leads to cirrhotic cardiomyopathy and arrhythmic complications, even in the 

absence of overt heart failure. Adding complexity, circadian misalignment exacerbates this 

interorgan crosstalk, disrupting metabolic homeostasis in both the liver and heart. Secreted 

factors – including hepatokines (FGF21, FXI, SAA1/4), disrupted metabolite profile, extracellular 

vesicles and cardiokines (natriuretic peptides, periostin) – mediate this dialogue, linking local 

pathology to systemic dysfunction.

Deciphering the liver-heart axis requires next-generation research strategies. Preclinical models 

tailored to MASLD, ALD, and heart failure phenotypes, alongside systems biology, transcriptomic 

correlation (e.g., QENIE), proximity labeling (e.g., TurboID), organ-on-chip platforms, and 

precision-cut tissue slices, now offer unprecedented resolution in mapping interorgan signaling.

Understanding liver-heart crosstalk holds the potential to redefine cardiometabolic medicine, 

identifying novel biomarkers, therapeutic targets, and interventions address the root causes of 

liver and heart dysfunction in tandem.
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1 Introduction

Cardiovascular diseases (CVD) are the leading global cause of death driven by complex 

and multifactorial pathophysiology1. Among the contributors to CVD progression, the 

liver has gained attention as a key player through its complex interplay with the 

heart. Liver dysfunction has long been considered as separate or secondary to cardiac 

disease, but growing evidence challenges this view. For example, metabolic dysfunction-

associated steatotic liver disease (MASLD), affecting more than 30% of adults2, increases 

cardiovascular event (CVE) risk two-to threefold3, making CVD the primary cause of death 

in these patients. Notably, MASLD often precedes CVD, and this risk persists even after 
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adjusting for concurrent comorbidities3,4. Also, alcohol related liver disease (ALD) and later 

stages of hepatopathy, such as liver cirrhosis, significantly impact on the cardiovascular 

system. Detrimental effects of liver disease on cardiac function often converge into heart 

failure (HF), which, at once, may drive congestive hepatopathy and/or liver ischemia in 

patients with severely compromised cardiac output.

The liver-heart axis involves metabolic, inflammatory, and hemodynamic pathways, with 

interactions forming a vicious cycle where both organs contribute to disease progression. 

The majority of these pathways are still under investigation, with a growing body of 

evidence revealing unexpected mechanisms. Recently, circadian misalignment has been 

recognized to exacerbate this crosstalk, increasing risk of CVD5-8. Disruptions in liver 

circadian rhythms impair glucose metabolism and lipid regulation, while cardiac circadian 

dysfunction predisposes individuals to hypertension and increased susceptibility to ischemic 

heart disease (IHD)9.

Investigating liver-heart interactions is complex, requiring advanced research methodologies 

to validate clinical findings in experimental models. In this review we will examine 

recent evidence on the liver-heart crosstalk and its impact on CVD. Cutting-edge research 

techniques for liver-heart crosstalk investigation will be described, moving from multi-organ 

disease animal models to systems biology approaches, organ-on-a chip and proximity 

labeling for interorgan signaling. Therapeutic strategies holding promise to break the liver-

heart pathological interaction will be described. By integrating current knowledge with 

innovative research strategies, we aim to equip scientists with tools to explore this axis and 

uncover its contribution to CVD.

Physiological Crosstalk Between the Liver and Heart

A stable communication between heart and liver is key for systemic energetic and 

hemodynamic homeostasis. The liver coordinates blood concentration of glucose, fatty 

acids (FAs), ketone bodies (KBs) and amino acids. Metabolites produced in the liver are 

the main energy source for all organs, including the heart, the organ having the highest 

energy demand per gram of tissue10,11. Metabolites supply from the liver to the heart is 

critical for cardiac energetics and is dynamic. During fasting, glucagon promotes hepatic 

glycogenolysis and gluconeogenesis, enabling glucose production from non-carbohydrate 

precursors such as lactate, glycerol, and amino acids12. Simultaneously, low insulin levels 

and activation of the sympathetic nervous system (SNS) promote lipolysis in adipose tissue, 

releasing FAs into circulation that are subsequently oxidized in the liver and transformed 

in KBs to be used in the heart13,14. Also, during exercise, increased cardiac output (CO) is 

coordinated with enhanced hepatic gluconeogenesis and higher glucose uptake in skeletal 

muscles to sustain metabolic balance15. SNS activation16, cortisol release17 and Renin-

Angiotensin-Aldosterone System (RAAS) modulation contribute to this highly coordinated 

liver-heart response18.

Conversely, the heart ensures both blood supply to and drainage from the liver, both of 

which are crucial for its proper function. The liver receives around 1200-1800 ml of blood 

per minute, representing ¼ of cardiac output and 80% of this volume reaches the organ 

via the portal vein, collecting blood from the splanchnic region, the body’s largest blood 
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volume reservoir19. In normal conditions, the liver and splanchnic vessels serve as a preload 

reserve, rapidly mobilized to support increased CO. During exercise, stroke volume rises 

alongside vena cava blood flow. If intrahepatic resistance increases, preload failure may 

occur, impairing blood return to the heart and limiting exercise capacity.

The liver is also central to lipoprotein metabolism, which facilitates the transport and 

distribution of lipids throughout the body. The liver synthesizes and secretes very low-

density lipoproteins (VLDLs), which deliver triglycerides and cholesterol to peripheral 

tissues20. The liver also prevents lipid accumulation from the bloodstream via chylomicron 

and lipoprotein receptor-mediated endocytosis and regulating reverse cholesterol transport 

by high-density lipoprotein (HDL) metabolism. Genetic and non-communicable diseases 

affecting lipoprotein metabolism in the liver directly promote CVD, as well described in 

clinical and preclinical settings21-24.

The liver serves as the primary organ for protein metabolism25, maintaining nitrogen 

balance (e.g. via urea cycle) and systemic homeostasis. It synthesizes most plasma 

proteins, including albumin, which regulates oncotic pressure and facilitates the transport 

of hormones, drugs (including loop diuretics), and FAs. Additionally, the liver produces 

essential clotting factors necessary for haemostasias26. Many are the cardiovascular 

detrimental effects of deranged protein metabolism in the liver. Altered amino acid 

metabolism and urea cycle correlate with metabolic dysfunction (e.g. insulin resistance 

– IR27) atherosclerotic cardiovascular disease28,29, and HF30,31. Low oncotic pressure 

promotes extracellular fluid accumulation and thus systemic congestion (worsening HF 

symptoms). Altered coagulation profile, on one hand drives thromboembolic events, on the 

other hand prolongs clotting time, interacting with antithrombotic therapies. On both sides, 

thrombotic and hemorrhagic imbalances correlate liver function and CVE. Moreover, several 

cardiovascular drugs (including direct oral anticoagulants – DOACs, antiarrhythmic drugs, 

and antiplatelet agents – e.g. clopidogrel) are metabolized in the liver, further entangling, 

in both a mechanistic and clinical perspective, CVD progression and compromised liver 

function.

In summary, cardiac and liver functions are highly coordinated. Disruptions in liver-heart 

axis potentially affect cardiac energetics, exercise capacity, fluid balance, atherosclerotic 

plaque formation, coagulation profile, and drug metabolism delineating the broad perimeter 

of liver-heart interaction in CVD.

A new player in liver-heart axis: circadian rhythm

Beside well-known pathways connecting liver and heart, novel mechanisms have been 

recently suggested. Regulation of circadian rhythm is among the emerging ones. Circadian 

rhythms – cycles which exist and repeat across a 24-hour period – optimize fundamental 

aspects of cellular physiology, such as proliferation, growth, and metabolism, and govern 

whole-body functions like sleep/wake cycles and feeding behavior. At the core of these 24-

hour rhythms is a cell-autonomous molecular oscillator present in every cell. The molecular 

clock consists of core clock components that generate 24-hours rhythms in the expression 

of clock genes (Bmal1/Arntl, Clock, Cry1/2, Per1/2, and Nr1d1/2) and clock-output genes 

via coupled transcriptional and translational feedback loops32,33. Correct timing of these 
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molecular clocks relies on entrainment factors called zeitgebers (time givers). For the 

central clock in the suprachiasmatic nucleus (SCN), light is the primary zeitgeber, while 

peripheral clocks in other tissues are entrained by neuronal, endocrine, and feeding-related 

signals34-38. Disruptions to circadian rhythms—caused by chronic jet lag, shift work, or 

genetic alterations—are linked to a range of cardiometabolic disorders, including T2D, 

obesity, metabolic liver diseases, and HF5-8. Conversely, strategies like time-restricted eating 

(TRE) and light therapy can strengthen circadian rhythms and improve cardiometabolic 

health39,40.

As a central processor of whole-body metabolism, the liver is profoundly influenced 

by circadian rhythms7. Approximately 15% of the liver’s transcripts exhibit diurnal 

oscillations, with peaks timed to feeding and fasting cycles41-43. These oscillations regulate 

critical metabolic processes, including glycogenesis, glycogenolysis, gluconeogenesis, 

lipogenesis, and fatty acid oxidation, enabling the liver to anticipate and respond to 

nutrient availability. Glycogenesis and lipogenesis in the liver are driven by rhythmic 

activation of enzymes such as glycogen synthase (GYS1/2)44,45 and of the lipogenic 

transcription factor SREBP1c46,47. Core clock genes tightly regulate also catabolic pathways 

activated during fasting. For example, CRY proteins repress gluconeogenic enzymes48 and 

PERIOD proteins regulate the circadian expression of mitochondrial enzymes to drive 

daily rhythms in mitochondrial respiration49. Hormonal signals like insulin and glucagon 

further synchronize hepatic rhythms with nutrient availability, ensuring a balance between 

energy storage and mobilization50,51. Disruption of these rhythms–through irregular eating 

patterns or genetic mutations in clock genes—can lead to metabolic imbalances, increasing 

the risk of liver disease. For instance, liver-specific deletion of Bmal1 impairs glucose 

homeostasis, promoting IR and steatotic liver disease52. Additionally, the gut microbiome 

and its oscillatory species, and the metabolites they produce play a role in regulating hepatic 

metabolic homeostasis53,54.

The heart, similar to the liver, operates under precise circadian regulation55. Unlike the 

liver, however, the heart relies primarily on oxidative metabolism, with its fuel preferences 

shifting between glucose and FAs across the day. During the active phase, the heart 

preferentially uses glucose, while FAs dominate during the rest phase. These shifts align 

with nutrient availability and metabolic activity in other tissues. The cell-autonomous clock 

of cardiomyocytes orchestrates these metabolic rhythms by regulating the expression of 

enzymes involved in glucose uptake, glycolysis, mitochondrial oxidative phosphorylation 

and lipid homeostasis. For example, BMAL1 enhances myocardial glucose oxidation during 

the active phase56, while REV-ERBs modulate fatty acid oxidation57. Disruption of these 

rhythms -through shift work or sleep deprivation – impairs myocardial energy homeostasis, 

increases oxidative stress, and contributes to CVD. Studies in mice show that deleting 

core clock genes (Bmal1, Per1/2, Rev-erba/b) in the heart leads to impaired contractility, 

hypertrophic remodeling, HF, and increased susceptibility to IHD9.

Circadian regulations extend beyond energetics. For example, hepatic enzymes for 

xenobiotic detoxification peak during rest, while those for glucose and lipid metabolism 

peak during activity58,59.
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Together, these findings underscore the intricate role of circadian rhythms in coordinating 

liver and heart function, extending beyond energy metabolism to include diverse 

physiological processes. Disruption of these rhythms can compromise organ-specific and 

systemic homeostasis, highlighting circadian alignment as a potential therapeutic target in 

liver-heart axis disorders.

2 Liver diseases affecting cardiovascular system

MASLD: a key accelerator of cardiometabolic syndromes

Disruptions in liver-heart cross-talk contribute to the pathogenesis of a number of CVD, 

but the subgroup of cardiometabolic disorders are of particular interest and concern. 

Cardiometabolic diseases are interrelated disorders including obesity, T2D, dyslipidemia 

and hypertension, which frequently coexist and synergistically drive CVD such as IHD, 

cerebrovascular disease, and HF. Cardiometabolic disease are a massive threat to global 

health. Almost half of the adults aged 25 or older are living with obesity60 and T2D affects 

more than 500 million people worldwide, a prevalence expected to double by 205061. In 

2021, 3.71 million deaths were attributable to overweight and obesity62 and most of these 

deaths were due to CVD.

MASLD is a highly prevalent cardiometabolic disease. For long been considered as an 

exclusion diagnosis in the evaluation of patients with lipid accumulation in the liver, 

in absence of significant alcohol intake (non-alcoholic fatty liver disease), MASLD is 

now univocally recognized as a metabolic disease, affecting more than 30% of adults 

globally 63, with a prevalence rising to 55-70% in patients with T2D 64-66 and 70-75% in 

overweight or obese individuals 67. MASLD is defined by the presence of steatotic liver 

disease (SLD, defined as ≥5% liver fat content confirmed by imaging, biopsy, or biomarker-

based assessment) in combination with at least one out of five features of metabolic 

syndrome (overweight or obesity, dysglycaemia or T2D, high plasma triglycerides, low 

HDL cholesterol, hypertension) and no other discernible cause for SLD 2. The spectrum 

of MALSD span from milder forms with little or no inflammation to metabolic dysfunction-

associated steatohepatitis (MASH), further progressing to liver fibrosis, cirrhosis and 

MASH-related hepatocellular carcinoma (HCC) in most severe cases 2. Although the precise 

prevalence of MASH remains less clear, current evidence indicate 2% to 6% of the global 

adult population to be affected68. Notably, this risk is considerably higher in individuals with 

T2D, with MASH identified in 37% of this population and advanced fibrosis observed in 

17%64. Similar trends are seen in obese individuals, where 33% have MASH and 7% present 

with advanced liver fibrosis67. Progression to cirrhosis is observed in 20% of MASLD 

patients, with fibrosis severity serving as a key predictor of adverse liver related events69. 

Additionally, T2D further elevates the risk of hepatic decompensation and hepatocellular 

carcinoma in these individuals70.

Considering the rising prevalence in obesity and T2D, the number of MASLD related HCC 

and liver transplants is expected to double and quadruple respectively by 2050 in the US71.
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The impact of MASLD on cardiovascular risk: epidemiological data

Increase in liver-related events, however, is not the major threat in MASLD. Subjects with 

MASLD have significant higher risk of CVE72,73, with CVD representing the leading cause 

of morbidity and mortality in these patients74-76. While some reports indicate liver-related 

events as the main cause of death in MASLD77,other evidence confirm that CVD and cancer 

are more prominent contributors to mortality63.

Robust epidemiological data indicate MASLD contribution to increased risk of CVD 

to be independent of coexisting risk factors in affected patients. In a Swedish cohort, 

MASLD independently increased the incidence of CVE, including IHD, stroke, HF, and 

cardiovascular mortality, with the risk escalating as the severity of MASLD progresses78. 

A retrospective study including over 111,000 patients, further revealed that MASLD was 

associated with a 1.54 times higher incidence of acute myocardial infarction (AMI), 

independently of other risk factors79.

MASLD is specifically correlated to one HF phenotype, namely heart failure with preserve 

ejection fraction (HFpEF)80. MASLD is present in up to 50% of HFpEF patients, with 

advanced liver fibrosis found in 8-38%, and cirrhosis in 7-12%81-83.

MASLD correlates with several aspects of diastolic dysfunction, including increased LV 

mass, decreased E/A ratio and increased E/e′ ratio, elevated LV filling pressure, reduced 

global longitudinal strain84,85 and increased left atrial volume86,87. This correlation is 

independent of age, sex, obesity, hypertension, and T2D 78,80,86-94. Consistently, advanced 

MASLD stages, particularly those with hepatic fibrosis, are linked to a higher prevalence of 

diastolic dysfunction81,94-98 and predicts worse HF outcomes and higher mortality82,99,100.

However, altered cardiac function is also present in the earlier stages of MASLD, as 

evidenced by subclinical structural and functional changes in asymptomatic MASLD 

patients that increase susceptibility to diastolic alteration and HFpEF, independent of other 

cardiometabolic risk factors101,102. Another finding supporting that coexistence of MASLD 

and HFpEF is not only explained by shared risk factors is that lean patients with NAFLD, 

with favorable metabolic profiles, still exhibit an increased risk of cardiometabolic disease 

and mortality103, an elevated risk at least partially mediated by cardiac remodeling and LV 

diastolic dysfunction104,105.

MASLD is also intricately tied to atherogenic dyslipidemia and hypertension, both of which 

amplify CVD risk through interconnected metabolic and inflammatory pathways106. A 

recent meta-analysis involving Western and Asian cohorts demonstrated that MASLD is 

associated with increased carotid intima-media thickness (OR 2.00, 95% CI: 1.56–2.56) 

and a higher prevalence of coronary artery calcification (OR 1.21, 95% CI: 1.12–1.32)107. 

Notably, this association persists in individuals with severe coronary artery calcifications107.

However, despite MASLD’s strong association with increased atherosclerotic cardiovascular 

diseases (ASCVD), this risk does not appear to independently translate into increased 

ASCVD mortality after accounting for traditional cardiovascular risk factors. Two recent 

meta-analyses concluded that while MASLD increases ASCVD risk, the association with 
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ASCVD mortality becomes non-significant after adjusting for factors such as age, sex, and 

comorbidities108,109. Some evidence suggests that advanced MASLD stages, particularly 

those with higher fibrosis scores, may pose a greater risk for cardiovascular outcomes110. 

However, a prospective study involving biopsy-confirmed MASLD patients found no 

apparent difference in cardiac event rates based on fibrosis stages69.

Pathophysiological underpinnings connecting MASLD and CVD

A complex pathophysiology links MASLD to the progression of CVD disease. IR is 

key in MASLD progression and significantly contributes to CVD. Adipose tissue IR 

prevent the suppression of postprandial lipolysis, elevating FA delivery to the liver in 

the fed state. Simultaneously, it enhances hepatic de novo lipogenesis and impairs fatty 

acid oxidation, both contributing to liver steatosis111. Hepatic IR also leads to increased 

gluconeogenesis—a process normally suppressed by insulin—resulting in hyperglycaemia. 

Elevated blood glucose is a well-established contributor to endothelial dysfunction and 

oxidative stress (PMID: 21030723, PMID: 21747057) which are implicated in the 

development of both ASCVD and HF (PMID: 16618833, PMID: 23684677). Liver-induced 

hyperglycaemia also promotes the formation of advanced glycation end-products (AGEs), 

which contribute to oxidative stress and myocardial collagen crosslinking, leading to 

fibrosis and impaired ventricular compliance, which are hallmarks of HFpEF (PMID: 

18071071; PMID: 26678809). Importantly, not only IR drives MASLD but the opposite 

is also true. Lipid accumulation in the liver activates cytokine release (including mediators 

such as fibroblast growth factor 21 - FGF21, fetuin A and B), inflammatory pathways 

and altered lipoprotein metabolism, all affecting metabolic balance in pancreas, adipose 

tissue and skeletal muscle and thus promoting glucose intolerance112. This vicious cycle 

exacerbates IR severity, in turn driving CVD. A 2012 meta-analysis involving over half a 

million participants demonstrated that IR significantly elevates ASCVD risk, with a one 

standard deviation increase in the Homeostasis Model Assessment for Insulin Resistance 

(HOMA-IR) index correlating with a 1.46-fold higher risk of developing ASCVD113. 

Similarly, HOMA-IR scores have been independently associated with altered LV relaxation 

across heterogeneous clinical cohorts, with altered diastolic dysfunction estimated to 

affect up to 50% of T2D patients114-116. IR contributes to ASCVD and HF via several 

mechanisms. In healthy individuals, insulin exerts vasodilatory and anti-inflammatory 

effects by stimulating nitric oxide (NO) production via the phosphoinositide 3-kinase 

(PI3K)/Akt pathway117. However, in the context of IR, there is an imbalance in insulin 

signaling, with impaired PI3K/Akt activation alongside compensatory overactivation of the 

mitogen-activated protein kinase (MAPK) pathway. This shift promotes vasoconstriction, 

endothelial dysfunction, and inflammation — all of which contribute to atherosclerosis 

development and diastolic dysfunction118,119. Moreover, IR affects cellular lipid handling 

in the myocardium. Specifically, IR promotes the preferential positioning of CD36 on the 

sarcolemma and induces GLUT4 internalization, enhancing lipid uptake and intracellular 

lipid accumulation. This lipid overload may exacerbate myocardial dysfunction through 

lipotoxicity, a mechanism particularly relevant in the development of HFpEF120-122.

The altered lipid profile of MASLD, marked by elevated triglycerides, reduced HDL-C, 

increased LDL particles, and elevated total cholesterol, also contribute to the increased 
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risk of ASCVD in these patients123-125. Notably, experimental evidence demonstrates 

that hepatic IR alone is sufficient to drive atherogenic dyslipidaemia in mice, thereby 

establishing a direct mechanistic link between MASLD and ASCVD (PMID: 18249172). 

Concurrently, IR and chronic inflammation drive hypertension by increasing SNS activity, 

vasoconstriction, and blood volume, necessitating integrated management to mitigate these 

compounded effects126,127. Elevated circulating triglycerides and FAs in MASLD can 

lead to ectopic lipid accumulation in non-adipose tissues, including the heart. In the 

context of hepatic IR, liver-induced hyperglycaemia inhibits myocardial lipid oxidation 

thus exacerbating myocardial lipid accumulation (PMID: 9497163). Myocardial lipid 

accumulation is positively associated with diastolic dysfunction, independently of classical 

risk factors (PMID: 31696627, PMID: 19022158), and cardiac steatosis positively correlates 

with intrahepatic fat content, suggesting systemic lipid spillover (PMID: 19022158). 

Thus, this excess lipid deposition contributes to cardiac lipotoxicity, disrupting myocardial 

function and increasing the risk of HFpEF128,129. Moreover, MASLD elevates the risk of 

CVE by promoting a hypercoagulable state through increased levels of coagulation factors, 

impaired fibrinolysis, enhanced platelet reactivity, and endothelial dysfunction123,130-132. 

These alterations increase the likelihood of thromboembolic events, such as AMI, 

stroke, and peripheral arterial disease 133. Recent findings emphasize the importance of 

hepatokines, liver-derived proteins, in facilitating communication between the liver and 

the heart. Among these, FGF21, fetuin-A and angiopoietin-like proteins (ANGPTLs) 

play distinct, opposing roles in the development of cardiac dysfunction associated with 

MASLD134-136.

These findings underscore the complex and multifaceted relationship between MASLD 

and CVD. While MASLD clearly elevates the risk of various CVE, the extent to which 

it independently influences cardiovascular mortality remains an area requiring further 

investigation, particularly in relation to disease severity, fibrosis stage, and underlying 

metabolic dysfunctions such as IR.

Alcoholic Liver Disease and CVD

Chronic alcohol consumption is a significant risk factor for liver diseases which in turn can 

profoundly affect cardiovascular health. Alcohol-associated liver disease (ALD), formerly 

known as alcoholic liver disease, represents a continuum of liver injuries resulting from 

excessive alcohol consumption, ranging from hepatic steatosis to severe manifestations 

such as alcohol-associated hepatitis, alcohol-associated cirrhosis, and acute-on-chronic liver 

failure137. Its progression typically begins with steatosis, which may advance to more severe 

stages depending on factors such as prolonged heavy alcohol consumption, female sex, 

genetic and epigenetic predisposition, dietary habits, race and ethnicity, and the presence of 

comorbidities137. The recent multisociety Delphi consensus introduced the term metabolic 

dysfunction-associated ALD (MetALD)138 to describe patients with MASLD, who also 

consume alcohol in excess. MetALD has been linked to a greater hepatic fibrosis burden 

compared to MASLD, indicating that alcohol consumption may synergistically exacerbate 

clinical phenotypes and worsen prognoses in individuals with metabolic dysfunction139.
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A large systematic review including 50,302 individuals with ALD revealed a markedly 

increased risk of CVD, one of the leading causes of death in this population. In those 

with alcohol-associated hepatic steatosis, the risk of CVD-related mortality was 40% higher 

compared to controls, rising to fivefold in individuals with alcohol-associated hepatitis and 

2.5-fold in those with cirrhosis140. In a Swedish cohort of 3,488 individuals with ALD, 

the risk of CVD was more than double in the first year following an ALD diagnosis, with 

a cumulative incidence of 12% at five years versus 6% in the general population, and a 

modestly elevated risk persisting even after 10 years, before leveling off due to competing 

liver-related mortality141. Interestingly, accumulating evidence have also shown that while 

both MASLD and ALD are linked to increased cardiovascular risk, ALD is associated 

with higher overall and CVD-related mortality142,143. The study utilizing 7,980 NHANES 

III participants with SLD, categorized into subgroups (pure MASLD, MetALD, ALD 

with metabolic dysfunction, and non-MASLD steatosis), demonstrated that patients with 

MetALD and ALD with metabolic dysfunction had a higher mortality compared to those 

with pure MASLD or non-MASLD steatosis144. In a study of 105,328 Korean individuals, 

the population was categorized into 34,382 with MASLD, 8,319 with ALD, and 10,098 

with excessive alcohol consumption (EAC) but without steatotic liver disease. Both NAFLD 

and ALD were significantly associated with the presence of coronary artery calcium (CAC), 

a marker of subclinical atherosclerosis, with ALD showing a slightly stronger association 

than MASLD, highlighting the added cardiovascular burden of alcohol consumption in the 

presence of liver steatosis. Alcohol consumption was also linked to an increased risk of 

CAC, though the association was less pronounced compared to ALD or MASLD, suggesting 

that even without steatotic liver disease, excessive alcohol intake independently contributes 

to cardiovascular risk145. Another study utilizing a large Korean cohort including 165,654 

individuals with MASLD registered a 19% higher risk of CVE compared to the general 

population, while 22,521 with MetALD and 7,416 with ALD exhibited 28% and 29% 

higher risks, respectively146. These findings highlight the compounding effects of alcohol 

on the liver and cardiovascular system, as both MetALD and ALD showed elevated risks 

beyond those observed in MASLD, likely driven by alcohol-induced liver damage, systemic 

inflammation, and metabolic dysfunction. This risk was evident across obese and non-obese 

individuals and in different stages of hepatic steatosis and fibrosis, suggesting shared 

mechanisms such as systemic inflammation and metabolic dysfunction145.

Alcohol-related liver damage is primarily attributed to the toxic effects of ethanol and its 

highly reactive metabolite, acetaldehyde. Alcohol metabolism via alcohol dehydrogenase 

(ADH) and cytochrome P450 2E1 (CYP2E1) produces acetaldehyde as a reactive 

intermediate. Chronic ethanol consumption exacerbates acetaldehyde accumulation in 

the liver by increasing its production and impairing its detoxification through aldehyde 

dehydrogenase (ALDH) enzymes, with ALDH2 serving as the primary isoform responsible 

for acetaldehyde clearance in the liver 147. Ethanol and acetaldehyde also disrupt hepatic 

lipid metabolism, rapidly inducing steatosis by promoting lipogenesis and inhibiting fatty 

acid oxidation as an acute response to alcohol abuse148. Additionally, acetaldehyde directly 

damages cardiac myocytes, resulting in contractile dysfunction149.

Acetaldehyde has been shown to stimulate type I collagen synthesis in hepatic stellate 

cells (HSC) through activation of Protein Kinase C (PKC) and Nuclear Factor kappa-light-
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chain-enhancer of activated B cells (NF-κB)150,151. Chronic alcohol exposure shifts alcohol 

metabolism predominantly to the CYP2E1 pathway152,153, leading to the production of 

reactive oxygen species (ROS) and hydroxyethyl radicals. These byproducts contribute 

to oxidative stress and lipid peroxidation, which are key drivers in the pathogenesis of 

ALD. Oxidative stress induces the release of pro-inflammatory cytokines154,155, including 

tumor necrosis factor-alpha (TNF-α)156,157, interleukin-6 (IL-6)158, interleukin-1 beta 

(IL-1β)159, and high mobility group box 1 (HMGB1)160,161. These cytokines exacerbate 

liver inflammation and damage while also increasing systemic cardiovascular risk.

ALD is associated with metabolic dysregulation, including IR and dyslipidemia- both 

established risk factors for CVD. Chronic alcohol intake further alters lipid profiles and 

promotes visceral fat accumulation, contributing to heightened cardiovascular morbidity140.

In conclusion, the cardiovascular consequences of ALD are complex and multifaceted, 

highlighting the need for a thorough understanding of the underlying mechanisms and 

contributing risk factors to inform prevention and management strategies.

Cirrhosis and Cirrhotic Cardiomyopathy

Cirrhosis, the common final stage of severe liver disease, is characterized by a complete 

derangement of hepatic architecture, promoted by formation of regenerative nodules encased 

by fibrous bands as a reaction to chronic liver damage, ultimately resulting in portal 

hypertension, liver failure162, and extra-hepatic complications.

Cardiometabolic consequences of cirrhosis due to hepatic insufficiency include impaired 

glucose metabolism (hyperglycemia due to reduced catabolism of glucagon and 

growth hormone) and increased IR, followed, in later stages, by hypoglycemia due 

to decreased insulin catabolism and reduced gluconeogenesis/glycogenolysis163, altered 

protein metabolism (hypoalbuminemia and ascites, loss of muscle proteins)164, and 

lipid metabolism (hypocholesterolemia165 with alterations of cell membranes, and lipids 

malabsorption due to reduced bile acid synthesis166.

Due to the continuous liver-heart interplay, a severe complication of cirrhosis is cirrhotic 

cardiomyopathy (CCM). CCM is a chronic clinical condition observed in patients with 

cirrhosis (irrespective of the etiology), defined by a combination of reduced myocardial 

contractile response to stress (physiological, pathological, or pharmacologic stress), diastolic 

dysfunction, and electrophysiological abnormalities, occurring in the absence of any other 

known cardiac disease167. Approximately 60% of patients with cirrhosis are estimated to 

have CCM168. Arterial vasodilation, central hypovolemia, and hyperdynamic circulation, 

together with portal hypertension contribute to its development, along with hepatorenal 

syndrome and hepatopulmonary syndrome169-171. Portal hypertension triggers splanchnic 

vasodilation via liver-derived vasodilators (e.g., NO, carbon monoxide, prostacycline)172,173. 

This reduces systemic vascular resistance and arterial pressure, and redistributes blood 

flow, leading to central hypovolemia174. Portosystemic shunting and bacterial translocation 

further exacerbate central hypovolemia, activating the sympathetic nervous system and 

causing a hyperdynamic circulation with increased heart rate and cardiac output21,175.
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Cirrhotic patients exhibit reduced CO during physical stress compared to non-cirrhotic 

individuals, primarily due to an insufficient heart rate response and diminished myocardial 

contractility during exercise176. Mediators of impaired contractility include long-term 

exposure of cardiomyocytes to high levels of noradrenalin usually present in cirrhosis, 

resulting in internalization, sequestration, and down regulation of β-adrenergic receptors on 

plasma membrane177.

Diastolic dysfunction develops early and characterizes CCM, often preceding systolic 

dysfunction, with a prevalence in cirrhotic patients from 43% to 70%178. Unlike LV systolic 

failure, which typically occurs under stress, echocardiographic signs of diastolic dysfunction 

may also be present at rest179. The underlying pathophysiology of diastolic dysfunction 

involves increased myocardial wall stiffness, likely due to a combination of mild myocardial 

hypertrophy, fibrosis, and subendothelial edema180. Preclinical data from cirrhotic rats 

support the hypothesis that diastolic stiffness is due to altered titin structure, a protein 

responsible for cardiomyocytes’ stiffness muscle181.

QT-interval prolongation, caused by defective K+ channel function in ventricular 

cardiomyocytes, occurs in 30-60% patient with CCM182 and might help identify cirrhotic 

patients at risk of CCM.

No specific treatments are available for CCM. However, in addition to diuretics, non-

selective betablockers can help reduce hyperdynamic load and improve QT interval179. 

Angiotensin-converting enzyme (ACE) inhibitors should be used with caution in patients 

with CCM, as they may worsen renal function and exacerbate the existing vasodilation 

associated with advanced cirrhosis170.

3 CVD driving liver disease: Heart Failure (HF)

The spectrum of CVD affecting liver function largely converges in HF, representing an 

intermediate or advanced stage occurring in the progression of many cardiac diseases.

HF is a clinical syndrome were structural or functional abnormalities of the heart lead 

to signs and symptoms of congestion and hypoperfusion183. Mechanistically, cardiac 

dysfunction hinders the heart’s ability to maintain sufficient perfusion of peripheral organs, 

or an increase in cardiac filling pressures is required to guarantee adequate CO.

HF affects 1–2% of the global population and impose a significant burden of morbidity and 

mortality184.

Several HF groups and phenotypes exists, each characterized by distinct etiologies and 

pathophysiology. The earliest and best studied form of HF is heart failure with reduced 

ejection fraction (HFrEF), in which LV ejection fraction (LVEF) – the most commonly 

adopted indicator of LV systolic function – is ≤40% at rest, thus significantly impaired185. 

Several etiologies may cause HFrEF, with IHD, genetic and acquired cardiomyopathies 

affecting myocardial contractility being the most common186.
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All HFrEF etiologies converge in a homogeneous pathophysiology and natural history, 

involving renal hypoperfusion, SNS and RAAS activation, sodium and fluid retention, 

release of mediators of adverse cardiac remodeling and progression to arrhythmic events or 

end-stage hemodynamic failure and cardiovascular death187. Some of these mechanisms 

overlap with those observed in cirrhosis, such as altered SNS response, secondary 

hyperaldosteronism and fluid retention and shared therapies exists (e.g. mineralocorticoid 

receptor antagonist – MRA and betablockers)

HFpEF accounts for more than 50% of total HF cases and its prevalence is expected 

to soon surpass HFrEF186,188. HFpEF is a largely heterogeneous syndrome. Among 

the different HFpEF phenotypes, the cardiometabolic one, is driven by metabolic 

syndrome. Cardiometabolic HFpEF, is arguably the most common HFpEF phenotype, 

since approximately 80% of HFpEF patients are overweight or obese189,190 and metabolic 

comorbidities such as T2D and dyslipidemia are highly prevalent in these patients191-193.

Cardiometabolic HFpEF is associated with worse quality of life and high cardiovascular 

mortality194,195. Mechanistically, this phenotype is linked to lipid accumulation in the heart 

(defined as myocardial steatosis196-199 and systemic inflammation, making it a form of 

organ damage related to metabolic dysfunction, similar to MASLD200.

In subjects living with obesity and metabolic syndrome, the lipid spill-over from adipose 

tissue into the bloodstream, promotes lipid accumulation in the heart 196,197,201. Lipid 

accumulation correlates with diastolic dysfunction and cardiac remodeling, including 

LV hypertrophy and increased left atrial volume196. Myocardial triglyceride content 

also correlates with reduced exercise capacity198. Lipid-induced myocardial toxicity and 

diastolic dysfunction result from different mechanisms including increased fibrosis202-204, 

microvascular dysfunction (resulting in insufficient oxygen supply)205-207 and defective 

mitochondrial function and/or loss of metabolic flexibility, impacting energy metabolism, 

reducing availability for adenosine triphosphate (ATP)206,208-212 for cardiac relaxation and 

hampering CO increase during exercise213, eventually reducing exercise capacity.

Changes in cardiac metabolism are key in HF pathogenesis. In HFrEF, metabolic flexibility 

is impaired and FAs and glucose oxidation are reduced214. Increased oxidation of β-

hydroxybutyrate (β-OHB), the primary KB, is observed in HFrEF215-217, with elevated 

circulating β-OHB levels been consistently reported in both animal models and humans, 

suggesting that HFrEF stimulates endogenous ketogenesis215,218,219. Ketogenesis occurs 

primarily in the liver, which therefore is pivotal to sustain cardiac energetics in these 

patients. The mechanisms driving increased hepatic ketogenesis in HFrEF remain poorly 

understood. Reduced cardiac utilization of long-chain FAs may shifts their systemic 

metabolism toward hepatic β-oxidation, thereby fueling ketogenesis. Additionally, HF is 

associated with increased natriuretic peptide concentrations, heightened sympathetic tone 

and elevated catecholamine levels, all of which promote adipose tissue lipolysis and increase 

circulating FAs220-222.

At least in the short term, the shift toward KBs is an adaptive mechanism of the 

disease223,224. Importantly, impaired ketogenesis has been described in MASLD, especially 
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when β-OHB levels are measured after prolonged fasting225,226, with lower ketogenic 

capacity in patients with advanced disease stages227,228. Whether the coexistence of 

impaired ketogenesis in patients with MASLD contribute to worse cardiac energetics in 

HFrEF is unknown. Importantly, if in HFrEF KBs serve as alternative energy source, KB 

utilization in HFpEF remains less defined. As observed in different animal models, KB 

oxidation is unchanged/reduced in HFpEF animals compared with non-failing controls, 

with reduced expression of β-hydroxybutyrate dehydrogenase 1 (BDH1), a key enzyme for 

KB oxidation208-210. The role of impaired liver ketogenesis in HFrEF vs HFpEF patients 

remains largerly unexplored.

Heart-liver hemodynamic interactions in HF: congestive hepatopathy (CH)

One of the most common mechanisms by which HF affects liver function is congestive 

hepatopathy (CH), a common complication seen in approximately 20–30% of chronic HF 

cases229. CH, also known as cardiac hepatopathy, primarily results from elevated central 

venous pressure (CVP), a hallmark of right heart failure (RHF). CVP increase causes 

chronic hepatic congestion, potentially progressing to fibrosis, cirrhosis, or HCC. Although 

most frequently linked with RHF, CH can also occur in conditions such as constrictive 

pericarditis and severe tricuspid regurgitation.

CH develops due to disrupted hepatic blood outflow. The blood supply reaching the liver 

from the hepatic artery and portal vein converge in hepatic sinusoids and drain through 

hepatic veins into the inferior vena cava to return to the right heart230. Because hepatic veins 

lack valves, elevations in right atrial pressure are directly transmitted into the liver, causing 

passive hepatic congestion231. This impairs portal venous inflow and reduces overall hepatic 

perfusion232.

Although the hepatic artery buffer response can compensate for reduced portal flow 

by increasing arterial inflow233, it does not prevent congestion-related injury. Chronic 

congestion leads to sinusoidal dilation and accumulation of fluid in the perisinusoidal space, 

compressing adjacent hepatocytes and impairing metabolic function. Oxygen diffusion is 

also impaired, promoting fibrogenesis232. This process underlies the distinctive “nutmeg 

liver” appearance seen in CH, characterized by mottled red and pale areas that reflect 

congested and ischemic regions232. Prolonged congestion may also compress bile canaliculi 

and ductulus, impairing bile acid secretion and contributing to cholestasis and impaired drug 

metabolism234.

Elevated sinusoidal pressure also induces shear stress, activates hepatic stellate cells, and 

decreases NO production by endothelial cells, further accelerating fibrosis235,236. Systemic 

inflammation, oxidative stress, and neurohormonal activation in HF further exacerbate liver 

dysfunction, establishing a vicious cycle of organ interdependence.

RHF plays a central role in both HF phenotypes, albeit via distinct mechanisms, and its 

development marks disease progression. In HFpEF, diastolic dysfunction of the LV increases 

left atrial pressure, which is transmitted backward into the pulmonary circulation, causing 

pulmonary hypertension237. This elevated afterload leads to RV dysfunction—observed 

in 20–35% of HFpEF patients238—leading to RHF and CH. In HFpEF, CH primarily 
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results from sustained venous congestion, although liver perfusion is generally preserved. In 

HFpEF, CH often coexists with MAFLD further exacerbating liver damage.

In HFrEF, impaired LV systolic function and reduced CO result in elevated left-sided 

filling pressures. These changes cause pulmonary congestion and secondary pulmonary 

hypertension239. The RV compensates for increased afterload but may eventually fail, 

resulting in RHF—a key prognostic factor linked with poor outcomes240. HFrEF may 

specifically lead to ischemic hepatitis, when acute drops in CO reduce hepatic artery blood 

flow, eventually leading to acute liver hypoperfusion.

Many individuals with CH are asymptomatic, with hepatic symptoms often overshadowed 

by HF. When present, symptoms include right upper quadrant discomfort from 

hepatomegaly, jaundice due to impaired bilirubin clearance, ascites from elevated venous 

pressure, nausea, vomiting, and peripheral oedema—though oedema often reflects HF more 

than hepatic dysfunction241. Treatment focuses on optimizing cardiac function and relieving 

congestion. Diuretics, especially loop diuretics, are key but require careful dosing to avoid 

hepatorenal syndrome233. Sodium restriction and fluid management support therapy, and 

paracentesis may be needed for refractory ascites242,243.

Tricuspid valve disease (TVD), particularly tricuspid regurgitation (TR), can lead to liver 

damage even in the absence of overt HF. Severe TR can cause retrograde blood flow, 

leading to elevated CVP. This pressure is transmitted to the hepatic veins, resulting in 

hepatic congestion. Over time, this congestion can cause hepatocellular injury and fibrosis. 

In a retrospective study involving 435 patients with severe TR, 14.5% had documented 

liver disease, and elevated liver enzymes were common244. In another cohort, 11% of 

patients with severe isolated TR exhibited liver disease, highlighting the relevance of 

hepatic involvement in this population245. Importantly, liver stiffness assessed via transient 

elastography is an independent predictor of adverse outcomes in patients with TR246. These 

findings underscore the importance of assessing liver function in patients with severe TR, 

even in the absence of HF, as hepatic involvement may influence management strategies and 

outcomes.

Acute Heart Failure: Short-term liver damage during heart failure exacerbation

Acute liver hypoperfusion, a condition also known as ischemic hepatitis or acute cardiogenic 

liver injury (ACLI) mainly occurs in the context of acute HF (AHF), a condition marked by 

rapid deterioration of signs and symptoms of HF. Several AHF phenotypes exists, spanning 

from progressive fluid retention slowly turning into symptomatic congestion (as in acute 

decompensated heart failure - ADHF) to cardiogenic shock, the deadliest from of AHF247. 

Hepatic dysfunction occurs in 20 to 30% of AHF patients229.

ACLI arises from a sudden reduction in blood flow and oxygen supply to the liver. This 

condition is typically associated with acute reductions of CO, where systemic hypoperfusion 

and ischemia impair hepatocyte oxygenation and metabolism234. Clinical manifestations 

include acute liver injury with elevated aminotransferase levels and acute liver failure in 

more severe cases 248. Histologically, ACLI is defined by necrosis of pericentral zone 3 

hepatocytes. Zone 3 hepatocytes, closest to the central vein, are particularly vulnerable 
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due to their reduced oxygen supply compared to hepatocytes in periportal zones 1 and 2, 

predisposing them to hypoxic damage249. This process is often worsened by pre-existing 

hepatic congestion caused by elevated hepatic venous pressure249,250. In patients with 

chronic CH, even mild reductions in CO may cause ACLI229 due to impaired compensatory 

mechanisms. ACLI is diagnosed when aminotransferase levels rise >20 times over the 

upper normal limit in the setting of cardiac, circulatory, or pulmonary failure, and other 

causes of liver damage are excluded251. Management primarily targets the underlying 

AHF252. Although some patients recover from the acute phase, with aminotransferase levels 

normalizing within 3 to 7 days, mortality rates remain high251.

Cardiac Amyloidosis and Hepatic Involvement

Cardiac amyloidosis, particularly transthyretin (ATTR) amyloidosis, is characterized by the 

deposition of amyloid fibrils in the myocardium, leading to restrictive cardiomyopathy253. 

This condition can also affect the liver, either directly through amyloid deposition or 

indirectly via cardiac dysfunction. Liver involvement is evidenced by elevated liver stiffness, 

which correlate with the severity of cardiac amyloidosis. In a cohort of patients with wild-

type ATTR cardiac amyloidosis, higher liver stiffness was associated with advanced disease 

stages and higher mortality254. Furthermore, elevated liver enzymes, particularly alkaline 

phosphatase and transaminases, have been observed in patients with cardiac amyloidosis, 

indicating hepatic dysfunction255. Altered transient elastography due to either CH or 

deposition of amyloid has been observed also in patients with light chain amyloidosis256, 

suggesting that increased liver stiffness may have several explanations in these patients. 

These findings highlight the importance of monitoring liver function in patients with cardiac 

amyloidosis, as hepatic involvement can have prognostic implications and may influence 

therapeutic strategies.

4 Novel Mediators of Bidirectional Crosstalk Between Liver and Heart

Liver to Heart communication

Hepatokines, liver-derived secreted proteins, are critical mediators linking hepatic 

metabolism to whole-body homeostasis, particularly in cardiometabolic diseases. Among 

hepatokines, Coagulation factor XI (FXI), FGF21, and serum amyloid A proteins (SAA1/4) 

have garnered attention for their roles in cardiac metabolism and remodeling.

FXI has been traditionally known as a coagulation factor, but recently has been implicated 

in cardiovascular pathology. Elevated FXI levels are associated with thrombo-inflammation, 

driving endothelial dysfunction and cardiac fibrosis257-259. Pro-thrombotic states exacerbate 

CVD by promoting microvascular injury, platelet activation, and chronic inflammation. 

Excess FXI activity can also amplify coagulation cascade crosstalk with pro-fibrotic 

pathways, worsening cardiac remodeling seen in HF. Interestingly, FXI may play a 

context-dependent cardioprotective role under specific conditions260,261. For example, in 

a preclinical model of HFpEF, FXI overexpression during disease progression surprisingly 

demonstrated cardioprotective effects. This finding highlights the nuanced role of FXI, 

where modest levels may stabilize microvascular integrity and endothelial repair, mitigating 
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inflammation and fibrosis. Understanding the threshold at which FXI transitions from 

protective to pathological remains a key research focus.

FGF21 is a well-established hepatokine that improves metabolic homeostasis under nutrient 

stress262-264. It functions as a systemic mediator of energy balance, enhancing glucose 

uptake, FA oxidation, and mitochondrial function in peripheral tissues, including the 

heart265-267. Elevated FGF21 levels are observed during metabolic stress, serving as 

a compensatory response to obesity, IR, and lipotoxicity. In cardiometabolic diseases, 

FGF21 has potent cardioprotective effects by alleviating lipotoxicity injury and improving 

myocardial energy efficiency268,269. FGF21 reduces cardiac hypertrophy and fibrosis by 

activating AMPK and PGC1a signaling, which enhances mitochondrial biogenesis and 

reduces oxidative stress.

Serum amyloid proteins (SAA1/4) are acute-phase hepatokines primarily induced under 

inflammatory states270,271. While essential for host defense, chronically elevated SAA1/4 

levels in metabolic syndrome can exacerbate cardiac pathology. SAAs promote systemic 

inflammation, activate immune cells, and induce extracellular matrix (ECM) remodeling, 

contributing to cardiac hypertrophy and fibrosis272-274. In the heart, SAA1/4 abundance 

associates with an enhanced pro-inflammatory state and fibrotic gene programs272,274,275, 

likely contributing to maladaptive cardiac remodeling, although the direct evidence of 

these heart or resident cell-specific effects is lacking. Elevated SAA1/4 levels in obese or 

insulin-resistance individuals reflect a persistent hepatic inflammatory state that perpetuates 

cardiovascular dysfunction270,274,276.

Hepatokines such as FXI, FGF21, and SAA1/4 exemplify the liver’s critical role 

in regulating cardiac remodeling and metabolism. FXI’s dual nature underscores the 

need for context-dependent therapies to modulate its levels safely. Meanwhile, FGF21 

emerges as a protective hepatokine, linking metabolic state to cardiomyocyte health, and 

SAA1/4 highlights the detrimental impact of chronic inflammation on cardiovascular 

health. Targeting these hepatokines, particularly through interventions via behavioral 

and/or pharmacological modulation, holds promise for treating the liver-heart axis in 

cardiometabolic syndrome and preventing CVD progression.

In addition to hepatokines, liver-derived extracellular vesicles (EVs) are increasingly 

recognized as mediators of hepatic metabolic dysfunction in cardiovascular disease (CVD). 

MASLD leads to an increased release of EVs enriched in proinflammatory factors (PMID: 

25470250), which may propagate systemic inflammatory signalling and reinforce the 

chronic low-grade inflammation underlying both ASCVD and HF. Steatotic hepatocyte-

derived EVs also promote endothelial dysfunction by increasing coronary microvascular 

permeability and inflammation (PMID: 34838052, PMID: 31568800). Additionally, liver-

secreted EVs contribute to the development of metabolic cardiomyopathy by impairing 

cardiomyocyte mitochondrial function (PMID: 31434696). While the study of liver-derived 

EVs in CVD is promising, this area remains relatively novel, and further research is needed 

to establish clear connections and develop therapeutic strategies.
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Heart to liver communication

Growing evidence supports the idea that the heart may influence systemic metabolism, 

including hepatic metabolism, by functioning as an endocrine organ. A key example of 

heart-secreted proteins involved in regulating whole-body energetics are the natriuretic 

peptides, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). While 

natriuretic peptides are best known for their role in adipose tissue, where they promote 

lipolysis and increase energy expenditure277-279, their receptor, NPR-A, is also expressed in 

the liver280. Infusion of ANP in healthy individuals increases circulating levels of FAs and 

of β-OHB281. Accordingly, a covariant structure analysis identified a positive correlation 

among plasma levels of KB and BNP in cohort of patients with cardiovascular disorders282. 

In a model of diet-induced obesity, ANP administration significantly reduced hepatomegaly 

and hepatic steatosis, suggesting a direct role for natriuretic peptides in regulating liver 

metabolism. ANP has also been shown to modulate hepatic carbohydrate metabolism by 

inhibiting pyruvate kinase activity283.

Beyond natriuretic peptides, cardiac cells secrete a variety of proteins and peptides, 

collectively referred to as cardiokines. For instance, cardiac fibroblasts and cardiomyocytes 

secrete immunomodulatory signals in pathological conditions284,285. Although the link 

between myocardial inflammation and liver dysfunction remains unclear, a recent study 

demonstrated that myocardial ischemia and AMI in particular exacerbates liver damage 

in MAFLD through two mechanisms: (1) increasing inflammatory monocyte levels and 

their recruitment to the liver, and (2) secreting periostin (POSTN), an extracellular matrix 

protein re-expressed by cardiac fibroblasts during cardiac injury286. AMIs lead to elevated 

hepatic triglyceride levels, worsened steatosis, and aggravated fibrosis287. POSTN delivery 

to primary hepatocytes increased lipid accumulation by activating JNK1/2 signaling and 

reducing peroxisome proliferator-activated receptor α (PPARα) levels287. Another heart-

liver axis in AMI involves interleukin-6 (IL-6) and hepatic STAT3 signaling. STAT3 

activation suppresses the mineralocorticoid receptor and upregulates hepatic FGF21288. 

Given the role of IL-6 in liver homeostasis, including regeneration, insulin signaling, and 

glucose metabolism289, AMI-induced IL-6 release may contribute to additional hepatic 

alterations. Indeed, transcriptional analysis of metabolically active tissues during AMI 

progression revealed dysregulation of immune response and fatty acid metabolism pathways 

in the liver290.

Follistatin-like 1 (FSTL1), a glycoprotein secreted by cardiomyocytes and fibroblasts 

in response to pathological stimuli such as pressure overload and ischemia/reperfusion, 

also plays a role in systemic metabolism291. Elevated circulating FSTL1 levels are 

associated with poor prognosis in AMI292-294. FSTL1 exerts cardioprotective effects by 

enhancing cardiomyocyte survival, reducing apoptosis, and modulating inflammation and 

energetics291,295,296. Beyond its local actions, FSTL1 influences systemic metabolism 

by increasing FA oxidation and altering circulating levels of FAs, glucose, and KBs. 

Treatment of cardiomyocytes and myotubes with FSTL1 enhances AMPK phosphorylation 

and mitochondrial respiration296. While its hepatic effects remain unclear, muscle-derived 

FSTL1 has been implicated in MASH pathogenesis via a skeletal muscle-liver axis, and 
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recombinant FSTL1 increases triglyceride accumulation in primary hepatocytes exposed to 

palmitic acid297.

Another example of heart-liver interaction involves secreted phospholipase A2 (sPLA2), 

an enzyme highly expressed in the heart that hydrolyzes phospholipids to release FAs 

and lysophospholipids. sPLA2 expression increases after AMI298, and its secretion by 

cardiomyocytes, mediated by the chemokine MCP-3, leads to hepatic prostaglandin E2 

release. This dysregulates liver X receptor α (LXRα) and sterol regulatory element-binding 

protein 2 (SREBP-2) signaling, altering inflammatory and lipid metabolic gene expression 

and increasing hepatic triglycerides and VLDL levels299.

Growth differentiation factor-15 (GDF15), a member of the transforming growth factor-β 
(TGF-β) superfamily, is another cardiokine with systemic effects. While not expressed in 

the healthy adult heart, GDF15 is secreted by cardiomyocytes under stress conditions such 

as ischemia/reperfusion and nitrosative stress300. Elevated GDF15 levels are associated 

with poor outcomes in HF301-303. GDF15 is also secreted in other conditions, including 

exercise, obesity, and aging304-306, and acts centrally to suppress appetite and regulate 

energy balance307,308. In pediatric heart disease, cardiomyocyte-derived GDF15 impairs 

growth hormone signaling in the liver, contributing to growth failure309. Recently, GDF15 

was shown to improve insulin sensitivity in diet-induced obesity by enhancing β-adrenergic 

signaling in tissues including the liver310. Further research is needed to clarify its role in 

heart disease.

Finally, Mitsugumin 53 (MG53), an E3 ligase secreted by cardiomyocytes and myocytes 

in response to elevated glucose or insulin, modulates whole-body insulin sensitivity. MG53 

inhibits insulin receptor signaling via extracellular blockade and intracellular ubiquitination, 

reducing Akt phosphorylation in the liver, skeletal muscle, heart, and visceral fat311.

While evidence supports the heart’s ability to signal to the liver via endocrine factors, only 

a few heart-secreted factors have been characterized to date. For many of these, their impact 

on liver physiology and mechanisms of action, particularly in cardiac disease, remain poorly 

understood. Further research is needed to fully elucidate these heart-liver interactions and 

their implications for systemic metabolism.

5 Methods to Study Heart-Liver Interactions

Preclinical models of liver and heart disease

Animal models of liver and heart disease remain essential for the discovery of novel 

mechanisms of liver-heart interactions and to explore mechanistic implications of targets 

leveraged from clinical cohorts. Navigating through the many animal models of liver and 

heart disease can be challenging. Here, we described animal models recapitulating key 

features of liver (MASLD, ALD, cirrhosis) and heart (AMI, HFrEF, HFpEF) diseases, 

highlighting which may be suitable to answer specific research questions along the liver-

heart axis.
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MASLD

Several animal models of MASDL exists, generated through diets, genetic manipulation or 

administration of different chemicals. Each model is different in terms of metabolic traits 

(obesity, IR, dyslipidemia), liver damage, and histopathological features such as steatosis, 

ballooning, inflammation, and fibrosis. As clarified in dedicated comparisons of MASLD 

animal models 312,313, high-fat, high-fructose (HFHS) diets models are the most accurate in 

recapitulating MASLD hallmarks observed in humans. Examples are the DIAMOND model 

(C57BL/6J mice fed with high-fat, high-carbohydrate diet)314 and the AMLN diet model 

(HFHS diet)315, both presenting progressive steatosis, lobular inflammation, hepatocyte 

ballooning, and fibrosis, together with IR and dyslipidemia. In genetic models, such as 

the hyperphagic MC4R-knockout mice exposed to a Western diet, the combination of 

high-fat diet (HFD) and genetic manipulation accelerates the progression of liver disease 

(including advanced fibrosis), systemic metabolic dysfunction and development of HCC316. 

The abovementioned models can be used to simultaneously explore the contribution of 

dietary and genetic metabolic stressors to the liver and the heart, exploring also metabolic 

interorgan signaling.

To specifically investigates the role of liver disease in driving cardiac changes, in the 

absence of obesity, specific models can be used. The STAM model combines neonatal 

streptozotocin injection with high, leading to diabetes, steatohepatitis, and eventually 

fibrosis and HCC. It lacks features like obesity and dyslipidemia, specifically excluding 

this pathogenetic aspect from the phenotype development317. Similarly, the methionine- 

and choline-deficient (MCD) diet induces rapid liver injury and fibrosis but lacks systemic 

metabolic features such as obesity or insulin resistance318.

ALD

To date, no single animal model fully replicates the complexity of human ALD, but several 

models (comprehensively reviewed in dedicated articles319) can be adopted to answer 

specific research questions. Importantly, ALD animal models can be used to explore the 

cardiac implication of alcohol abuse. The Alcohol in Drinking Water (ADW) models, 

are simple models inducing steatosis and mild inflammation over weeks320,321. However, 

relaying on voluntary intake, limits blood alcohol concentrations (BAC) and disease severity. 

The Drinking in the Dark (DID) model enables higher BAC and mimics binge patterns 

but is mostly limited to early liver damage322,323. The Lieber-DeCarli (LdC) diet324,325 

enhances ethanol intake by incorporating alcohol into a liquid diet, leading to controlled, 

chronic exposure with reliable steatosis and inflammation in 4–12 weeks. It is ideal for 

studying early ALD but lacks fibrosis unless combined with a second hit (e.g., carbon 

tetrachloride - CCl4 or lipopolysaccharide - LPS)326-328. A powerful variation is the 

NIAAA model329, which adds an acute ethanol binge to the LdC protocol, producing more 

severe steatohepatitis and immune infiltration. The Tsukamoto-French model330,331, using 

intragastric ethanol infusion, remains the most comprehensive, achieving high sustained 

BAC and advanced histological features such as necrosis, fibrosis, and inflammation, closely 

resembling human ALD. Despite its technical complexity, it is the most robust model for 

replicating progressive liver injury.
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Importantly, despite in both rodents and humans, chronic ethanol consumption is expected 

to induce dilated cardiomyopathy332,333, little is known about cardiac function and/or HF in 

most of ALD animal models.

Animal models of advanced chronic liver disease

Among the most widely utilized preclinical models of advanced chronic liver disease 

are CCl4, thioacetamide (TAA), and common bile duct ligation (cBDL), each offering 

distinct advantages and limitations in terms of translational relevance and feasibility. 

The CCl4 model is historically considered the reference standard for toxicant-induced 

advanced chronic liver disease334,335. It closely replicates critical histopathological features 

of human cirrhosis, including hepatocellular necrosis, hepatic stellate cell activation, 

sinusoidal capillarization, and regenerative nodule formation. Chronic administration, 

particularly via intraperitoneal injection336 or inhalation337, can lead to decompensated 

cirrhosis characterized by ascites and portal hypertension. However, this model is 

highly dependent on animal strain, with BALB/c mice and Wistar rats showing greater 

susceptibility338. Additionally, variability in fibrosis severity and partial reversibility upon 

cessation of the toxicant are notable limitations. The TAA model, while less commonly 

used, is increasingly recognized for its high reproducibility and greater histological 

similarity to human cirrhosis339,340. TAA-induced fibrosis exhibits a stable periportal and 

lobular distribution with prominent regenerative nodules, persisting even after toxicant 

withdrawal341. Administration is feasible via intraperitoneal injection or drinking water342, 

with low mortality and minimal technical complexity. Unlike CCl4, TAA-induced cirrhosis 

is less influenced by genetic background, making it suitable for broader applications343. 

The cBDL model is a well-established surgical model for secondary biliary cirrhosis, 

inducing fibrosis through biliary obstruction and cholestasis344,345. It yields rapid, consistent 

cirrhosis in 3–4 weeks and is particularly relevant for studying cholestatic liver injury346. 

Nevertheless, it requires surgical expertise and carries a moderate mortality risk, primarily 

due to bile duct complications. Moreover, its utility in pharmacological studies is limited 

due to impaired biliary excretion. Overall, TAA emerges as the most reproducible and 

histologically relevant model of human advanced chronic liver disease, while CCl4 remains 

preferable for studies involving decompensation and portal hypertension. Despite CCM is a 

well-known organ damage occurring in cirrhotic patients, cardiac disease in animal models 

of advanced liver disease is largely unexplored.

HFrEF and IHD animal models

In preclinical research on HFrEF, small animal models—particularly rodents—are often 

indispensable due to their affordability, ease of handling, and suitability for high-throughput 

and mechanistic studies. A detailed description of HFrEF animal models can be found in 

dedicated reviews347, a brief overview of most suitable models will follow.

Pressure overload models, such as transverse aortic constriction (TAC), replicate 

the pathophysiological progression from concentric hypertrophy to HFrEF348. Though 

technically demanding, advancements in TAC procedures have enhanced reproducibility 

and reduced mortality349-352. Permanent left anterior descending coronary artery ligation is 

the most widely used method to induce AMI and is the most adopted model of ischemic 
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HFrEF353. Drug-induced models, such as with doxorubicin354,355, isoproterenol356-358, or 

angiotensin II359, are non-surgical and induce cardiomyocyte injury, fibrosis, and reduced 

LVEF. These are particularly relevant for studying chemotherapy-related or hypertensive 

heart disease. Despite less technically demanding, translation may be limited (in the case 

of doxorubicin models) and most are strain-sensitive, emphasizing the importance of model 

selection359.

Despite anatomical and physiological differences—such as faster heart rates and smaller 

heart size—rodents remain highly valuable due to their experimental tractability and 

availability of genetic tools. In comparison, large animal models (e.g. swine models of 

ischemic HFrEF360, or aortic constriction and valvular injury models361-363) offer closer 

physiological and anatomical parallels to humans but are resource-intensive and logistically 

challenging.

Overall, rodent models—particularly TAC and AMI—provide the best balance of feasibility, 

reproducibility, and mechanistic relevance, making them the cornerstone of HFrEF research. 

Little is known about liver damage (e.g. congestion, altered transaminases levels, fibrosis) 

occurring in HFrEF animal models and if therapeutic interventions aiming at cardiac 

improvements also affects the liver.

HFpEF Animal Models

Several HFpEF animal models exists364,365. For a model to be reliable, it must replicate 

clinical signs and symptoms of HF, such as lung congestion (reflected as increased lung 

weight in mice) and dyspnea (modeled as reduced exercise capacity). Importantly, isolated 

diastolic dysfunction with preserved LVEF reflects a preclinical state, not HF. It’s essential 

to define the specific HFpEF phenotype an animal model represents. Since HFpEF can 

arise from diverse causes like obesity, aging, or hypertension, appropriate models should 

match the phenotype of interest. Each HFpEF phenotype may differentially impact on liver 

function and metabolic vs non-metabolic liver disease may specifically lead to different 

HFpEF subtypes.

The HFD + L-NAME model is a widely adopted cardiometabolic HFpEF murine model206. 

Mice fed a HFD and exposed to NO synthase inhibition via L-NAME develop obesity, 

hypertension, endothelial dysfunction, insulin resistance, and diastolic dysfunction, all while 

preserving LVEF. Hepatic steatosis and mild inflammation are also observed, providing a 

valuable tool for studying MASLD–HFpEF interactions206.

The ZSF1 obese rat, a cross of Zucker diabetic fatty and spontaneously hypertensive 

rats, exhibits hypertension, hyperinsulinemia, hyperlipidemia, renal impairment, and cardiac 

diastolic dysfunction. While hepatic involvement is less pronounced, with mild steatosis 

and early fibrosis, this model closely resembles the systemic metabolic syndrome seen in 

patients366. Older C57BL/6J mice fed a Western or HFD in combination with angiotensin 

II infusion can also develop HFpEF-like features over time. These include diastolic 

dysfunction, inflammation, and myocardial hypertrophy367. However, little is known about 

hepatic pathology in aging HFpEF models. Hypertensive models using DOCA-salt, or 

aldosterone infusion induce diastolic dysfunction368-370 but lack obesity or IR, focusing on 
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non-metabolic HFpEF phenotypes. Recently, a novel two-hit mouse model of HFpEF has 

been developed, in which hypertension, one of the principal drivers of HFpEF, is induced 

via adenoviral-mediated renin overexpression, in combination with HFD. This model 

exhibits the classical features of HFpEF, including obesity, insulin resistance, hypertension, 

diastolic dysfunction, and reduced exercise capacity (PMID: 39747575). Although this 

model remains supra-physiological, it has the advantage of inducing hypertension through 

activation of the RAAS, a pathway frequently upregulated in cardiometabolic HFpEF 

(PMID: 31926856).

TAC models may also be employed to study HFpEF, although they require milder 

constriction than that used in HFrEF models to preserve ejection fraction (PMID: 

33969009). When combined with a HFD, this approach recapitulates key haemodynamic 

features observed in HFpEF patients. As such, it represents a valuable complement to 

the established HFD + L-NAME model, with the potential for cross-validation between 

preclinical models improving translational relevance.

In conclusion, despite several animal models of liver and heart disease have been developed 

over the years, interorgan involvement have been poorly addressed. Similarly, the effects 

of specific interventions have been invariably assessed on one organ, leaving the other 

unexplored. Choosing the best strategy to model the organ damage of interest, and testing 

multiple hits (i.e. combining models) may help in gathering mechanistic data on liver-heart 

interorgan crosstalk.

Systems Biology Approaches: Integration of omics to map heart-liver communication

Systems biology approaches are novel research tools for uncovering complex inter-organ 

signaling pathways by integrating large-scale multi-omics datasets. One of the most 

powerful techniques in this area is the Quantitative Endocrine Network Interaction 

Estimation (QENIE) method371,372. The core premise of QENIE is that if a signaling 

relationship exists, the expression of a gene encoding a secreted protein in the origin tissue 

will correlate with expression changes in genes of the target tissue. QENIE leverages gene 

expression data from genetically diverse populations, such as the Hybrid Mouse Diversity 

Panel (HMDP), or human cohorts (i.e. GTEx), to identify secreted proteins in the origin 

tissue (e.g., liver) that correlate with gene expression patterns in target (e.g., heart). Biweight 

midcorrelation (bicor)373 is used to assess cross-tissue associations, and the calculated Ssec 

score ranks secreted proteins based on the strength of their correlations with genes in target 

tissues. Integration with secretome databases (e.g., UniProt) and tissue-specific expression 

profiles further refines candidate prioritization.

A QENIE framework has been successfully used to identify three liver-derived secreted 

proteins, namely HGFAC, C8G, and FXI, with potential roles in liver-heart crosstalk260. 

Through cross-tissue transcriptomic correlation in the HMDP, FXI emerged as one of the 

most interesting targets in liver-heart crosstalk260 and was validated as a cardioprotective 

factor, able to improve diastolic function and attenuate cardiac inflammation and fibrosis. 

FXI’s proteolytic activity was shown to be essential for cleaving and activating BMP7, 

leading to the suppression of inflammation- and fibrosis-related gene expression260. HGFAC 

(hepatocyte growth factor activator) was identified as an additional cross-talk candidate 260 
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and its specific role in driving HFpEF phenotype is under investigation. The third candidate, 

C8G (complement component C8 gamma chain), was shown to reduce heart weight in the 

HFpEF model260. Recently, applying a multi-tissue transcriptomic approach in a mouse 

model of HFpEF, among 86 liver-secreted candidates, serum amyloid A proteins (SAA1 

and SAA4) emerged as HFpEF-specific mediators of liver-heart crosstalk374. Circulating 

levels of these proteins were increased in HFpEF mouse models and in human HFpEF 

and MASLD cohorts. Notably, their expression was correlated with cardiac fibrosis and 

extracellular matrix remodeling pathways. Taken together, these studies underscore the 

critical role of liver-to-heart signaling in driving key features of HFpEF and showcase the 

power of integrated -omics and systems genetics to reveal novel mediators of liver-heart 

communication and beyond.

Mediators of interorgan crosstalk can be also investigated using web-based informatic 

hypothesis-generating interfaces, such as the HMDP systems genetics webpage (https://

systems.genetics.ucla.edu/HMDP/) or the Gene-derived correlation across tissues (GD-CAT) 

webpage (https://pipeline.biochem.uci.edu/gtex/). The former allows to identify statistical 

associations between genes, SNPs, and/or clinical traits of interest through a range of 

datasets, such as, mice fed a standard chow-diet, a high-fat high-sucrose (HFHS) diet, 

and mice exposed to isoproterenol to induce HFrEF. This tool allows to search and 

generate Manhattan plots, look up quantitative trait loci (QTL), identify gene, SNP, and 

trait correlations, and visualize genome-wide hotspots; all in a manner that allows the 

user to generate new and interesting investigatory directions. Utilizing much of the same 

data in a uniquely distinct manner, the latter (GD-CAT), offers a more focused view of 

cross-tissue communication built from QENIE methods. GD-CAT allows one to peer into 

HMDP data (chow diet or HFHS diet fed mice) and GTEx (male, female, or combined) 

data to investigate cross-tissue gene expression associations. By serving as an easy to use, 

efficient, in silico hypothesis generating and/or solidifying system, GD-CAT is an extremely 

valuable tool to explore novel secreted factors mediating liver-heart interactions.

Approaches like QENIE, cross-tissue transcriptomic correlation, and proteomic validation 

enable a comprehensive understanding of the endocrine networks involved in 

cardiometabolic disease. Web-based informatic interfaces like the HMDP Shiney app and 

GD-CAT make novel or previously underappreciated cross-tissue connections easy-to-use 

and thus accessible to the whole scientific community.

Secretome Profiling: Advances in proximity labeling techniques to track inter-organ 
signaling molecules

Proximity labeling has emerged as a cutting-edge technique for tagging proteins synthesized 

in specific subcellular compartments within living organisms. This method relies on 

engineered biotin ligase enzymes that, in the presence of a substrate, covalently tag 

endogenous proteins within a radius of a few nanometers. The biotinylated proteins can then 

be isolated using streptavidin-based enrichment and identified via mass spectrometry375. 

Recent advancements in biotin ligase engineering, enabling faster and more efficient 

labeling in vivo, have expanded the application of this technique to in vivo secretome 

studies376.

Capone et al. Page 24

Circ Res. Author manuscript; available in PMC 2025 June 10.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://systems.genetics.ucla.edu/HMDP/
https://systems.genetics.ucla.edu/HMDP/
https://pipeline.biochem.uci.edu/gtex/


Proximity labeling is particularly valuable for studying interorgan communication in both 

physiological and pathological conditions for several reasons. First, the biotin ligase enzyme 

can be expressed in a cell-type-specific manner using adenoviral-associated vectors (AAVs) 

driven by tissue-specific promoters377,378 or through transgenic animal models crossed with 

Cre recombinase lines379,380. This allows researchers to precisely determine the cellular and 

tissue origins of secreted proteins in the animal model of interest (i.e. mouse models of 

MASDL and/or HFpEF) Second, the biotinylation event is initiated only upon substrate 

delivery, providing temporal control over the labeling process. This flexibility enables 

researchers to tailor the labeling period to the specific context, whether it involves acute 

events (hours) or chronic conditions (days).

To date, cell-type-specific proximity labeling has been successfully used to profile the 

liver secretome under various physiological and disease conditions. For example, using the 

TurboID system, a recent study identified carboxylesterase enzymes CES2A and CES2C 

as the most exercise-responsive proteins secreted by the liver. Further characterization 

revealed their anti-obesogenic and anti-diabetic properties, uncovering new mechanisms 

of tissue-tissue communication underlying the benefits of physical activity381. Another 

study demonstrated that hepatic secretion of the glycoprotein Fetuin-A is altered in insulin-

resistant conditions378. While elevated circulating Fetuin-A levels are associated with 

MASLD and IR382, they are reduced in HF patients with liver hypoperfusion, suggesting 

impaired hepatic secretion in these patients383.

Importantly, proximity labeling can also capture proteins secreted via non-conventional 

pathways, which may play a critical role in certain conditions. For instance, targeting the 

biotin ligase to the endoplasmic reticulum (ER) allows for the identification of proteins 

secreted through the conventional ER-to-Golgi pathway, while targeting the cytoplasmic 

compartment enables the detection of proteins undergoing unconventional export. Using this 

dual approach, Wei W. et al. revealed that a HFHS diet suppressed conventional protein 

secretion while strongly inducing the unconventional secretion of the enzyme betaine-

homocysteine methyltransferase (BHMT). This highlights the importance of studying 

unconventional secretion pathways in metabolic diseases377.

Given its versatility, proximity labeling is a powerful tool for investigating cell-specific 

secretomes and inter-organ communication mechanisms in cardiometabolic diseases, 

including HFpEF. By providing spatial, temporal, and cell-type-specific resolution, this 

approach holds great promise for uncovering novel biomarkers and therapeutic targets in 

complex diseases.

Modeling inter-organ cross-talk: Organoids, Organ-on-Chip, and Precision-cut-tissue 
slices

To understand disease mechanisms and develop effective treatments, researchers require 

models that accurately mimic the complexities of human biology. Traditional in vitro 
models like 2D cell cultures lack the structural and functional complexity of human tissues, 

while animal models, though valuable, are expensive, time-consuming, and may not fully 

replicate human biology due to genetic and physiological differences 384,385. The use of 

patient-derived material represents a highly relevant and versatile model for bridging the 
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gap between pre-clinical models and translational research. Such material can be used for 

systems such as organoids, organ-on-chip and precision-cut tissue slices. Importantly, these 

systems can be used for the generation of -omic datasets (transcriptomics, proteomics, 

metabolomics), correlation of data with clinical features, and can serve as a platform for 

secretome studies.

Organoids

Recent advancements in organoid and organ-on-chip systems have transformed in vitro 
modeling by providing physiologically relevant platforms for studying organ development, 

disease mechanisms, and therapeutic responses. Organoids are three-dimensional, self-

organizing structures derived from human cells 386,387 that closely mimic the architecture 

and functionality of native tissues. Organ-on-chip systems integrate microfluidic 

technologies that replicate organ-level functions by using hollow channels lined with living 

cells under controlled fluid flow. These systems can be interconnected to create multi-organ 

platforms, enabling the study of complex physiological processes and systemic interactions 
388. Together these models bridge the gap between traditional in vitro and in vivo models, 

enabling the investigation of cell-cell and inter-organ interactions, such as those between the 

heart and liver. This represents a significant leap forward in our ability to study complex 

biological systems and address human diseases with unprecedented precision.

Hepatic organoids, derived from sources such as primary liver tissue, embryonic stem cells 

(ESCs), or induced pluripotent stem cells (iPSCs), have emerged as valuable in vitro models 

for hepatology research389. They recapitulate key hepatic functions such as metabolism, 

detoxification, and bile acid synthesis, making them extremely valuable for studying liver 

disorders and metabolic diseases. For instance, an ALD model co-culturing hepatocyte 

organoid with mesenchymal cells has been shown to replicate key phenotypes associated 

with ALD, such as oxidative stress, steatosis, and fibrosis upon alcohol exposure390. 

Similarly, multicellular organoids with hepatocytes, stellate, and Kupffer-like cells were 

shown to recapitulate features of MASLD, including steatosis and inflammation391,392. 

Additionally, organoids derived from patients with MASH have been shown to preserve 

MASH phenotypes, including decrease in albumin production, steatosis, and sensitivity 

to apoptosis393, providing powerful tools for investigating liver pathophysiology, disease 

progression, and testing therapeutic candidates.

Cardiac organoids, particularly engineered human myocardium (EHM) derived from human-

induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), have emerged as a 

valuable tool for modeling cardiac diseases such as HF. These systems replicate pathological 

features like contractile dysfunction, hypertrophy, and cell death under chronic stress 

conditions, such as catecholamine exposure394. Advances in cardiac organoid development 

are extending their utility to broader cardiovascular research, including arrhythmias and 

myocardial infarction.

Organ-on-chip

Organ-on-chip technology bridges the gap between static in vitro models and dynamic 

physiological conditions by incorporating microfluidic systems to simulate blood flow 
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and nutrient exchange395. These systems enable co-culture of liver and heart organoids 

to study systemic diseases. For example, a liver-on-chip system analyzing increased 

hydrodynamic pressure in liver sinusoidal endothelial cells identified novel biomarkers 

for portal hypertension396. Emerging multi-lineage organoid systems and microfluidic 

devices are advancing the study of heart-liver interactions. These models mimic inter-

organ signaling, crucial for understanding diseases such as cardiac amyloidosis, where 

liver-derived proteins like transthyretin influence cardiac function397. While these platforms 

offer dynamic insights into systemic diseases and novel therapeutic strategies, they are not 

without limitations398. A significant challenge is the lack of a universal medium, such as 

blood, that can supply cells with essential nutrients and growth factors across diverse organ 

systems.

Precision-cut tissue slices

Precision-cut tissue slices retain the complex multicellular architecture, tissue-specific 

extracellular matrix, and physiological functions of the organ, and can be cultured ex vivo 
for several days399,400. This makes them an excellent platform for studying intercellular 

communication and secreted factors, such as proteins, metabolites, and extracellular vesicles 

(EVs).

The use of tissue slices has long been used in metabolic preclinical research. Today, 

advancements such as vibrating microtomes have refined the technique, enabling its 

application across a wide range of studies. For example, liver slices have proven as 

a valuable tool for investigating xenobiotic metabolism, testing anti-fibrotic drugs, and 

conducting toxicological studies. Importantly, slices obtained from patient biopsies allow 

researchers to study disease-specific pathological processes and evaluate the efficacy of 

pharmacological therapies399,401. Similarly, myocardial slices preserve cardiac structure 

and function, making them ideal for studying cardiac metabolism, electrophysiology, 

contractility, and pharmacological safety400,402. Slices from human failing hearts have been 

used to explore mechanisms of myocardial fibrosis in response to mechanical stress and to 

test potential anti-fibrotic treatments403.

By closely mimicking in vivo conditions, precision-cut tissue slices provide a robust and 

human-relevant system for secretome analysis. Both the tissue and the culture medium 

can be analyzed, enabling comprehensive profiling of secreted factors from clinically 

relevant tissues. For instance, the protein arylsulfatase A (ARSA) was identified as a 

MASLD/MASH induced hepatokine regulating systemic lysophospholipid metabolism and 

glycemia. Its increased secretion was first detected in the media of primary hepatocytes 

from a murine MASH model and later confirmed using precision-cut liver slices from 

healthy controls and patients with MASLD and MASH, highlighting the relevance in 

human disease404. Similarly, liver-secreted hexosaminidase A (HEXA) was identified as 

a hepatokine mediating liver-to-skeletal muscle communication in MAFLD. Elevated HEXA 

secretion was observed in the media of precision-cut liver slices from patients with MAFLD 

compared to controls405. Another study demonstrated that liver-derived EVs regulate whole-

body glucose homeostasis through inter-organ signaling to skeletal muscle and the pancreas. 

EV secretion was enhanced in early-stage MASH, and EVs isolated from the media of 
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precision-cut liver slices from bariatric surgery patients improved glycemic control in 

recipient mice, underscoring the translational potential of liver-secreted EVs406.

Overall, precision-cut tissue slices offer a powerful and physiologically relevant system for 

secretome analysis, with significant potential for discoveries that can be directly translated 

to clinical applications. However, a key limitation of the technique is the limited availability 

of viable tissue biopsies, particularly for heart tissue, which restricts the use of myocardial 

slices for studying cardiac-driven secretory events in heart disease.

Organoids, organ-on-chip, and precision-cut tissue systems are transformative tools for 

studying heart-liver interactions. As these technologies continue to evolve, they hold 

immense potential for the identification of the underlying mechanisms of MASLD, HFpEF 

and cardiometabolic disease, but also the identification of new potential targets for 

therapeutic intervention, paving the way for more personalized medicine and translational 

research.

6 Targeting metabolism to improve heart and liver function: mechanistic 

evidence

Exploring potential interactions between liver and heart, especially in the context of 

cardiometabolic diseases, should always aim not only at dissecting the complex underline 

pathophysiology: the ultimate goal is to find effective therapeutic strategies to break this 

axis. Several pharmacological and non-pharmacological interventions exist, targeting liver, 

heart or metabolic dysfunction on a systemic scale. For most, the effects on interorgan 

crosstalk are unknown but worth being explored.

Non-pharmacologic strategies form the foundation for managing metabolic dysfunction 

impacting both liver and heart health. Behavioral and environmental factors drive 

cardiometabolic disease by inducing oxidative stress, low-grade inflammation, IR, and lipid 

imbalance. TRE aligns food intake with circadian rhythms, improving glucose metabolism, 

reducing inflammation, and promoting weight loss42,407,408. TRE has been shown to 

enhance insulin sensitivity and reduce cardiovascular risk markers409-411. Whole-food-based 

diets like Mediterranean and DASH reduce hypertension, improve lipid profiles, and 

support liver function412,413. Dietary fiber further improves glycemic control and fosters 

gut microbial diversity414.

Exercise, another pillar of metabolic non-pharmacological interventions, enhances 

mitochondrial efficiency, reduces inflammation, and supports both hepatic and cardiac 

health415. Aerobic training boosts cardiovascular function, while resistance training 

improves glucose uptake and insulin sensitivity416. Stress reduction, sleep hygiene, and 

avoiding toxins like alcohol and tobacco further enhance metabolic balance417-419.

Altogether, dietary interventions and physical activity are the most effective, sustainable 

and safe interventions to be put in place to fight both liver and heart metabolic disease 

and thus reduce CVE. Despite strong evidence, barriers such as socio-economic status, 
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time constraints, and knowledge gaps limit widespread adoption. Personalized interventions, 

community-based programs, and digital tools may help bridge this gap420.

Pharmacologic therapies provide essential support in patients with established liver or 

cardiac disease. Sodium-glucose co-transporter 2 inhibitors (SGLT2i), such as empagliflozin 

and dapagliflozin, offer dual protection. They improve cardiovascular outcomes in patients 

with HF (either HFrEF or HFpEF) and atherosclerotic cardiovascular disease (including 

acute myocardial infarction), even in the absence of T2D421. Similarly, SGLT2i reduced 

hepatic steatosis and fibrosis in MASLD, although liver-specific endpoints in non-diabetic 

populations remain unclear422,423. Glucagon-like peptide-1 receptor agonists (GLP-1 R) 

like semaglutide, and dual or triple incretin analogues (e.g., tirzepatide, retatrutide), 

reduce weight, enhance insulin sensitivity, improve exercise performance and lower risk of 

cardiovascular death or worsening of HF in HFpEF patients424,425. Semaglutide has shown 

steatohepatitis resolution without fibrosis improvement426, and ongoing trials will clarify 

broader hepatic benefits.

Overall, SGLT2 inhibitors and GLP-1 receptor agonists represent promising pharmacologic 

options for the simultaneous treatment of liver-heart metabolic disease. However, robust 

evidence from studies specifically designed to target multi-organ pathology—both in 

preclinical models and clinical settings—remains limited.

To fully understand the interorgan benefits and potential adverse interactions, metabolic 

interventions (potentially impacting on both liver and heart, such as non-pharmacological 

strategies, SGLT2i and GLP-1RA) must be rigorously tested in animal models, in vitro, 

and ex vivo platforms, simultaneously assessing liver and heart effects. Such interventions 

should be compared with organ-specific therapies (e.g. resmetirom, a thyroid hormone 

receptor-β agonist that improves steatohepatitis and fibrosis in patients with MASLD427) to 

test for secondary cardiac benefits. Similarly, the effects of cardiac-specific drugs should 

observed in the liver. Mechanistic studies should aim at dissecting molecular pathways—

such as inflammation, oxidative stress, mitochondrial dysfunction, and fibrosis—involved 

organ-specific vs interorgan effects.

Importantly, considering the large body of evidence indicating CVE as the primary cause 

of mortality and morbidity in MASLD (and possibly ALD and MetALD), clinical trials 

designed with CVE as primary endpoints (instead of liver-related events) are needed in 

MASLD patients.

7 Conclusion

Understanding liver–heart crosstalk marks a pivotal shift in how we conceptualize CVDs—

not as isolated organ dysfunctions but as an integrated, systemic syndrome. Recognizing 

the liver as a driver and amplifier of CVDs demands that we reframe basic research, 

datasets analysis, diagnostic strategies and therapeutic interventions to consider metabolic 

liver disease as a modifiable cardiovascular risk factor. This shift has profound implications 

for early screening, risk stratification, and patient management across disciplines.
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The development and application of mechanistically relevant animal models and advanced in 

vitro and ex vivo platforms that recapitulate liver–heart interactions is critical. These systems 

are essential for probing interorgan signaling networks, uncovering novel molecular targets, 

and validating cross-organ effects of emerging therapies. Without such translational models, 

the causal links between hepatic pathology and cardiovascular disease remain speculative 

and therapeutic translation remains limited.

Interventions that target shared pathophysiological mechanisms—such as inflammation, 

fibrosis, lipotoxicity, and insulin resistance—hold promise for disrupting the feed-forward 

loops linking hepatic and cardiac dysfunction. However, most current pharmacologic trials 

focus on single-organ endpoints. To effectively deviate the natural history of multisystemic 

cardiometabolic disease, clinical trials must be intentionally designed with multi-organ 

outcomes in mind, including endpoints that reflect improvements in both hepatic and cardiac 

health.

The field stands at an inflection point: integrated approaches to research and clinical care 

are urgently needed to prevent and treat the growing burden of cardiometabolic disease. 

Collaborative efforts between hepatologists, cardiologists, internists, endocrinologists, and 

translational scientists will be key to unlocking therapies that reflect the biological reality of 

these interdependent organs. Going forward, precision medicine for cardiometabolic disease 

must be organ-aware, mechanism-driven, and systemically informed.
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Figure 1. Physiological liver-heart interplay.
Liver metabolism, cardiac hemodynamics, Sympathetic Nervous System (SNS) and 

Circadian clocks work in parallel to coordinate liver-heart homeostatic balance.

BCAA - Branched Chain Amino Acids, FFAs - Free Fatty Acids, KBs – Ketone Bodies.
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Figure 2. Mechanisms of pathological liver-heart interaction.
Liver steatosis, alcohol consumption and congestive hepatopathy synergistically promote 

liver inflammation and fibrosis, eventually leading to cirrhosis and HCC. Liver disease 

and cardiovascular events are entangled in a pathophysiological crosstalk including 

hemodynamics and signaling molecules.

BNP – Brain Natriuretic Peptide, FGF21 - Fibroblast Growth Factor 21, FSTL1 - Follistatin-
Like 1, FXI – Factor XI, GDF15 - Growth Differentiation Factor-15, HCC – Hepatocellular 
Carcinoma, HFpEF - Heart Failure with preserved Ejection Fraction, HFrEF – Heart Failure 
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with reduced Ejection Fraction, IHD – Ischemic Heart Disease, MG53 - Mitsugumin 53, 
POSTN – Periostin, SAA1/A - Serum Amyloid A Proteins 1 And 4, sPLA2 – Soluble 
Phospholipase A.
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Figure 3. Research tools to explore cardiometabolic liver-heart crosstalk
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