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ABSTRACT Avibacterium paragallinarum, the causative agent of infectious coryza,
causes significant economic losses to the poultry industry due to increased culling
rates in growing chickens and decreased egg production in layers. We present the
complete genome sequences of seven strains of Avibacterium paragallinarum iso-
lated from poultry farms in Pennsylvania during 2019.

Avibacterium paragallinarum, formerly classified as Haemophilus paragallinarum (1),
causes infectious coryza (IC) in poultry. IC is a highly contagious respiratory disease

of chickens resulting in high mortality, reduced egg production, and huge economic
losses to the poultry industry worldwide (2–4). Since early 2019, there have been
several outbreaks of IC in Pennsylvania. The complete genome sequences of seven
Avibacterium paragallinarum isolates from these outbreaks were deposited in GenBank.
Currently, there are very few whole-genome sequences of A. paragallinarum in public
databases, and these genome sequences will facilitate further molecular epidemiologic
analyses.

Samples submitted to the Pennsylvania Animal Diagnostic Laboratory System
(PADLS) from IC-suspected chickens were streaked onto chocolate agar and incubated
for 24 h at 37°C with 5% CO2 (5). Isolated single colonies were grown overnight in brain
heart infusion broth (BD) supplemented with chicken serum and NAD. Bacterial DNA
was extracted using the Qiagen Genomic-tip 100/G following the manufacturer’s
instructions. For each isolate, two sequencing platforms, MinION from Oxford Nanopore
Technologies (ONT) and Illumina MiniSeq, were used to leverage the accuracy of the
short reads from Illumina and the long reads from ONT. The Illumina Nextera DNA Flex
library prep kit and 1D native barcoding genomic DNA protocol (EXP-NBD104 and
SQK-LSK109; Oxford Nanopore Technologies) were used to prepare the library for
Illumina and MinION sequencing, respectively. The quality of the Illumina short reads
(150 bp) was assessed using FastQC version 0.11.9 (6), and no further quality control
was required. The ONT reads were base called using Guppy version 3.1.5 (available on
the ONT community website). The program was run in “fast” mode with the option to
simultaneously demultiplex the reads with barcode sequences. Filtlong version 0.2.0 (7)
was used for quality control of the ONT reads. The options were set to filter out the
smaller reads and trim off the regions with the lowest quality scores. This resulted in a
total of 350 Mbp (coverage, �145�) of the longest reads with the highest quality
scores.

Unicycler version 0.4.8 (8), with default options, was used to perform de novo hybrid
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assembly. For each genome, the assembly resulted in a single circular contig, which was
rotated to allow all genomes to start at the same site (the DnaA gene). The assembled
genomes were submitted to GenBank and were annotated using the NCBI Prokaryotic
Genome Annotation Pipeline (PGAP) (9). These isolates were previously identified by
matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrom-
etry and were later identified by in silico species identification using KmerFinder (10).
FastANI (11) was used to calculate the average nucleotide identity (ANI) values between
the genome sequences. The ANI values between all of the genomes reported here are
above 99.99% and are closer to those of two genomes from Peru, strains 72 (ANI,
99.86%) and FARPER-174 (ANI, 99.74%) (12, 13), and strain AVPG2015 from Mexico (ANI,
99.88%).

Data availability. These data were deposited in the NCBI GenBank database under
the BioProject accession no. PRJNA625662. The complete sequences and their corre-
sponding raw reads have been deposited in GenBank and the SRA, and the details are
provided in Table 1.
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TABLE 1 Metrics and accession numbers of genome sequences of Avibacterium paragallinarum isolates from Pennsylvania

Isolate
Genome
size (bp)

GC
content
(%)

Total
no. of
genes

Illumina data: Oxford Nanopore data:

SRA
accession no.

GenBank
accession no.

Total no. of
reads (bp)

Avg read
length (bp)

Avg
coverage
(�)

Total
no. of
reads

N50

(bp)

Avg
coverage
(�)

ADL-AP01 2,415,542 40.91 2,330 821,856 148 50 126,648 14,949 400 SRS6501300 CP051642
ADL-AP02 2,416,187 40.92 2,328 988,642 148 61 143,612 14,599 443 SRS6501303 CP051641
ADL-AP07 2,415,993 40.91 2,230 1,034,010 148 63 203,889 13,633 599 SRS6501304 CP051640
ADL-AP10 2,415,552 40.91 2,334 554,656 148 34 228,213 13,294 523 SRS6501305 CP051639
ADL-AP15 2,415,950 40.92 2,337 697,442 148 43 155,612 13,500 450 SRS6501306 CP051638
ADL-AP16 2,415,855 40.91 2,331 2,170,560 147 132 281,174 13,210 610 SRS6501301 CP051637
ADL-AP17 2,415,699 40.91 2,331 2,671,088 148 164 115,998 15,175 378 SRS6501302 CP051636
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