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1  |  OVERVIE W

Since 1994, the term “proteomics” was first used and, to date, it has 
been used in wide applications in analytical chemistry, clinical food 
microbiology, biotechnology, and food technology. Proteomics is the 
analysis of proteins at a large scale in a particular biological system 
at a particular time (Boersema et al., 2015; Pandey & Mann, 2000). 
It is a very valuable tool in food analysis when applied to different 

analytical techniques (Marzano et al., 2020). Globally, food trends 
are drastically changing in production and consumption of food 
and consumers are paying huge attention to what they are eat-
ing. Therefore, knowledge of foodomics is gaining huge popularity 
in this segment. Foodomics is defined as studies of application of 
advanced omics approaches to food (Cifuentes, 2017). Foodomics 
includes epigenetics, transcriptomics, metabolomics, proteomics, 
peptidomics, and/or genomics to investigate food traceability, food 
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ABSTRACT
Adulteration and mislabeling have become a very common global malpractice in food 
industry. Especially foods of animal origin are prepared from plant sources and inten-
tionally mislabeled. This type of mislabeling is an important concern in food safety as 
the replaced ingredients may cause a food allergy or toxicity to vulnerable consum-
ers. Moreover, foodborne pathogens also pose a major threat to food safety. There 
is a dire need to develop strong analytical tools to deal with  related issues.  In this 
context, proteomics stands out as a promising tool used to report the aforementioned 
issues. The development in the field of omics has inimitable advantages in enabling 
the understanding of various biological fields  especially  in the discipline of  food 
science. In this review, current applications and the role of proteomics in food au-
thenticity, safety, and quality and food traceability are highlighted comprehensively. 
Additionally, the other components of proteomics have also been comprehensively 
described. Furthermore, this review will be helpful in the provision of new intuition 
into the use of proteomics in food analysis. Moreover, the pathogens in food can also 
be identified based on differences in their protein profiling. Conclusively, proteomics, 
an indicator of food properties, its origin, the processes applied to food, and its com-
position are also the limelight of this article.
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quality, food safety, and also to find new bioactive components in 
food (Jagadeesh et al., 2017). Proteomics being one of the omics has 
been extensively used in food research today (Raposo de Magalhães 
et al., 2020).

In current era, consumer is not only focusing the sensory attri-
butes of the food product. Consumer demand for safe, nutritious, 
functional, minimal process, and low additives containing food is 
increasing (Saeed et al., 2021). In this context, proteomics has the 
promising potential to prove the reliability and safety of the food 
products. Proteomics are integral in tracking the product from raw 
materials to finished products. Furthermore the proteomics has 
great potential for food industry in various areas of quality, trace-
ability, optimization, storage nutrition, and safety. However, it will 
take some time to adopt such sophisticated tools at industrial scale.

Proteins act as an indicator of origin, properties, and processes 
conducted on food (Ortea et al., 2016). Furthermore, proteomics can 
be used to inspect food quality which can be enhanced by improv-
ing the processes used in food production (Creydt & Fischer, 2020). 
However, false claims are being made and mislabeling is done by 
adding another cheaper alternative ingredient instead of the main 
ingredient written on label (Moore et  al.,  2012). Different species 
of animals are used to make a particular product instead of the one 
written on the label which is a major point from a religious concern 
as well. This type of adulteration is a food safety threat as the re-
placed ingredient may cause allergies or health issues to the con-
sumer (Spink & Moyer,  2011). Specific authentication when done 
with conventional methods is a time-consuming task and cannot 
be applied to detect adulteration of less than 5% of the product 
(Špoljarić et al., 2013). In this context, proteomics are an effective 
tool in the detection of adulterants in food (Girolamo et al., 2014). 
Moreover, proteomic analysis of food is faster and gives in-depth 
analysis of food even at peptide level (Gallardo et al., 2013). Proteins 
are used as markers of different properties, compositions, and or-
igins of food; therefore, knowledge of proteomics is used for this 
purpose (Erban et al., 2021). The knowledge of proteomics is applied 
for product traceability, authentication, and  protein profiling of 
food especially for animal-based products (meat and dairy products) 
(Leitner et al., 2006; Guarino et al., 2010).

Food safety is an important health concern. Many people 
across the globe suffer from various foodborne illnesses every year 
(Bolek,  2020). Sometimes, negligence in food safety concerns can 
even cause death of the patient  in conditions like hemolytic ure-
mic syndrome caused by foodborne pathogens like E. coli O157:H7. 
Proteomic approaches also help in the identification of microorgan-
isms based on variations in their proteome, thus helping in the de-
tection of different types of pathogens in food (Pavlovic et al., 2013; 
Shiny Matilda et  al.,  2020). Proteomic assays used to identify the 
protein must also be present in the database library. Various pep-
tide fingerprint libraries are commercially available. One of these 
libraries is “spectra bank” containing mass spectral fingerprints of 
the pathogenic bacteria species and major spoilage causing species 
from seafood, and includes 120 species of interest in the food sec-
tor (Gallardo et  al.,  2013). Proteomic methods like HPLC and MS/

LC-MS can be used to detect and identify toxins and allergens in 
food (Martinović et al., 2016; Sangeetha et al., 2020).

Furthermore, high-quality products can be made by genetic im-
provements and studying the changes in protein structure, confor-
mation, and posttranslational modifications (PTMs) due to different 
processes of food production and thus improving the production 
process accordingly (Pedreschi et al., 2010). Moreover, a large num-
ber of proteins are involved in development of tenderness, color, 
and odor in meat (Jagadeesh et al., 2017; Zapata et al., 2009). These 
proteins can be identified in food to enhance the quality of food. 
Multiple techniques-based knowledge of proteomics has been used 
for the protein profiling of food, detection of foodborne pathogens, 
and identification of protein markers, which involve mass spec-
trometry (MALDI-TOF and electrospray ionization), HPLC, and gel 
electrophoresis. This review covers the applications of proteomics 
in food authentication, quality, and safety using various advanced 
techniques of food analysis concerned with proteomic approach.

2  |  RE VIE W METHODOLOGY

The literature search was carried out using scientific databases com-
prising Scopus, Science Direct, Google scholar, PubMed, Cochrane 
Library, Science Hub, and Library genesis using the following sub-
ject headings proteomics, food authentication, food safety, and bio-
marker using keywords: "Proteomics as analytical tool, proteomics 
in food authentication and food quality, adulteration, Foodborne 
pathogens and their identification, foodborne pathogens and tox-
ins." The authors collected the latest available literature from pri-
mary and secondary sources.

3  |  PROTEOMIC S

Proteomics is proteins study at a very large scale. Marc Wilkins in 
1994 first use the word proteomics. A proteome is known as a com-
plete set of proteins expressed or produced by a system or organ-
ism. Proteomics consists of six classes (Carbonaro, 2004): functional 
proteomics, expression proteomics, protein–protein interactions, 
proteome mining, posttranslational modifications, and structural 
proteomics. It includes the quantitative analysis of a proteome and 
its protein profiling. Mainly in food sector, proteomics-based tech-
niques are used for authentication of food products for food safety 
by identifying foodborne pathogens based on variations in their pro-
teome, allergens, and toxins detections, for process validation and 
optimization, identification of bioactive compounds in functional 
foods, and for identification of specie-specific biomarkers to authen-
ticate meat and dairy products. Proteomics is an effective approach 
to identify protein as well as the interactions of protein with other 
components of foods (Kvasnicka, 2003). Mass spectrometry-based 
approaches like MALDI-TOF combined with gel electrophoresis and 
other nongel-based techniques are used in proteomic analysis of 
food products. Proteomics has vast application potential in different 
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industries including food, feed, health, and medicine. Medical re-
search has better option for diagnostic of various health maladies. 
Proteomics has bright future for its wide spared use in food (safety 
and nutrition) and other allied fields. However, there are various 
constraints in use of proteomics like lack of validation, standardiza-
tion, and most importantly complexity in analysis. Proteomics also 
helps to enhance the quality of food products by studying the ef-
fect of different processes on food proteins, thus improving the food 
processing line. Classification of proteomics is given in Table 1.

4  |  WORKING PRINCIPLE

The working principle of proteomics consists of the following im-
portant steps: (i) protein extraction; (ii) protein or peptide separation 
and quantification; (iii) protein identification; and (iv) data analysis 
and interpretation.

The protein extraction is done from the sample used for anal-
ysis (Gallardo et al., 2013). In the case of complex samples, partial 
purification, selective enrichment, or depletion of high abundance 
proteins is also done (Pedreschi et al., 2010; Surinova et al., 2011). 
The separation of proteins is done using two-dimensional gel elec-
trophoresis method.​ Both these separation methods are done in a 
bottom-up proteomic approach (Panday & Mann,  2000). The sec-
ond approach is the top-down approach in which the digestion step 
is not done and the peptides from fragmented proteins are directly 
subjected to mass spectrometry (McLafferty et  al.,  2007). After 
protein separation and digestion of proteins, the quantification and 
identification of proteins are done by using mass spectrometric 
techniques (Gallardo et  al.,  2013) like LC-MS, MALDI-TOF MS, or 
MS/MS. MALDI-TOF MS is, however, used in protein identification 
while MS/MS or LC-MS/MS can be used for identification, quanti-
fication, as well as protein characterization. The approach in which 
2D electrophoresis is used and afterward followed by mass spectro-
metric analysis in-gel digestion of protein is done, which is also called 
peptide mass fingerprinting. For both these approaches, the protein 
to be identified is matched with the protein in the database after 
being subjected to the mass spectrometer. Provided that the corre-
sponding protein is not present in the database, the most homolog-
ically related protein is matched (Gallardo et al., 2013). Proteomics 
workflows for bottom-up and top-down proteomics approaches are 
shown in Figure 1.

5  |  E XPERIMENTAL ARE A S

Experimental areas that can adopt three key methods in proteomics 
based on the scientific question to be answered include qualitative, 
quantitative, and functional proteomics. Proteomics experimental 
areas, their functions and approaches are also discussed in Figure 2.

5.1  |  Quantitative proteomics

The relative amount of protein in food proteomes can change mainly 
because of the composition of the food, the biological variability 
of the food components, and the technical processing of the food. 
Protein concentrations are determined accurately, and quantitative 
proteomics requires relative quantification of specific proteins be-
tween various samples and absolute quantification. While search-
ing for differences between different conditions based on different 
treatments, GM or non-GM food products, quantitative information 
at the protein level (absolute protein amount or the relative abun-
dance of a particular protein between different samples) can be very 
helpful. Natural variations in raw materials, technical processing, and 
storage are common application studies on changes in the food pro-
teome (Restani et al., 1997). Gel-based methods consist of the com-
parison of protein abundance determined between different samples 
as the spot volume and the two-dimensional electrophoresis (2-DE) 
separation of proteins. Using 2-D fluorescence difference gel elec-
trophoresis (DIGE), protein quantification, authentication, and de-
tection of different adulterants were assessed (Minden et al., 2009). 
Preseparation gel base is not required in many cases and relative 
quantification for primary amines is achieved by using labeled mass 
tags (Boersema et al., 2009), such as dimethyl labeling, isobaric abso-
lute and relative quantification tags (ITRAQ) (Ross et al., 2004), and 
tandem mass tags (TMT) (Thompson et al., 2003). Label-free quanti-
fication uses multiple assessment methods (Neilson et al., 2011) that 
take either the spectral counting based on counting the number of 
peptides assigned to a protein or the area under the curve based 
on precursor ion spectra peak area in an MS or MS experiment. 
Quantitative proteomic methodologies have been greatly improved 
(Gallien et  al.,  2011) by the implementation of selected reaction 
monitoring experiments (SRM), a highly sensitive LC-MS or MS ac-
quisition mode is widely used in biomedical research to validate and 
verify candidate biomarker proteins.

5.2  |  Qualitative proteomics

The type of proteomics includes the characterization and detec-
tion of protein in food products and can include either all the pro-
teins or specific subsets of proteins of particular interest, which 
is known as qualitative proteomics. Examples of qualitative pro-
teins include glycolytic enzymes in meat or food allergens and 
caseins in dairy products. The two most common protein identi-
fication methods include Peptide Fragment Fingerprinting (PFF) 

TA B L E  1  Classes of proteomics

No. Classes of proteomic Reference

1 Expression proteomics Carbonaro (2004)

2 Protein–protein interactions

3 Functional proteomics

4 Structural proteomics

5 Proteomic mining

6 Posttranslational modification



2336  |    AFZAAL et al.

and peptide mass fingerprinting (PMF) that are both involved in 
enzymatic digestion of the identified proteins. In a process named 
top-down proteomics (Lafferty et al., 2021), tandem mass spec-
trometry (MS/MS) data from the intact protein can be used alter-
natively. All of these procedures include the sequence information 
present in the database of the homologous or respective protein. 
Protein databases currently available, such as UniProtKB (Uniprot 
Consortium, 2019) or NCBI (National Center for Biotechnology 
Information), U.S. National Library of Medicine, Bethesda, MD, 
USA, mostly do not provide accurate protein sequence data for 
the multitude of proteins found in food products of various plant, 
animal, or fungal origins. PTMs may occur owing to food process-
ing methods and a wide variety of biological signals, including 
preservation treatments and cooking. Only a few forms of PTMs 
are being studied extensively out of 300 different forms (Zhao & 
Jensen,  2009) such as glycosylation, acetylation, oxidation, and 
phosphorylation. Nonbiological PTMs, such as aromatic hydroxy-
lation, Maillard glycation, thiol oxidation, carbonylation, conden-
sation, peptide backbone breakdown, and side chain removal, 

frequently occur during food storage and processing, which 
are called nonenzymatic PTMs (ne-PTMs) (Clerens et  al.,  2012; 
Pischetsrieder & Baeuerlein, 2009).

5.3  |  Functional proteomics

Protein-to-protein interactions and protein interactions with other 
molecules including the effects of concerned interactions are studied 
in functional proteomics (Coombs, 2020; Kiemer & Cesareni, 2007). 
Protein profiling activity-based probes of inhibitor screening and 
active enzyme levels are used in functional approaches (Serim 
et al., 2012). Another similar functional proteomics is activity-based 
proteomics, which studies the basic activities of proteins in a sam-
ple, such as inhibition and function (Elmore et al., 2021). Mass spec-
trometry imaging, a new imaging mode that enables proteins to be 
mapped within a tissue or sample section, has proven to be a tool for 
functional proteomics, as it can help to understand their functions 
by locating the different protein isoforms (Angel & Caprioli, 2013).

F I G U R E  1  Proteomics workflows for 
bottom-up and top-down proteomics 
approaches

F I G U R E  2  Proteomics experimental 
areas, their functions, and approaches
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6  |  PROTEOMIC S APPROACHES IN FOOD 
AUTHENTIC ATION

Consumers’ demand regarding food authentication and true food 
labeling is becoming trendier because of health, nutrition, and 
religious concerns (Meijer et al., 2021). However, with increasing 
food demand, adulteration and false labeling have become a huge 
concern in the food chain and have become difficult to monitor 
food quality. Proteomics methods have currently been utilized 
as a quicker, adaptive, and high-throughput outlook for assess-
ing the validity and traceability of species in food products due 
to recent developments in MS (Piñeiro et  al.,  2003). Therefore, 
proteomics has been used as a part of multiple studies for the 
adulteration detection, quantification, and identification in food 
products by identification and detection of specie-specific protein 
markers and the protein markers of different processes on food 
with the help of mass spectroscopic techniques (LC-MS, tandem 
mass spectrometry, and MALDI-TOF MS). These proteomics-
based techniques have been applied to milk and dairy products, 
meat, and plant-based foods for product traceability and au-
thenticity (Ortea et  al.,  2016). MS is used in reference samples 
for both the identification of species-specific peptide fingerprints 
and the detection of certain diagnostic peptides in actual sam-
ples (Carrera et al., 2007). Proteomics tools take advantage of MS 
high-throughput ability to achieve rapid, reliable, and responsive 
detection, characterization, and quantification of peptides and 
proteins. The complexity of the sample treatment was not ideally 
suited to high-throughput analysis; proteomics-based methodolo-
gies are automated and implemented partially described species in 
genomic databases.

6.1  |  Proteomic approaches to study protein–
protein cross-linking in food

Protein–protein cross-linking can be described as covalent bond-
ing between intramolecular protein polypeptides or amino acid 
residue within intramolecular protein polypeptides (Feeney & 
Whitaker,  1987). Generally, cross-linking is divided into three 
categories that may occur in food protein: (1) natural ones that 
are present in raw material before processing; (2) those that are 
intentionally added by cross-linking reagents which could be en-
zymatic or chemical; and (3) those that are created by processing 
or environmental disruptions, such as UV exposure, heat treat-
ment, pH, and drying changes. Cross-linking affects the nutritional 
(Friedman, 1999a, 1999b) and functional (Singh, 1991) properties 
of food. Proteomics involves the characterization and detection of 
proteins arrangement of research areas, along with the study of the 
location and structure of proteins expressed under specific condi-
tions at a given time. Typical applications involve the identifica-
tion of the primary structure of the protein (Ishihama et al., 2005), 
protein and peptide analysis, protein quantitation, and the charac-
terization of modifications in posttranslation. Proteomic methods 

include bottom-up or bottom-down cross-links that cause issues 
in both. It is possible to explain classical bottom-up proteomics 
broadly in four major steps. Firstly, techniques including two-
dimensional polyacrylamide and electrophoresis (2D-PAGE) are 
used to extract and process the protein from biological matter. 
Secondly, proteins usually with trypsin are digested into peptides 
with proteases (Olsen et al., 2004). Thirdly, a combination of liquid 
chromatography (LC) and 2D-PAGE, the complex peptide mixture, 
may be isolated before being analyzed by a mass spectrometer. 
Lastly, the characterization of the proteins and their posttrans-
lational modifications are followed by MS/MS database search 
(Eng et al., 1994; Pappin et al., 1993; Perkins et al., 1999; Wu & 
MacCoss, 2002).

6.2  |  Milk and dairy products

Milk is universally important for humans for a lifetime because 
of the nutrients it provides to the body (Roncada et  al.,  2012). 
Therefore, milk quality is an important factor in the determination 
of milk properties and safety aspects. Milk proteins play a vital 
key role in providing functional and structural properties to milk. 
For example, caseins act as an integral part of milk composition 
contributing to the formation of micelles forming milk fat globule 
membrane (MFGM) (Roncada et  al.,  2012). Therefore, since the 
last two decades, proteomics has become an essential research 
parameter for scientists to categorize biomarkers for milk analy-
sis (Roncada et  al.,  2012). Thus, proteomics is a valuable tool in 
food authentication and traceability as spectroscopic techniques 
like ESI MS and MALDI-TOF have been evident to be efficient 
and time-saving procedures in the identification of milk protein 
markers that are specie specific and also in identifying the protein 
markers that show the application of different processes on milk. 
Sometimes, the adulteration of goat cheese can be done by mix-
ing  cow milk in it  which affects the quality of cheese (Agregán 
et  al.,  2021). The reference assay for identification of the pres-
ence of cow milk in goat cheese or ewe on IEF gel is based on the 
identification of the bands γ2- and γ3-caseins of cow milk (Ortea 
et al., 2016), and the identification of cow caseins has been proved 
by this assay (H.K. Mayer, 2005; J. Špoljarić et al., 2013). But the 
detection of proteins is only possible in samples with at least 5℅ 
cow milk. So, MS-based methods like ESI MS and MALDI-TOF 
MS are applicable for such samples and analysis is done faster 
by these methods. MALDI-TOF MS can be used for detection of 
adulteration of bovine milk to buffalo milk or eve. The detection 
of adulteration up to 0.5% of goat milk with cow or buffalo milk 
is possible with MALDI-TOF MS. MALDI-TOF can be used in the 
identification of adulteration of raw milk with UHT milk as well. 
Abd El-Salam (2014) has reviewed the use of HPLC-coupled MS 
and MALDI-TOF for the detection and quantification of milk con-
taminants and adulterants. Sometimes, skimmed milk powder is 
adulterated with soy and pea proteins. This type of adulteration 
can also be detected by MS/MS technique.
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6.3  |  Meat

Global meat production and consumption have increased and 
coupled with an ever-growing population, there is concern among 
governmental bodies and industries that such a high demand may 
be impossible to meet. Therefore, adulteration of meat with plant-
based protein or less expensive meat of another species is often 
done nowadays. Proteomic techniques are a fast, reliable, and ef-
ficient way of detecting and quantifying such adulterations and find-
ing out the origin of meat. The differences among protein patterns 
of cattle, chicken, duck and goose were investigated by Montowska 
and Pospiech (2012) and Montowska and Pospiech (2013, respec-
tively. Soybean proteins added to the processed meat-based iden-
tification are done by using a 2D LC-MS/MS-based method (Leitner 
et  al.,  2006). The protein glycinin G4 subunit A4 was detected in 
all meat samples adulterated with soybean protein. This protein 
therefore can act as a protein marker of adulteration of meat with 
soybean proteins. Sentandreu et al.  (2010) reported a proteomics-
based technique using LC-MS/MS for identifying chicken in meat 
mixes. The proteome of meat of two different breeds of pigs was 
studied and proteins were identified by mass spectrometry in which 
1125 proteins were identified and the different proteins were 63 
in both breeds. Proteomics has been proved to be a valuable tool 
in identifying species-specific peptides/proteins of meat, thus help-
ing in the traceability of meat and detection of adulteration of meat 
with proteins from other sources and species (Hollung et al., 2009; 
Murgiano et  al.,  2010). Proteomics methods have also been help-
ful for the validation of halal meat from a religious point of view (El 
Sheikha et al., 2017; Hossain et al., 2020) as adulteration is some-
times done by mixing the meat of different species or selling the 
meat or meat products of a haram animal in the name of a halal spe-
cies (Jannat et al., 2018). It can also figure out whether the method 
used for the slaughtering of animals is halal or not. Techniques like 
ELIZA and PCR have been used for the identification of protein and 
DNA molecules that are species specific, respectively. SDS-PAGE, 
IEF, ELIZA, and HPLC have been used for the protein-formed verifi-
cation of halal food (Amid & Samah, 2019).

6.4  |  Safety aspects of genetically 
modified organisms (GMOs)

The spontaneous effects of transgenesis in GMOs have raised food 
safety concerns. Therefore, the knowledge of proteomics has also 
been applied to the authentication of GMOs. Labeling requirements 
for GMOs have been implemented in more than 40 countries for food 
safety concerns and consumer knowledge (Gruère et al., 2007), there-
fore, it is necessary to have the inspection techniques for GM foods 
to provide correct information. “Substantial equivalence” is used in 
the inspection of the safety of GM foods (Pedreschi et  al.,  2010). 
The properties and attributes of GM food and traditional food are 
compared for analysis and assessment (Cellini et  al.,  2004; Kuiper 
et al., 2001). GM food safety assessment is done mainly to prove that 

GM food is safe to consume and will not cause any harm to the con-
sumer (Pedreschi et  al., 2010). Proteomics techniques incorporated 
with LC-MS and 2DE have been utilized to detect whether the food 
is GM or non-GM food. Luo et al.  (2009) used a gel-free proteomic 
approach combined with isobaric tags for relative and absolute quan-
titation (iTRAQ) labeling that showed the difference in expression of 
different proteins between wild-type rice and GM. A label-free LC-MS 
workflow was shown by Mora et al. (2013) for the relative quantifica-
tion of proteins in GM and non-GM tomato varieties. 2-DE and iTRAQ 
were used to quantify the differences in proteomes of GM maize and 
nontransgenic maize in maize seeds (Tan et al., 2017). As a result, of 
148 differentially expressed proteins, 106 were in higher numbers in 
non-GM maize and 42 proteins were higher in GM maize. Moreover, 
Liu et al. (2018) used the iTRAQ approach to analyze proteomic pro-
files in GM-modified and natural genotypic soybeans (non-GM). They 
concluded in their study that the difference in protein expressions in 
non-GM soybean species was higher than and different from those 
caused by GM. Thus, omics- and proteomics-based techniques can 
play a functional role in identifying genetically modified food in a very 
cost-effective manner (Jain et al., 2019).

6.5  |  Seafood

Seafood is traded all over the world and there are bigger chances of 
adulteration and mislabeling of seafood due to the closely related 
species of fish and other kinds of seafood. Therefore, seafood au-
thentication and origin are a huge concern to ensure product trans-
parency. For example, an expensive species may be replaced with a 
cheaper species and sold by the name of the expensive one (Ortea 
et al., 2016). For this reason, international laws and regulations have 
been implemented regarding the labeling of seafood. According 
to the European legislation (European Parliament and European 
Council, Regulation (EU) No 1379/2013), the label of the seafood 
must include the commercialized name of the species, the type of 
methods used to produce it, and the place where the fish or the sea-
food species was caught or farmed (Ortea et  al.,  2016). So, there 
must be reliable methods to analyze the seafood and its products 
and proteomic methods have been applied for the authentication 
of seafood. The protein fingerprint database of 54 commercial fish 
was made by Stahl and Schröder (2017) using MALDI-TOF technique 
and the assay was proved successful as 188 unknown samples were 
identified by it. Species-specific identification of the fish and fish 
products is also possible with this technique. Ortea et al. (2010) used 
native IEF combined with MS or LC-MS methods for the identifica-
tion of species-specific proteins in shrimps and prawns to differenti-
ate between shrimps and prawns. The identification was successful.

Proteomic techniques in the variations in the proteome of 
organisms of the same species have also been studied. López 
et al. (2002) studied the quantitative variations in the proteomes 
of two species of mussels using 2-DE and PMF analysis. But they 
concluded that there can be many reasons for these variations; 
for example, environmental factors or genetic mutations. An 
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assay based on MALDI-TOF was introduced for the identifica-
tion of species-specific protein markers in 25 different species of 
fish which proved successful and also worked for fish products 
(Mazzeo et al., 2008). They also found that parvalbumins were the 
main protein markers and allergens in fish. This proved to be the 
fastest technique for species-specific analysis of protein markers 
in fish. Some proteomic approaches have also been combined with 
other assays for species-specific authentication of fish and fish 
products that are heat processed. Differentiation between spe-
cies of fish including gadoid fish (Piñeiro et al., 1998), hake spe-
cies (Piñeiro et al., 2001), and flatfish (Piņeiro et al., 1999) has also 
been done with the help of qualitative profiling of water-soluble 
proteins using 2-DE. The protein marker found was parvalbumin 
and as parvalbumin is heat resistant, this technique may also be 
applied for heat-processed products.

In a study using label-free and dimethyl labeling quantification, 
LC-MS/MS-based techniques were used to find the variations be-
tween the protein profiles of wild and farmed gilthead sea bream. 
As a result of farmed fish, the variations were found in the qual-
ity of sarcoplasmic proteins, and parvalbumin was more expressed 
(Piovesana et al., 2016). Mazzeo and Siciliano (2016), for the authen-
tication of fish species in their study on proteomics, reported several 
methods which can be used for the fishery products identification 
using proteomics. In their study, they concluded that MALDI-TOF 
molecular profiling strategies can lead to fish species identification 
within minutes, whereas MS proteomics techniques can not only 
help to identify fish species but also in the identification of major 
fish allergen (β-PRVBs). Hence, concluding that MS-based methods 
hold the potential to get authentic results in a short time.

6.6  |  Proteomics in food quality

Identification and authentication of food products from farm to 
fork is getting huge attention from industrialists and consumers. 
Knowing food composition can not only help to provide clear infor-
mation to consumers but also help to improve food quality. Proteins, 
therefore, act as markers of food composition, origin, and processes 
done on food (Ortea et al., 2016). Thus, the knowledge of proteom-
ics can help in enhancing the quality of food by optimizing the food 
production process, studying the effect of different processes on 
proteins in food, and identifying such proteins modified by process-
ing conditions (Pedreschi et al., 2010; Renzone et al., 2021).

6.7  |  Proteomics in process 
optimization and validation

The different processes in food production affect the quality of food 
and thus bring changes to the proteins. These changes help food 
processors to improve the production process by studying the ef-
fects of changes brought by a particular process on proteins. Each 
process during food production brings specific changes to particular 

marker proteins which act as an indicator whether the process is 
done properly or not. For example, product quality can be affected 
negatively by improper heat processing. Protein denaturation and 
Millard reactions are the major changes caused by heat processing. 
Allergies against milk products can be induced by carbonylation of 
b-lactoglobulin and other milk proteins during industrial processing 
(Gašo-Sokač et al., 2010). Therefore, MALDI-TOF MS is used to de-
tect these carbonylated proteins. Proteins also determine the phys-
icochemical properties and nutritional quality of food; hence, some 
proteins are involved in color, odor, and tenderness of meat. Some 
proteins (enzymes) involved in oxidative metabolism are involved in 
color development of meat. Some proteins like myosin, actin, tubu-
lin, and desmin are involved in beef tenderness (Zapata et al., 2009). 
These proteins can be detected in meat to ensure the quality of meat 
in terms of tenderness. Meat quality depends on many different fac-
tors including the post mortem factors or modifications in meat pro-
teins. One of the chemical degradations of proteins is dimidiation in 
which glutamic acid or aspartic acid are produced by hydrolysis of 
glutamine or asparagine, respectively; the mass spectrometric meth-
ods can be applied in the detection of such sort of protein degrada-
tion (Ortea et al., 2016; Schmid et al., 2001). Therefore, the outcome 
of different processing methods on food proteins can be found by the 
proteomic analysis of food, thus helping in modifying the production 
process accordingly and showing the validity of a particular process.

6.8  |  Proteomics in postharvest technology

Proteomics approaches can help to improve the postharvest tech-
niques as well. The postharvest losses of vegetables and fruits in 
developed countries are 10%–30% and are above about 30%–50% 
in developing countries per year (Legard et  al.,  2000; Mathabe 
et  al.,  2020). The identification of protein indicators of harvest 
maturity was reported by Abdi et  al.  (2002) and also the identifi-
cation of protein indicators of horticultural quality was done (Lee 
et  al., 2006). After harvesting, the harvest is exposed to different 
stressful conditions that involve cold storage and modified atmos-
phere storage which leads to different physiological disorders and 
changes in it (Chrysargyris et al., 2018). These stressful conditions 
also cause changes to the proteins in fruits and vegetables which 
act as indicators to detect the particular processes that cause such 
changes. Thus, they help in improving the postharvest technology. 
The changes in proteins of citrus fruits upon postharvest storage 
were reported by Lliso et al. (2007). Low-temperature storage leads 
to the formation of induced proteins that are antifreeze. Currently, 
studies have been done on the expression of genes and accumu-
lation of proteins in noninjured tissues of fruit during postharvest 
storage (Feng et al., 2016; Marondedze, 2017). Chilling injury in to-
matoes revealed the presence of two thioredoxin peroxidase, cold 
stress proteins, and an RNA-binding protein in the noninjured part 
of the tomatoes (Vega-García et al., 2010). Therefore, if such pro-
teins are manipulated, then these technologies and knowledge can 
benefit the frozen fruit and vegetable industry (Galindo et al., 2007).
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6.9  |  Role in cereals and cereal-based products

Proteomics has proved to be quite useful to improve the quality of 
cereals and cereal products (Alves et al., 2019). Proteins that are in-
volved in rice quality and flavor can be identified by studying the 
proteomes of low- and high-quality rice cultivars (Kim et al., 2009); 
Bahrman et al.  (2004) and Grove et al.  (2009) have studied the ef-
fects of several levels of sulfur and nitrogen on gluten proteins by 
using proteomic approaches. Several cold-responsive proteins were 
identified by Yan et al. (2006) by the proteomic identification of rice 
leaves that were given a chilling treatment. The concentration and 
composition of proteins determine the quality of durum wheat pasta 
(De Angelis et al., 2008). In addition to this, stress conditions and 
temperature also affect the protein content and composition in ce-
reals (Juhász et al., 2020). The high temperature tends to alter the 
composition of protein during grain filling, therefore the flour and the 
products resulting from such grains will have changes in their prop-
erties. Proteins that change by heat stress (Majoul et al., 2003, 2004) 
have been identified using proteomic methods. Yahata et al. (2005) 
identified heart-specific proteins that were used as markers to find 
cultivars that were best in the making of flour (Yahata et al., 2005). 
Protein composition helps to determine flour quality (Dupont & 
Altenbach,  2003; Skylas et  al.,  2000). Therefore, heat stress dur-
ing the grain filling can affect the composition of gluten proteins 
(Hurkman et al., 2013) which increases the size of gluten polymer. 
Different proteomics techniques used in sea foods, postharvest, and 
cereal are discussed in Table 2.

6.10  |  Proteomics in food safety

The knowledge of proteomics has also been applied to food safety. 
By using proteomic techniques, food spoilage microorganisms 
(Gallardo et  al.,  2013) and different foodborne pathogens can be 
identified based on changes in their proteome (Carrera et al., 2020; 
Pavlovic et al., 2013). Food allergens have also been studied to be 

identified by proteomic techniques. MALDI-TOF MS, MALDI-TOF, 
and HPLC ESI MS/MS are some efficient proteomic-based tech-
niques that have been used in several studies for detection, quan-
tification, and identification of different microbes, their toxins, and 
different allergens in food.

6.11  |  Identification of foodborne 
pathogens and toxins

Proteomic techniques can be used for the quantification, identifica-
tion, and detection of foodborne pathogens. More than 250 rec-
ognized pathogens are known to cause foodborne illnesses, mainly 
microbes and their toxins. Although morphological, biochemical, and 
DNA methods are used to identify and classify microorganisms, prot-
eomic methodologies are being applied to help identify the food spoil-
ing foodborne pathogens and microorganisms. For this purpose, new 
technologies to detect and classify microorganisms accurately and rap-
idly, such as the new MS-based proteomics tools, complement classical 
and genetic-based identification techniques. Proteomics technologies, 
primarily in clinical microbiology, biodefense, and environmental sci-
ence, have been used in regular bacterial identification. In the field of 
microbial food MS, however, little work has been carried out to classify 
foodborne microorganisms and pathogens responsible for food spoil-
age. For the detection of 24 different food spoilage bacteria and food-
borne pathogens, including genera such as Staphylococcus, Yersinia, 
Proteus, Escherichia, Lactococcus, Listeria, Pseudomonas, Morganella, 
and  Salmonella, MALDI-TOF MS of intact bacterial cells was used 
(Mazzeo et al., 2006). In several studies, matrix-assisted laser desorp-
tion ionization–time of flight (MALDI-TOF MS) has been used for the 
identification of foodborne pathogens especially bacteria. Different 
foodborne pathogens like listeria and Escherichia coli monocytogens 
(Jadhav et al., 2014) can be detected and identified by this time-saving 
and cost-effective technique (Singhal et al., 2015). Based on the pro-
filing of the whole bacterial proteome, MALDI-TOF MS is providing 
a fingerprint specific to the analyzed microorganisms in that specific 

TA B L E  2  Different techniques used in proteomics and their achieved targets

Food groups
Techniques used in 
proteomics Objectives of main analysis Main target of techniques

Shellfish Native IEF
2-DE
2-DE and PMF

Differentiation of shrimp species
Discrimination of two scallop populations
Differentiation of shrimp species

Sarcoplasmic calcium-binding protein
Mantle proteins
Arginine kinase

Gelatin MS/MS DDA +PFF Species used Collagen

Fish 2-DE
2-DE, PMF, and MS/MS

Differentiation of tuna species
Discrimination of two river fish species

Muscular proteins
Triose phosphate isomerase

GMOs 2-DE
2-DE DIGE

Comparison of GM and non-GM maize
Comparison of GM and non-GM soybean
Comparison of GM and non-GM common bean

Kernel proteome
Leaf proteome
Grain proteome
Leaf proteome
Seed proteome
Grain proteome

Source: Špoljarić et al. (2013).
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time and physiological condition (Pavlovic et al., 2013). The fingerprint 
obtained through this method has many applications such as the char-
acterization of subspecies, strains, and serovar and is specific to the 
analyzed microorganisms (Piras et  al.,  2016). Shiga toxin-producing 
Escherichia coli (STEC) is linked increasingly to major outbreaks of food-
borne illness, identified by Fagerquist et  al.  (2014) by using tandem 
mass spectrometry and MALDI-TOF. Up to one colony-forming unit 
(CFU) of L. monocytogens per ml can be identified by MALDI-TOF MS 
within 30  hr. Staphylococcus aureus causes illness in almost 185,000 
people in the USA annually. A mass spectrometry-based assay was 
used by Callahan et al. (2006) to characterize one of its toxins (staphy-
lococcal enterotoxin B). Toxins cannot be destroyed by common food 
processing techniques. Proteomic techniques like LS-MS/MS have also 
been used in the detection of toxins like mycotoxins and aflatoxins in 
food. Martinović et al. (2016) reviewed the use of proteomics for iden-
tification of toxins.

6.12  |  Allergens detection

Allergens are  the agents which elucidate the body responses. 
Allergen increases the histamines, immunoglobulin-IgE, cytokines, 
and other body responses that cause allergy (Jagadeesh et al., 2017). 
Food allergens are also a big problem in food safety as there is no 
cure for allergy and the only way to prevent it is to avoid those foods 
one is allergic to. Allergens in food can be detected by proteomics-
based techniques. Carrera and colleagues (Carrera et al., 2012) used 
MS/MS (LIT) mass spectrometer to identify parvalbumin fish aller-
gen in less than 2 h. The identification of allergens is also possible 
with mass spectrometric methods either gel-based or nongel-based 
HPLC combined with tandem mass spectrometry. There are six main 
food allergens. Ninety percent of the food hypersensitivity is due 
to three plant-based food allergens found in peanut, soy, and wheat 
(Natarajan et al., 2006; Šotkovský et al., 2008). In allergenomics, im-
munoblotting of IgE-reactive proteins is done using a serum of allergic 

patients using 2-DE (Akagawa et al., 2007). Proteolytic processing of 
peanut allergens (Ara H 3 and its isoallergens) has been studied using 
proteomics-based techniques (Piersma et al., 2005). Allergens from 
processed peanuts have been identified using a proteomic-based 
assay (Chassaigne et al., 2007). The postharvest technique known 
as controlled atmosphere storage has been shown to change the 
quantities of allergenic proteins in fruits causing birch pollen allergy 
(Pedreschi et al., 2007; Sancho et al., 2006). The amounts of 10 dif-
ferent allergens in soybean were found by Houston and colleagues 
using a label-free proteomic method. Proteomic approaches to as-
sess authenticity of different food products are presented in Table 3.

As the proteomic methods applied for the identification of aller-
gens can be gel-based methods or gel-free methods that are usually 
combined with mass spectrometric techniques like HPLC-MS/MS 
(in case of gel-free techniques) or 2D immunoblotting and MS (in 
cases of gel-based methods). Several gel-based proteomics studies 
have been done for the allergen's identification in different foods. 
These studies used 2-DE for detecting and identifying allergens in 
different foods. Picariello et al.  (2015) studied wheat beer for the 
detection of allergens in it. Apostolovic et al. (2014) studied the im-
munoproteomics of processed beef to find allergens in it. In 2015, 
Odedra et al. studied the allergy through milk in adults and children. 
Moreover, Hettinga et al. (2015) studied the proteomes of allergic 
and nonallergic mothers’ breast milk. Goliáš et  al.  (2013) studied 
the detection of allergens in rice and Tomm et al. (2013) studied the 
allergens in fish.

7  |  CONCLUSION

Proteomics is the potential  analytical approaches to classify the 
safety and quality changes during the storage of food commodities. 
Proteomics has various applications in determining the authentic-
ity, adulterants, and toxicity in food products. Various challenges 
exist in predicting the safety and quality of the products in terms of 

TA B L E  3  Proteomic approaches to assess authenticity of different food products

Food Technique Purpose of analysis Target References

Milk and milk 
products

IEF
MALDI-TOF MS 

protein/peptide

Milk adulteration
Milk adulteration
Adulteration of milk powder with pea and 

soy proteins
Cheese adulteration

Caseins
Low Mr proteins (<25KDA)

Di Girolamo et al. (2014); 
Sassi et al. (2015)

Meat 2-DE
2-DE DIGE
MALDI-TOF MS 

Peptide profiling
MS/MS DDA

Differentiation of meat species (cattle, 
pork, chicken, turkey, duck, and goose)

Differentiation of two Norwegian breeds
Species identification (32 mammal 

species)
Detection of chicken meat in meat mixes

Myosin light chains
Muscle water-soluble 

proteins Collagen
Myosin light-chain 3

Montowska and Pospiech 
(2012), Montowska 
and Pospiech (2013).

Wine MALDI-TOF MS 
fingerprinting

Discrimination of white wine varieties
Classification of Croatian white wines

Wine protein and peptides
Caseins

Rešetar et al. (2016), 
Cereda et al. (2010)

Honey MALDI-TOF MS 
protein profiling

2-DE

Geographical origin
Floral origin

Water-soluble honey proteins Wang et al. (2009), Di 
Girolamo et al. (2012)
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accuracy. Conclusively, the application of proteomics is an emerging 
technology that can be helpful to ensure high-quality safe foodstuff.
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