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In decisionmaking under risk (DMR) participants’ choices are based on
probability values systematically different from those that are objec-
tively correct. Similar systematic distortions are found in tasks involv-
ing relative frequency judgments (JRF). These distortions limit performance
in a wide variety of tasks and an evident question is, Why do we system-
atically fail in our use of probability and relative frequency information?
We propose a bounded log-odds model (BLO) of probability and relative
frequency distortion based on three assumptions: 1) log-odds: probability
and relative frequency aremapped to an internal log-odds scale, 2) bound-
edness: the range of representations of probability and relative frequency
are bounded and the bounds change dynamically with task, and 3) vari-
ance compensation: the mapping compensates in part for uncertainty in
probability and relative frequency values. We compared human perfor-
mance in both DMR and JRF tasks to the predictions of the BLO model
as well as 11 alternative models, each missing one or more of the under-
lyingBLOassumptions (factorialmodel comparison). TheBLOmodel and its
assumptions proved to be superior to any of the alternatives. In a separate
analysis, we found that BLO accounts for individual participants’ data bet-
ter than any previous model in the DMR literature. We also found that,
subject to the boundedness limitation, participants’ choice of distortion
approximately maximized the mutual information between objective
task-relevant values and internal values, a form of bounded rationality.

frequency judgment | decision under risk | efficient coding | mutual
information | Bayesian inference

In making decisions, we choose among actions whose outcomes
are typically uncertain; we can model such choices as choices

among lotteries. To specify a lottery L we list all of its possible
outcomes O1, ...,On and the corresponding probabilities of oc-
currence p1, ..., pn that a specific lottery assigns to each outcome.
If we knew all of the relevant probabilities, we would be engaged
in decision under risk (1). If we can also assign a numerical
measure of utility U(Oi) to each outcome Oi, we could assign an
expected utility to each lottery,

EU(L) = ∑n
i=1

piU(Oi), [1]

and a decision maker maximizing expected utility (2, 3) would
select the lottery with the highest expected utility among those of-
fered. The probabilities serve to weight the contribution of the utility
of each outcome. The expected utility theory (EUT) model is simple
but has a wide range of applications, not just in economic decisions
but also in perception (4, 5) and planning of movement (6–10).
For more than two centuries EUT was treated as an adequate

description of human choice behavior in decision under risk until
it was challenged by Allais (11). In an elegant series of experi-
ments, he showed that human decision makers did not weight
utilities by the corresponding probabilities of occurrence in
choosing among lotteries. In prospect theory, Kahneman and
Tversky (12) resolved the Allais paradoxes and other short-
comings of EUT by assuming that decision makers use a trans-
formation of probability π(p)—a probability weight or decision
weight—in place of probability p in the computation of expected
utility. The distortion function in decision under risk π(p) was

originally inferred from human choices in experiments and it is
often—but not always—an inverted-S-shaped function of p (13–15).
Wu et al. (16) compared performance in a “classical” decision-

under-risk task with performance in a mathematically equivalent
motor decision task. Each participant completed both tasks and
while the fitted probability distortion functions for the classical
task were—as expected—inverted-S-shaped, those based on
the motor task tended to be better fit by S-shaped functions.
The same participant could have both the inverted-S-shaped
and S-shaped forms of the distortion function π(p) in different
decision tasks.
Ungemach et al. (17) found a similar tendency to underweight

small probabilities in decisions and overweight large ones (see also
refs. 18–20). Probability distortion in the form of inverted-S-shaped
and S-shaped weighting functions is also found in monkeys’ choice
behavior (21) and is supported by human neuroimaging evidence
(22, 23).
Zhang and Maloney (24) reported that both the inverted-S-shaped

and S-shaped distortion functions are found in relative frequency and
confidence tasks other than decision making under risk. For conve-
nience, we will use the term “probability” to include relative frequency
and confidence. The same participants had different inverted-S-shaped
or S-shaped probability distortion functions in different experimental
conditions even though the trials for the different conditions
were randomly interleaved. They concluded that the probability
distortion function is not fixed for a participant but dynamic,
changing systematically with task. There is increasing evidence
that dynamic remapping of representational range occurs along
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People distort probability in decision under risk and many
other tasks. These distortions can be large, leading us to make
markedly suboptimal decisions. There is no agreement on why
we distort probability. Distortion changes systematically with
task, hinting that distortions are dynamic compensations for
some intrinsic “bound” on working memory. We first develop a
model of the bound and compensation process and then report
an experiment showing that the model accounts for individual
human performance in decision under risk and relative fre-
quency judgments. Last, we show that the particular compen-
sation in each experimental condition serves to maximize the
mutual information between objective decision variables and
their internal representations. We distort probability to com-
pensate for our own perceptual and cognitive limitations.
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more abstract dimensions, such as value (25–29), numerosity (30,
31), relative frequency (32), and variance (33).
Zhang and Maloney (24) found that probability distortions

could be well fit by the linear transformation

λ[π(p)] = γλ(p) + (1 − γ)λ(p0), [2]

where λ(p) = log p
1−p is the log-odds (34) or logit function (35)

and γ > 0 and 0< p0 < 1 are free parameters. See Fig. 1A for
examples and Zhang and Maloney (24) for further examples,
which include 20 datasets taken from 12 studies involving prob-
ability, relative frequency, and confidence, all of the studies for
which we could recover and analyze data. We caution that these
linear in log-odds (LLO) fits to data represent empirical regu-
larities unmotivated by any theory.

Over the course of this article we will replace Eq. 2 by a new
model, bounded log-odds (BLO) based on theoretical consid-
erations. We propose that probability distortion in both decision
under risk and in judgment of relative frequency is fundamen-
tally a consequence of a specific limitation on the dynamic range
of the neural representation of probability which we identify. As
a consequence of this limitation, human performance in a wide
variety of tasks [e.g., the Allais paradoxes (11)] is necessarily
suboptimal by whatever measure is appropriate to each task.
BLO is based on three assumptions: 1) log-odds representa-

tion, 2) dynamic encoding on a bounded Thurstone scale, and 3)
variance compensation. We describe these assumptions and
possible alternatives in detail below.
We will use factorial model comparison (36) to separately test

each of the three assumptions against plausible alternatives. In
addition to BLO, we consider 11 variant models each with one or
more of the assumptions altered. Half the variant models will
have bounded Thurstonian scales, half will not; half will have
variance compensation, half will not. We consider two alterna-
tives to the assumption of log-odds representation, giving a total
of 2 × 2 × 3 = 12 models, one of which is BLO and one of which
is LLO (Eq. 2). We compare human performance to the pre-
dictions of each variant model in both a decision making under
risk (DMR) task and also a judgment of relative frequency (JRF)
task. Each subject completed both tasks, allowing us to compare
performance within task.
We will separately compare the performance of BLO to all

previous models of decision under risk currently in the literature.
The data used in all model comparisons are taken from the new
DMR and JRF experiment with 75 participants that we report
here and data from a previous article by Gonzalez and Wu (14).
We will identify the cognitive constraints in individuals’ repre-
sentation of probability as well as the optimality under these
constraints.

Maximizing Mutual Information. The results of our experiments
and analyses will indicate that BLO is an accurate descriptive
model of what participants do in two very different kinds of
experiments, DMR and JRF. However, nothing in these analyses
serves to demonstrate that BLO is in any sense a normative
model or that human performance is normative. In the second
part of the article we consider the possibility that the BLO
mapping and human performance serve to maximize the mutual
information between external decision variables and their in-
ternal representation, a form of bounded rationality in Herbert
Simon’s sense (37). In the last part of the article we show that
BLO accounts for a variety of phenomena in DMR.

Results
Assumptions of BLO.
Assumption 1: Log-odds representation. In the BLO model proba-
bility, p, is internally represented as a linear transformation of
log-odds,

λ(p) = log
p

1 − p
, [3]

a one-to-one, increasing transformation of probability. A similar
log-odds scale has been introduced by Erev and coworkers (38,
39) to explain probability distortion in confidence ratings.
Assumption 2: Dynamic encoding on a bounded Thurstone scale. Thur-
stone (40) proposed several alternative models for representing
subjective scales and methods for fitting a wide variety of data to
such models. We are not concerned with methods for fitting data
to Thurstone scales or their use in constructing attitude scales;
we are only interested in Thurstone scales as convenient math-
ematical structures. We can think of the bounded Thurstone
scale (40) as an imperfect neural device capable of storing
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Fig. 1. Motivations and intuitions for the BLO model. (A) Observed prob-
ability distortions (Top) can be well captured by a linear fit on the log-odds
scale (Bottom). The λ[p] and λ[π̂], respectively, denote the log-odds of the
objective and subjective probabilities, p and π̂. Circles denote data. Thick
curves or lines denote the LLO fits. Tversky and Kahneman (13): Subjective
probability (decision weight) versus objective probability in decision under
risk. Attneave (41): Estimated relative frequency of letters in written English
versus actual relative frequency. Tanner, Swets, and Green (1956), c.f. (5):
Estimated probability of signal present versus objective probability in a
signal detection task. Adapted from ref. 24. (B) Encoding on the Thurstone
scale. A selected range of [Δ−,Δ+] is encoded on the Thurstone scale [−Ψ,Ψ]
with limited resolution. The smaller the encoded range, the smaller the
encoding variance.
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magnitudes within a fixed range. We can encode a magnitude
signal s anywhere in this range and later retrieve it. The retrieved
value s, however, is perturbed by Gaussian noise with mean 0 and
variance σ2: we might store 0.5 and retrieve 0.63 or 0.48. The
schematic Gaussian distributions in Fig. 1B capture this repre-
sentational uncertainty. For simplicity we assume that Gaussian
error is independent, identically distributed across the scale
(Thurstone’s Case V).
We could use the entire Thurstonian scale range to represent

probabilities from 0 to 1 but—at least in some tasks—only a
limited range is needed. For example, in the letter-frequency
task of Attneave (41) the probabilities range from about 0.13
(e) to 0.0013 (z) and only a fraction of the full probability scale is
needed to carry out the task.

We can pick any interval on the log-odds scale and map it
linearly to the Thurstone device. In Fig. 1B we illustrate two
choices. One represents a small range of the log-odds scale using
the full range of the Thurstone device, and the other represents a
larger range also mapped to the full range of the Thurstone
device. The row of Gaussians on the two intervals of the log-odds
scale symbolize the encoding uncertainty induced by the Thurstone
scale.
The greater the log-odds range that needs to be encoded, the

greater the density of the magnitudes along the Thurstone scale,
and the greater the chances of confusion of nearby codes, and
vice versa. The challenge is to choose a transformation that
maximizes the information encoded by the scale, which is a
problem of efficient encoding. There is experimental evidence
for efficient coding in perception (42–45) and recently in perceiving
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Fig. 2. Comparison of model fits to nonparametric estimates of probability distortions. (A) Reanalysis of DMR data from Gonzalez and Wu (14). In the first 10
panels the nonparametric (NP) estimates π̂(p) for each participant is plotted versus p as black circles. The LLO fit to the participant’s data is drawn as a blue
contour and the BLO fit as a red contour. The last panel is the mean across participants. (B) DMR data from our experiment. The format is identical, with
nonparametric estimates and model fits for 75 participants. The last panel is the mean across participants. To make the parametric and nonparametric es-
timates of probability distortion function comparable, the BLO and LLO fits presented here used the same utility function estimated from the nonparametric
estimates of probability distortion. (C) JRF data from our experiment. For each of the 75 participants we plot the residuals π̂(p) − p versus p to illustrate the
small but patterned probability distortions found. We also plot the fits of LLO (blue) and BLO (red) to the residuals. Corresponding panels in B and C are for
the same participant. Compared to the LLO fits (blue curves), the BLO fits (red curves) were overall in better agreement with the nonparametric estimates of
probability distortions. (D and E) Mean absolute deviations of the model fits from the nonparametric estimates are plotted against p, separately for DMR (D)
and JRF (E). Shadings denote SE.
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value and probability (27, 29, 46). See especially the review by
Simoncelli and Olshausen (44).
Our concern is with the representation of probability, specif-

ically in the form of log-odds. In mathematical notation we select
an interval [Δ−,Δ+] on the log-odds scale to be mapped to the
full range of the Thurstone scale [−Ψ,Ψ] and in effect we confine
the representation of log-odds λ to this interval:

Γ[λ] =
⎧⎨
⎩
Δ−, λ<Δ−

λ, Δ− ≤ λ ≤ Δ+

Δ+, λ>Δ+
. [4]

Following the linear mapping from [Δ−,Δ+] to [−Ψ,Ψ], we have
Γ(λ[p]) mapped to

Λ(p) = Ψ
(Δ+ − Δ−)=2 [Γ(λ[p]) − (Δ− + Δ+)=2] [5]

on the Thurstone scale. The neural encoding of p can thus be
modeled as a Gaussian random variable centered at Λ(p),
denoted Λ̂(p). We refer to Λ̂(p) as “truncated log-odds.”
Assumption 3: Variance compensation. The subjective estimate of
probability needed by explicit report or internal use will be
decoded from the truncated log-odds encoded on the Thurstone
scale. We introduce the transformation

Λ̂ω(p) = ωpΛ̂(p) + (1 − ωp)Λ0 [6]

to compensate for encoding uncertainty (SI Appendix, Supple-
ments S1 and S2), where Λ̂(p) is, as before, the truncated log-
odds, Λ0 is an anchor point, and 0<ωp ≤ 1 is a reliability measure
of encoding (i.e., inversely related to the variance of encoding)
that may vary with p (Methods). The final estimate of probability is
λ−1(Λ̂ω[p]), where λ−1( · ) denotes the inverse of the logit function.
Similar variance compensation has been widely used to model

systematic biases in perception and memory (45, 47). Even
probability distortion in the form of LLO is considered by some
previous theories as the consequence of variance compensation
(48, 49). We demonstrate that the particular form of variance
compensation assumed in BLO, when applied to the truncated log-
odds, can come close to minimizing the deviation between objective
and subjective probabilities (SI Appendix, Supplement S12).
In the analyses below we will test whether any or all of these

three assumptions of BLO are needed to describe the probability
distortion in human behavior. It is easy, for example, to imagine
a variant of BLO without variance compensation. However,
human performance indicates that something like variance
compensation is needed to account for data.

Overview of the Experimental Tests of BLO. To test BLO, we first
performed a new experiment where each participant completed
both a DMR task and a JRF task. We also reanalyzed the data of
Gonzalez and Wu’s (14) DMR experiment. Objective probabil-
ities in these two representative tasks can be readily manipulated
and subjective probabilities precisely estimated.
In Gonzalez and Wu (14), 10 participants were tested on

165 two-outcome lotteries, a factorial combination of 15 value
sets by 11 probabilities (Methods). Participants chose between
lotteries and sure rewards so that their certainty equivalent
(CE)—the value of sure reward that is equally preferred—to
each lottery was measured. We refer to Gonzalez and Wu’s (14)
dataset as GW99, the set of lotteries included in which is large
and rich enough to allow for reliable modeling on the individual
level—as demonstrated in Gonzalez and Wu (14).
We refer to our new experiment as Experiment JD (Methods).

In the experiment, each of 75 participants completed a DMR
task whose procedure and design (SI Appendix, Fig. S1A) followed

that of Gonzalez and Wu (14) as well as a JRF task (SI Appendix,
Fig. S1B) where participants reported the relative frequency of
black or white dots among an array of black and white dots. The
same 11 probabilities were used in the two tasks. By comparing the
performance of individuals in two different tasks that involved the
same set of probabilities, we hoped to identify the possible com-
mon representation of probability and how it may vary with task.
Based on the measured CEs (for DMR) or estimated relative

frequencies (for JRF), we performed a nonparametric estimate
and model fits for the probability distortion of each participant
and each task (Methods and SI Appendix, Supplements S4 and
S5). Similar to previous studies of DMR (14) and JRF (24, 50),
we found inverted-S-shaped probability distortions for most
participants but also marked individual differences in both tasks
(Fig. 2 A–C). About 10% of participants had S-shaped (not
inverted S-shaped) probability distortions. The DMR results of
GW99 (Fig. 2A) and Experiment JD (Fig. 2B) were similar and
were collapsed in further analysis whenever possible.
We used the nonparametric estimates to assess participants’

probability distortion function and compared model fits with the
nonparametric estimates. For an average participant (the last panels
in Fig. 2 A–C), the LLO and BLO models provided almost equally
good fits. However, an examination of individual participants’
probability distortion revealed that, compared to the LLO fit, the
BLO fit captured observed individual differences considerably
better. This observation can be quantified using the mean absolute
deviations of the model fits from the nonparametric estimates
(Fig. 2 D and E), which was significantly smaller in BLO than in
LLO for 8 out of 11 Ps of DMR (paired t tests, P < 0.044) and for
10 out of 11 Ps of JRF (paired t tests, P < 0.005).

Factorial Model Comparison. BLO is built on three assumptions:
log-odds representation, boundedness, and variance compensation.
To test these assumptions, we used factorial model comparison (36)
and constructed 12 models whose assumptions differ in the following
three “dimensions” (see SI Appendix, Supplement S6 for details):

D1: scale of transformation. The scale of transformation can
be the log-odds scale, the Prelec scale (51), or the linear scale
based on the neo-additive family (refs. 52–54; see ref. 55 for
a review).

D2: bounded versus bounds-free

D3: variance compensation. The variance to be compensated
can be the encoding variance that varies with p
(denoted V ðpÞ) or constant (denoted V ¼ const).

The models we considered are not all nested nor does factorial
model comparison (36) require nested models. Both BLO and
LLO are special cases of the 12 models, respectively corre-
sponding to [log-odds, bounded, V (p)] and [log-odds, bounds-
free, V = const].
For each participant, we fit each of the 12 models to the

participant’s CEs (for DMR) or estimated relative frequencies
(for JRF) using maximum likelihood estimation (see SI Appen-
dix, Supplement S4 for details). The Akaike information criterion
with a correction for sample sizes, AICc (56, 57), was used for
model selection. For a specific model, the ΔAICc was computed
for each participant and each task as the difference of AICc
between the model and the minimum AICc among the 12
models. Lower ΔAICc indicates better fit.
For both DMR and JRF, BLO was the model of the lowest

summed ΔAICc across participants (Fig. 3 A and B). The results
were similar for participants in different experiments (SI Appendix,
Fig. S3). To see how well each of BLO’s assumptions behaves
compared to its alternatives, we divided the 12 models into model
families by their assumptions on D1, D2, or D3 (e.g., the bounded
family and the bounds-free family). We first calculated for each

Zhang et al. PNAS | September 8, 2020 | vol. 117 | no. 36 | 22027

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922401117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922401117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922401117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922401117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922401117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922401117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922401117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922401117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922401117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922401117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922401117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922401117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922401117/-/DCSupplemental


model the number of participants best fit by the model (lowest
ΔAICc) and the exceedance probability from the group-level
Bayesian model selection (58), which is an omnibus measure of
the probability that the model is the best model among the 12
models. The summed number of best-fit participants is then plotted
for each model family in Fig. 3 C and D. For both DMR and JRF,
the assumptions of BLO outperformed the alternative assumptions
on each of the three dimensions, with the summed exceedance
probability approaching 1.
We also performed model comparisons separately for partic-

ipants with inverted S-shaped and participants with S-shaped
distortions (SI Appendix, Fig. S4), tested a range of additional
models of decision under risk outside the framework we cur-
rently used (SI Appendix, Fig. S5), and tested additional models
and an additional dataset (experiment 1 of ref. 24) for JRF (SI
Appendix, Figs. S9 and S10). Again, the BLO model outperformed
all alternative models (SI Appendix, Supplements S7 and S8).

Thurstone Capacity as a Personal Signature. According to BLO, the
amount of information that the bounded Thurstone scale can
encode at a time is limited by 2Ψ=σΨ, where Ψ, as before, is the
half-range of the Thurstone scale, and σΨ denotes the SD of the
Gaussian noise on the Thurstone scale. We call Ψ=σΨ the

Thurstone capacity. Is the same individual’s Thurstone capacity
invariant across tasks?
The Ψ of a specific participant was estimated as a free pa-

rameter of BLO from the participant’s reported relative fre-
quency (JRF) or CE (DMR). The value of σΨ was not fully
accessible (SI Appendix, Supplement S11) and we used the esti-
mated BLO parameters, σλ (JRF) and σCE (DMR), as its sur-
rogates, which respectively characterize the noise variability in
the subjective log-odds of JRF and in the CE of DMR. Invari-
ance of Ψ=σΨ should imply a positive correlation between a
participant’s Ψ=σλ in JRF and the participant’s Ψ=σCE in DMR.
In Experiment JD where 75 participants were tested on both
tasks, such positive correlation was indeed found (Fig. 4)
(Spearman’s rs = 0.40, right-tailed P < 0.001).
Given that the two tasks involve entirely different responses

and processing of probability information, the across-task cor-
relation between Ψ=σλ and Ψ=σCE is surprising. In fact, except for
modest correlations for Ψ (rs = 0.23, right-tailed P = 0.026) and
for the crossover point p0 in LLO (rs = 0.23, right-tailed P =
0.025), no positive correlations were found between the two tasks
for any other parameters of probability distortion derived from
BLO or LLO (SI Appendix, Table S3).
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Fig. 3. Results of factorial model comparison. We compared 12 models that differ on three dimensions (“factors”) of assumptions: scale of transformation
(log-odds, Prelec, or linear), boundedness (bounded or bounds-free), and variance compensation (V(p) or V = const). BLO corresponds to [log-odds, bounded,
V(p)]. LLO corresponds to [log-odds, bounds-free, V = const]. The summed ΔAICc across participants is plotted for each model, separately for DMR (A) 85
participants) and JRF (B) 75 participants). Lower values of ΔAICc are better. BLO outperformed the alternative models in both tasks. (C and D) Each assumption
of BLO [log-odds, bounded, and V(p)] also outperformed the alternative assumptions on its dimension. Each panel is for comparisons across one dimension,
separately for DMR (C) and JRF (D). For a family of models with a specific assumption, shaded bars denote the number of participants best accounted by the
model family. The Pexc above the highest bar denotes the summed exceedance probability of the corresponding model family.
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In Experiment JD, 51 participants completed two sessions on
two different days, for whom we could also evaluate the corre-
lations of probability distortion parameters across time. Positive
correlations were found between session 1’s and session 2’s
Ψ=σλ=CE (SI Appendix, Fig. S6) in both the DMR (rs = 0.60, right-
tailed P < 0.001) and JRF (rs = 0.56, right-tailed P < 0.001) tasks.
Positive across-session correlations for Ψ were also found in both
tasks (SI Appendix, Fig. S6, DMR: rs = 0.57, right-tailed P <
0.001; JRF: rs = 0.83, right-tailed P < 0.001). The Ψ=σλ=CE and Ψ
were the only two measures whose across-task and across-session
correlations were all significantly positive, among a total of 12
measures derived from BLO or LLO (SI Appendix, Table S3).
These correlations suggest that the Thurstone capacity defined

in BLO can be a personal signature that constrains the individ-
ual’s probability distortion functions across time and tasks.
Meanwhile, the lack of direct access to σΨ did not allow us to
conclude whether Ψ=σΨ is invariant or only correlated across
tasks, which still awaits future empirical tests.

Maximizing Mutual Information. The limited Thurstone capacity
imposes a trade-off: The wider the interval [Δ−,Δ+] to encode,
the larger the random noise on the encoded values (Fig. 1B). In
all of the datasets we tested, the [Δ−,Δ+] estimated from par-
ticipants’ behavior corresponds to a probability range far nar-
rower than the range of objective probabilities ([0.01, 0.99]). As
we will see below, participants’ choice of [Δ−,Δ+]maximizes the
mutual Shannon information between objective probabilities and
their internal representations, a form of efficient encoding (44).
The efficiency of encoding can be quantified by the mutual

information between stimuli s1, ..., sn and responses r1, ..., rn:

Im = ∑n
i=1

P(si, ri)log2 P(si, ri)
P(si)P(ri), [7]

where P(si) denotes the probability of occurrence of a specific
stimulus si, P(ri) denotes the probability of occurrence of a spe-
cific response ri, and P(si, ri) denotes the conjoint probability of
the cooccurrence of the two. Stimuli and responses refer to ob-
jective and subjective relative frequencies or probabilities. For a
specific task and BLO parameters, we used the BLO model to
generate simulated responses and then computed expected

mutual information using a Monte Carlo method (SI Appendix,
Supplement S10).
For a virtual participant endowed with median parameters, we

evaluated how the expected mutual information in JRF or DMR
varied with Δ− and Δ+, the other parameters being the same. We
found that the expected mutual information varied non-
monotonically with the values of Δ− and Δ+ (Fig. 5 A and B), and
for both DMR and JRF the observed median values of Δ− and
Δ+ (marked by red circles) were close to the values maximizing
the expected mutual information: The mutual information as-
sociated with the observed Δ− and Δ+were lower than maximum
only by 1.31% for JRF and by 2.83% for DMR. In contrast, if no
bounds had been imposed on the probability range of [0.01, 0.99]
(i.e., Δ− = −4.6, Δ+ = 4.6), the mutual information would be
16.7% and 12.3% lower than maximum, respectively, for JRF
and DMR.
The observed Δ− and Δ+ in JRF (SI Appendix, Fig. S7B) were

almost symmetric around 0 (median –1.64 and 1.38, see red
circle in Fig. 5A), although the difference between Δ+ and −Δ−
reached statistical significance (Wilcoxon rank sum test, Z =
–2.21, P = 0.027). The observed Δ− and Δ+ of the same group of
participants in DMR (SI Appendix, Fig. S7A), however, were
highly asymmetric (median –0.60 and 1.75, see red circle in
Fig. 5B, Wilcoxon rank sum test, Z = 3.88, P < 0.001), implying

Fig. 4. Thurstone capacity as a personal signature. The Ψ=σλ estimated in
JRF was positively correlated with the Ψ=σCE estimated in DMR, for partici-
pants who completed both tasks. Each circle is for one participant (7/75 data
points are outside the plot range). The rs on the plot refers to Spearman’s
correlation coefficient, which is robust to outliers, and P is right-tailed.

A D

B C

Fig. 5. Choice of bounds parameters Δ− and Δ+ as mutual information
maximization. (A) Expected mutual information between objective and
subjective probabilities (in bits) is plotted against −Δ− and Δ+ as a contour
map for JRF. Higher values are coded as more greenish and lower values as
more bluish. (B) Expected mutual information contour map for DMR. For
both tasks, the observed median (−Δ−,Δ+) (marked by the red circle) was
close to maximizing expected mutual information. (C) When additional
multiplicative noise was assumed for the internal representation of proba-
bility, the observed asymmetry of Δ− and Δ+ in DMR can be explained by
maximizing mutual information. The SD of the multiplicative noise was as-
sumed to be 0.19 times of the internal representation of probability. (D)
Individual participants’ percentage of deviation from optimal in expected mu-
tual information for observed (Δ−,Δ+)versus bounds-free representations. Bars
denote mean percentage across participants. Error bars denote SE.
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that the allocation of representation space in DMR was biased
toward larger probabilities. What can explain this asymmetry?
We conjectured that it may also be a consequence of efficient

coding, if we take into account the potentially larger noises as-
sociated with representing larger expected utilities (59). That is,
a more precise representation is needed for larger probabilities
in order to have larger and smaller expected utilities equally
discriminable. Indeed, when additional multiplicative noise was
assumed for the internal representation of probability (SI Ap-
pendix, Supplement S10), we found that the optimal Δ− and Δ+
would exhibit the observed asymmetry in DMR (Fig. 5C).
We also computed expected mutual information based on

individual participants’ BLO parameters and compared each
participant’s Δ− and Δ+ with the optimal choice suggested by the
participant’s Thurstone capacity. Individual participants’ devia-
tion from optimality (Fig. 5D) was on average larger than that of
the median participant, but still the observed Δ− and Δ+ was only
∼10% lower than optimality in expected mutual information and
much closer to optimality than alternative bounds-free repre-
sentations.
The results of factorial model comparison reported earlier

provided evidence that participants used bounded instead of
bounds-free representations. In the mutual information analysis
above, we further revealed the rationality behind this bounded-
ness. We found that under their constraint in Thurstone capacity,
participants’ choice of the interval to encode was close to max-
imizing the information transmitted by the Thurstone scale.

Minimizing Expected Error. Efficient encoding maximizes the dis-
criminability between subjective probabilities but cannot guar-
antee whether the subjective probability is an accurate estimation
of the objective probability. For example, suppose the probabilities
of hazard for two actions are 0.9 and 0.95 but are estimated to be
0.01 and 0.2, respectively. Although these two actions are well
discriminated from each other, decision making based on such
inaccurate subjective estimates can be disastrous.
Polanía et al. (29) assumed that Bayesian decoding follows

efficient encoding of value. Similarly, the choice of bounds pa-
rameters in BLO only determines how efficiently the truncated
log-odds encoded by the Thurstone scale transmit information
about the objective probability. The accuracy of the subjective
estimate, instead, relies on variance compensation, whose per-
formance is controlled by two parameters of BLO: Λ0 and κ. The
final estimate of log-odds is a weighted average of the truncated
log-odds Λ̂(p) and an anchor Λ0 (Eq. 6). The parameter κ con-
trols the extent to which the encoding uncertainty influences the
weight ωp for Λ̂(p) (Methods). How well did participants choose
their variance compensation parameters to improve the accuracy
of subjective probabilities?
We define the expected error of subjective estimates as the

square root of the mean squared deviations between objective
and subjective probabilities for a specific distribution of objective
probabilities. Similar to our computation of expected mutual
information, we evaluated how the expected error in DMR or
JRF varied with Λ0 and κ, the other parameters being the same
(SI Appendix, Supplement S10). We found that the observed Λ0
and κ for a median participant were close to those minimizing
expected error, deviating from optimality only by 5.95% for JRF
and by 7.67% for DMR (Fig. 6 A and B). The deviation for in-
dividual participants was larger (∼10% for JRF and ∼20% for
DMR) but still much smaller than representations assuming no
variance compensation (Fig. 6C).
Finally, we caution that the close-to-optimal choices of pa-

rameters we identified above did not necessarily imply neural
computations of optimal solutions. They could just follow some
simple rules. For example, participants’ choice of Λ0 in both
tasks was close to 0. In DMR, this choice was actually closer to

the mean of the objective log-odds than to the value of Λ0 that
minimizes expected error (Fig. 6B).

Discussion
The BLO model is intended to model performance in both DMR
and JRF tasks. It is based on three assumptions: log-odds rep-
resentation, encoding on a bounded Thurstone scale, and vari-
ance compensation. We tested each of these assumptions using
factorial model comparison to verify that they are all essential to
best predict human behavior. That is, if we replace any as-
sumption by the alternatives we considered, the resulting model
is strictly inferior to BLO.
We then compared BLO with all of the other models in the

literature intended to account for probability distortion. BLO
outperformed all these models in accounting for our experi-
mental results as well as the data of Gonzalez and Wu (14).
Among the models considered, BLO is the best available de-
scriptive model of human use of probability and relative
frequency information.
We then considered whether BLO is normative in a specific

sense. We tested whether participants chose probability distor-
tions that come close to maximizing the mutual information
between objective probabilities and their imperfect subjective
estimates. Two recent articles use the same criterion (maximum
mutual information) to model human encoding of value (29) or
to reinterpret the context effects of decision under risk (46).
These articles taken together are consistent with a claim, sup-
ported by considerable experimental data, that many observed
failures in DMR can be viewed as attempts to compensate for

A C

B

Fig. 6. Choice of variance compensation parameters Λ0 and κ as expected
error minimization. (A) Expected error in probability is plotted against Λ0

and κ as a contour map for JRF. Smaller errors are coded as more reddish and
larger errors as more yellowish. (B) Expected error contour map for DMR. For
both tasks, the observed median (Λ0, κ) (marked by the black circle) was close
to minimizing the expected error in probability. (C) Individual participants’
percentage of deviation from optimality in expected error for observed
(Λ0, κ) versus representations assuming no variance compensation. Bars de-
note mean percentage across participants. Error bars denote SE.
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immutable limits in cognitive processing in order to preserve
Shannon information, a form of bounded rationality (37).

A Single Model for Probability Distortion. There are many theo-
retical models intended to account for inverted-S- or S-shaped
probability distortion: the power model of proportion judgment
(60, 61), the support theory model of probability judgment (48,
62), the calibration model (63), the stochastic model of confi-
dence rating (38, 39), and the adaptive probability theory model
of decision under risk (49). However, almost all these models
were proposed for one specific type of task and not intended as
general explanations for observed distortion of probability and
relative frequency. Neither do they explain why participants ex-
hibit different probability distortions in different tasks or task
conditions. There was even a belief, at least in decision under
risk, that the parameters of distortion should be specific to each
participant but constant across all tasks (64).
In contrast, BLO models a common mechanism underlying all

probability distortion, where we identified one constraint—limited
information processing capacity (the Thurstone capacity)—that is
pervasive in models of cognitive and perceptual tasks (36, 45, 65)
and that may be invariant across different tasks. The probability
distortion functions are determined by the constraint as well as
close-to-optimal choices under this constraint. We next describe
some of the implications of BLO.

Discontinuities at p = 0 and p = 1. BLO and any model based on
the boundedness assumption predict that π(0)> 0 and π(1)< 1,
that is, probability distortion with discontinuities at p = 0 and
p = 1. Such discontinuities are also found in the neo-additive
family of weighting functions (55) but are not found in other,
widely accepted families of probability distortion such as LLO
(14, 24) and Prelec’s family (51). Kahneman and Tversky’s
original prospect theory (figure 4 of ref. 12) included similar
discontinuities in probability weighting functions.
The bounded ranges of probability represented on the Thur-

stone scale according to the BLO model fits are fairly limited,
approximately [0.16, 0.80] in JRF and [0.35, 0.85] in DMR.
Given that the occurrence of probabilities as extreme as 0.05 and
0.95—or even 0.01 and 0.99—is not uncommon in laboratory
tasks or real life, bounding is likely to exert detectable influences
on probability representation and performance under many cir-
cumstances. Indeed, there are clues indicating boundedness in
previous studies. For example, Yang and Shadlen (66) studied
monkeys’ probabilistic inference and found that the strength of a
specific evidence perceived by the monkey was, in general, pro-
portional to the objective log-odds of the evidence. However, for
“sure evidence” that corresponded to minus or plus infinity in
log-odds, the subjective log-odds were bounded, equivalent to
[0.15, 0.81] and [0.30, 0.64] in probability for the two tested
monkeys.

Compensation for Encoding Uncertainty. Anchoring—as a way to
explain the inverted-S-shaped curve and its individual differences—
has been assumed in a few theories or models of probability dis-
tortion (48, 49, 67). It can be a way to improve the accuracy of
probability judgment, following the perspective of Bayesian infer-
ence (47). What distinguishes BLO from previous models is the
assumption that anchoring implements compensation for encoding
uncertainty. Intuitively, percepts of lower uncertainty should be less
discounted and those of higher uncertainty more discounted. If the
uncertainty of a percept varies with the value of probability it
encodes, so will the reliability weight endowed to the percept.
For the JRF task, the uncertainty may arise from a sampling

process, analogous to the sampling in perceptual tasks such as
motion perception (68, 69) and pattern detection (70). For the
DMR task, where probability is explicitly defined and no explicit
sampling process seems to be involved, we still found that the

slope of probability distortion relies on a p(1 − p) term, varying
with p (Methods). It is as if people were compensating for the
variation of a virtual sampling process (49, 71, 72), or for the
variation caused by Gaussian noise on the Thurstonian log-odds
scale (SI Appendix, Supplement S1 and see also ref. 73). Lebreton
et al. (73) show that a generalized form of p(1 − p) is correlated
with the confidence of value or probability perception and is
automatically encoded in the ventromedial prefrontal cortex of
the human brain. Under certain circumstances, such variance
compensation may result in counterintuitive nonmonotonic
probability distortion that is indeed empirically observed (SI
Appendix, Supplement S13).

Predicting the Slope of Probability Distortion. Mutual information
maximization requires the encoded interval to scale with the
range of probabilities in the stimuli. When a narrower interval is
encoded, the truncated log-odds encoded on the bounded
Thurstone scale for the same objective probability can be more
extreme, leading to probability distortion of a steeper slope.
Thus, BLO predicts that the narrower the probability range of
the stimuli, the steeper the slope of distortion.
We performed the following meta-analysis on previous DMR

studies to test this prediction. Fox and Poldrack (table A.3 in ref.
74) summarized the results of a number of decision-making
studies that were modeled in the framework of prospect the-
ory. In Fox and Poldrack’s list, we identified the studies where
the gamble set was explicitly defined and each gamble consisted of
two outcomes that could be denoted (x1, p; x2, 1 − p) (see SI Ap-
pendix, Table S4 for the 12 studies included). Although differ-
ent functional forms—LLO, one-parameter and two-parameter
Prelec functions (51), and Tversky and Kahneman’s weighting
function (13)—had been assumed in different studies, all had a
parameter for the slope of probability distortion that is roughly
equivalent to the γ in LLO. For each study, we computed the SD
of objective log-odds and found that, consistent with the BLO
prediction, this measure was negatively correlated with the slope
of probability distortion (Fig. 7A) (rs = –0.56, left-tailed P = 0.030).
Assuming optimal choice of Δ− and Δ+, we further quantitatively
predicted the slope of distortion for each study, which resembled the
observed slopes (Fig. 7B and see SI Appendix, Supplement S14
for details).

The Crossover Point. A puzzle we did not fully address earlier
concerns the crossover point of probability distortion (i.e., the
point on the distortion curve where overestimation changes into
underestimation or the reverse). It has been frequently observed
that the crossover point is near 0.5 for the JRF task (24) but
∼0.37 for the DMR task (51). That is, the probability distortion is
symmetric around 0.5 in the former but asymmetric in the latter.
There are plausible reasons to have symmetry, but why asym-
metry? Here we conjecture that the asymmetry is also driven by
the maximization of mutual information, which, for the DMR
task, relates to having the CEs of different gambles as discrimi-
nable as possible. Following conventions (14, 74) and for parsi-
mony, we had assumed a uniform Gaussian noise on the CE
scale. However, larger CEs may tend to be associated with higher
variances, an analog to Weber’s law (59). To compensate for this,
more of the representational scale should be devoted to larger
probabilities and thus to the larger CEs associated with them.
Indeed, we found that the less-than-0.5 crossover point in DMR
is associated with bounds [Δ−,Δ+] that biases toward larger
probabilities (see our discussion of asymmetric [Δ−,Δ+] in Re-
sults), which effectively implements such a strategy of probability
representation.

Open Questions and Future Directions. The judgment of relative
frequency and decision under risk are the only two tasks where
BLO and its assumptions have been tested, but these two tasks
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together represent a vast body of previous research. The model
may be applied to a wider range of tasks involving frequency and
probability. Whether it succeeds or fails, it will likely shed light
on the common and distinctive mechanisms of probability
distortion in different tasks.
What determines the slope and crossover point of probability

distortion in a specific task or task condition? Why may the
parameters of probability distortion change from task to task and
from individual to individual? In the present study we have
provided a tentative answer: They change because the brain
actively compensates for its own fixed limitations.
We propose probability distortion as a consequence of boun-

ded rationality but must caution that the optimality found on the
group level cannot guarantee optimality for every individual. For
example, for the anchor parameter of BLO whose optimal value
is determined by the prior distribution of probabilities, there
were still considerable individual differences. One possibility is
that some individuals may be slow to update their prior or even
not able to correctly learn the true prior (75). Besides, there are
large individual differences in the optimality of using cognitive
resources (76).
Important questions for future research also include, How

may probability distortion change from trial to trial? We con-
jecture that the human representation of probability can adapt to
the environment, in the spirit of efficient coding (42–44) or
Bayesian inference (47). The current version of BLO is a sta-
tionary model, whose prediction will not change with time or
experience. In contrast, nonstationarity has been identified in
probability distortion for both the judgment of relative frequency
(24) and decision under risk (77).
We chose not to consider “decision from experience” (20)—

another important form of decision making—because the deci-
sion from experience task does not require that the decision
maker estimate the frequency of items (19, 78). The decision
maker may estimate the multinomial distribution of rewards in a
card deck—or she may simply register reward and punishment
and base her decision on a form of reward averaging or rein-
forcement learning. The results of a comprehensive model
competition (79) are consistent with this claim. More recently,
there has been neuroimaging evidence that human decisions
from experience may be based on the retrieval of individual
samples from past experience (80, 81). If the decision maker
does not estimate relative frequency then BLO does not apply.

A final note: Kahneman and Tversky’s original prospect the-
ory contained the assumption that decision makers would first
interpret (“edit”) available information (12). In this initial edit-
ing stage they might, for example, convert the probability 0.31317
to the more tractable 1/3. Only then would they assign prospect
values to lotteries in the second, evaluation stage. In presenting
the BLO model we focus on evaluation. Still, nothing about the
theory would preclude adding an editing phase or discretizing
the representation of probability if justified by empirical results.

Methods
Experiment. Experiment JDwas approved by the Institutional Review Board of
School of Psychological and Cognitive Sciences at Peking University. All
participants gave written informed consent in accordance with the Decla-
ration of Helsinki. Each participant performed two tasks: DMR and JRF.

The procedures and designs of the DMR task were the same as those of
Gonzalez and Wu (14), except that payoffs in the gambles were in renminbi
instead of in US dollars. On each trial (SI Appendix, Fig. S1A), participants
were presented with a two-outcome gamble (x1,p; x2, 1 − p) and tables of
sure amounts of rewards. They were asked to check on each row of the
tables whether they preferred the gamble or the sure amount. The range of
the sure amounts started with [x2, x1], and was narrowed down in the sec-
ond table so that we could estimate participants’ CE for the gamble. There
were 15 possible outcome pairs (x1, x2): (25, 0), (50, 0), (75, 0), (100, 0), (150,
0), (200, 0), (400, 0), (800, 0), (50, 25), (75, 50), (100, 50), (150, 50), (150, 100),
(200, 100), and (200, 150). There were 11 possible probabilities: 0.01, 0.05,
0.1, 0.25, 0.4, 0.5, 0.6, 0.75, 0.9, 0.95, and 0.99. A full combination of them
resulted in 165 different gambles used in the experiment.

The stimuli and procedures of the JRF task followed Zhang and Maloney
(24). On each trial (SI Appendix, Fig. S1B), participants were presented with
an array of black and white dots and reported their estimate of the relative
frequency of black or white dots by clicking on a horizontal bar with tick
marks from 0 to 100%. Each participant was randomly assigned to report the
relative frequency either for the black or for the white dots. The objective
relative frequency of JRF was chosen from the same 11 possible values as its
counterpart in DMR. The total number of dots (numerosity) in a trial was
varied across trials, which could be 200, 300, 400, 500, or 600. The dots in
each display were distributed within a circular area of 12° diameter or a
square area of 17° × 17° diameter.

Experiment JD (a total of 75 participants) consisted of two subexperiments,
JDA (51 participants, 20 male, aged 18 to 29 y) and JDB (24 participants, 10
male, aged 18 to 27 y). Six additional participants failed to complete the
experiment for technical or personal reasons. Each session had 11 (proba-
bility) × 15 (outcome pair) = 165 DMR trials and 11 (probability) × 5
(numerosity) × 6 = 330 JRF trials, which took approximately 2 h. In Experi-
ment JDA, each participant completed two sessions on two different days, so
that we could evaluate the consistency of their performance. Trials from the
two tasks were randomly interleaved. In Experiment JDB, each participant
completed only one session, during which one task preceded the other, with
DMR first for half of the participants and JRF first for the other half. Similar
patterns of probability distortions (Fig. 2 B and C, first 51 panels for Exper-
iment JDA and last 24 panels for Experiment JDB) and results of model
comparisons (SI Appendix, Fig. S3) were found for participants in the two
subexperiments. Thus, we collapsed the two subexperiments in our analysis
whenever applicable.

Applying BLO to JRF. We need additional assumptions when applying BLO to
the JRF experiments. One of the key assumptions of BLO is variance com-
pensation and, to apply BLO, we need to specify a model of the participant’s
sampling process and the variance of the resulting estimates. First, we as-
sume that humans may not have access to all of the tokens presented briefly
in a display or in a sequence, due to perceptual and cognitive limits (82, 83).
Instead, they take samples from the population and are thus subject to the
randomness associated with sampling. Within BLO, probability distortion
arises in part from a compensation for the sampling noise captured in our
model by the reliability parameter ωp.

Denote the total number of dots in a display as N and the relative fre-
quency of black dots as p. Suppose a sample of ns dots is randomly drawn
from the display. We assume that the sampling is without replacement (see
SI Appendix, Supplement S8 for models with the alternative assumption of
sampling with replacement). That is, the same dot will not be drawn twice
during one sampling, which is reasonable in our case. As a result, the vari-
ance of p̂ requires a correction for finite population (84 and see SI Appendix,
Supplement S2 for the derivation):

A B

Fig. 7. Meta-analysis of previous studies supporting BLO’s prediction on the
slope of probability distortion in decision under risk. (A) The estimated slope
of probability distortion (γ̂) is plotted against the SD of the objective log-
odds [λ(p)] of the gamble set, where p denotes the probability for the higher
outcome of a two-outcome gamble, (x1,p; x2, 1 − p). Each data point is for
one published study. The red line denotes the regression line. The correla-
tion is negative and significant. We describe the selection of studies in the
text. See SI Appendix, Table S4 for a full list of the studies. That the slope of
distortion decreases with the SD of λ(p) is consistent with the prediction of BLO.
(B) Estimated slope of probability distortion is plotted against the slope predicted
by BLO for each study (see SI Appendix, Supplement S14 for details).
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V(p̂) = p(1 − p)
ns

N − ns

N − 1
  . [8]

The finite population correction is intuitive: The larger the sample size rel-
ative to the population, the smaller the variance. When ns = N, that is, when
the whole population is included in the sample, we should have p̂ = p for
each sample and thus V(p̂) = 0. At the other extreme, when ns = 1, sampling
without replacement is equivalent to sampling with replacement, the fa-
miliar p(1 − p). For any participant and numerosity condition, when ns >N,
that is, when the participant was able to sample all of the dots in the display,
we forced V(p̂) = 0.

The BLO variance correction is a weightedmixture of an estimate based on
the sample and an “anchor” Λ0 (Eq. 6), with the weight for the former

ωp = 1
1 + κV(p̂)  , [9]

where κ> 0 is a free parameter. One note: The p(1 – p) term in our modeling
of V(p̂) (as in Eqs. 8 and 11) is not meant to imply that the participant has
access to the true value of p but is instead used to approximate a potentially
noisy estimate of encoding uncertainty. See SI Appendix, Supplement S12
for how the resulting form of ωp, which effectively leads to an inverse-S

transformation of Λ̂(p), can serve as an approximate solution to minimiz-
ing the expected error in estimating probability.

Finally, we modeled participants’ reported relative frequency π(p) as a
function of p perturbed by additive Gaussian error:

λ[π(p)] = ωpΛ(p) + (1 − ωp)Λ0 + «λ, [10]

where «λ is Gaussian error on the log-odds scale with mean 0 and variance σ2λ.

Applying BLO to DMR. To model π(p), BLO’s assumptions for different tasks are
the same, except that encoding variance is task-specific. Probability is described
explicitly in DMR and there seems to be no uncertainty about its value. Participants’
choices suggested, however, that they were still compensating for some kind of
encoding uncertainty that varies with the value of probability. Gaussian encoding
noise on the Thurstone scale in log-odds, when transformed back to the probability
scale, results in variance that is approximately proportional to p(1 − p) (see SI
Appendix, Supplement S1 for proof). The reliability parameter in Eq. 6 is thus

ωp = [1 + κp(1 − p)]−1, [11]

where κ> 0 is a free parameter. This same equation can be reached if, al-
ternatively, we assume that participants were compensating for a virtual

sampling process (the 1
ns

N−ns
N−1 term in Eq. 8 can be assimilated into κ for

constant N and ns). Compensation for virtual sampling was assumed in some
previous theories on probability distortion (49, 71, 72).

Any lottery in GW99 or Experiment JD can be written as (x1,p; x2, 1 − p),
which offers the value x1 with probability p and otherwise x2, with
x1 > x2 ≥ 0. For each participant, we modeled the CE of each lottery using
cumulative prospect theory (13) and assumed a Gaussian error term on the
CE scale, as in Gonzalez and Wu (14):

CE = U−1[π(p)U(x1) + (1 − π(p))U(x2)] + «CE , [12]

where U( · ) denotes the utility function, U−1( · ) denotes the inverse of U( · ),
π(p) denotes the probability distortion function (same as that in Eq. 10, ex-
cept without Gaussian error), and «CE is a Gaussian random variable with

mean 0 and variance σ2CE. The utility function for nonnegative gains alone

(none of the lotteries involved losses) was assumed to be a power function
with parameter α> 0:

U(x) = xα. [13]

Data Availability. Anonymized human behavioral data and codes have been
deposited in Open Science Framework (https://osf.io/57bz6/) (85).
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