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We propose a new context-sensitive active contour for 2D corpus callosum segmentation. After a seed contour consisting of in-
terconnected parts is being initialized by the user, each part will start to deform according to its own motion law derived from
high-level prior knowledge, and is constantly aware of its own orientation and destination during the deformation process. Exper-
imental results demonstrate the accuracy and robustness of our algorithm.
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1. INTRODUCTION

Since the seminal work of [1], deformable models have
achieved great success in various areas of visual comput-
ing such as computer vision and image processing. They
have become one of the dominant techniques in medical
image segmentation [2]. Researchers however have not yet
succeeded in developing completely automatic segmentation
techniques that can incorporate high-level prior information
of shape, position, orientation, symmetry, landmarks, as well
as image intensity and texture characteristics to achieve seg-
mentation accuracy and repeatability [3]. One of the chal-
lenges is that current deformable models have little-to-no ex-
plicit “awareness” of where they are in the image, how their
parts are arranged, or to what structures they or any neigh-
boring deformable models are converging during the defor-
mation process.

Recently, McInerney et al. introduced a novel approach
for automatic medical image segmentation that combines
deformable model methodologies with concepts from the
field of artificial life [3]. They proposed deformable organ-
isms that possess deformable bodies with distributed sensors,
as well as brains with motor, perception, behavior, and cog-
nition centers. Deformable organisms are perceptually aware
of the image analysis process. Their behaviors, which man-
ifest themselves in voluntary movement and alteration of
body shape, are based upon sensed image features, prestored
anatomical knowledge, and a deliberate cognitive plan.

Inspired by the work of [3], in this paper, we introduce a
new part-based, context-sensitive active contour for 2D cor-
pus callosum segmentation from MR images. Unlike the fully
automatic approach of [3], our method is semiautomatic.
It requires the user to interactively initialize a seed contour
(through as little as three mouse clicks) that consists of four
interconnected parts. Each part of the seed is aware of its own
orientation, its target structure, and more importantly can
have its own motion law tailored for its corresponding target
structure. By allowing the user to interactively initialize the
model, our algorithm has a much lower computational com-
plexity compared with the full automatic approach of [3].

The rest of this paper is organized as follows. In Section 2,
we briefly introduce the background knowledge of our work.
In Section 3, we present our method in detail, including ini-
tialization, contour evolution, and fornix elimination. Exper-
imental results and validation are shown in Section 4 with
some discussions. Section 5 concludes the paper.

2. BACKGROUND

2.1. Corpus callosum segmentation

Corpus callosum (CC) is the major communication pathway
between the two cerebral hemispheres and mainly consists
of axons. It is responsible for conduction of signals between
homologous and heterotopic cortical regions and is an essen-
tial component for brain lateralization and interhemispheric
communication. Structural changes, such as size and shape
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changes in the corpus callosum occur in a variety of neuro-
logical diseases, such as dyslexia, schizophrenia, autism, and
bipolar and unipolar disorders. Therefore, neurologists are
interested in looking at the corpus callosum and analyzing
its shape. Magnetic resonance imaging (MRI) is regarded as
the best method to obtain cross-sectional area and shape in-
formation from corpus callosum.

Although segmenting the CC seems simple, it turns out
to be nontrivial. The global shape of the CC is relatively con-
sistent, but the local shape variation is dramatic. The inten-
sity of the CC also varies from one image to another. There
can be gaps in the boundary of the CC almost anywhere, and
parts of the CC may be narrow or have bumps. The most
challenging problem is the existence of the fornix, which is a
thin structure that may or may not contact the CC in the
midsagittal MR image. It is almost the same brightness as
the CC; and the size and position of the contact region can
vary considerably. Because of these challenges, traditional ac-
tive contour models will not be robust enough to correctly
extract the boundary in many cases. Manual tracing of CC
boundary is still the most frequently used method in clinical
studies, such as in [4–6], which is time-consuming, error-
prone, and operator-dependent.

2.2. Deformable models

Active contour models (snakes) have been widely used in im-
age segmentation since their introduction [1]. These meth-
ods are iteratively updated according to various forces de-
signed to seek out object/region boundaries while maintain-
ing smoothness of the fitted contour [7]. Interactively con-
trolled forces may also be introduced to allow the user to
guide the segmentation, which made active contours partic-
ularly popular for medical imaging applications. A survey of
early work of deformable models in medical image segmen-
tation can be found in [2]. There is more recent work on
snakes and their variants, such as [7–9].

The problem of most of the current active contour mod-
els is that they have little “awareness” of where they are in
the image, how their parts are arranged, or to what struc-
tures they are converging [3]. Thus, there is a need to com-
bine the low-level feature detection ability of active contour
models with flexible high-level knowledge, which triggers the
top-down and bottom-up combination scheme. The work
in [10] proposed a method called united snakes which com-
bined snakes and live wire [11] together. Live wire, or intelli-
gent scissors, is an effective interactive boundary tracing tool.
United snakes use live wire seed points as the hard constraints
of snakes. This method can overcome a lot of disadvantages
of a single live wire or snakes method. However, we have to
carefully do a boundary tracing in order to get a sufficient
number of seed points. The work in [12] proposed a sketch-
initialized subdivision-curve snake and applied it to 2D seg-
mentation of the CC as well as other structures. This method
is rapid, accurate, and repeatable, but it requires a special
pressure-sensitive device for user initialization. Deformable
organism for medical image analysis was introduced in [3],
where artificial life was incorporated in snakes in order to
solve the “unawareness” problem. A series of routines were
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Figure 1: CC structure and partition of the CC boundary (image
modified based on original illustration from [3]).

designed to find different parts of the object. The CC was
used as an example to test their algorithm. This method was
further extended by [13] which applied a physical-based im-
plementation in order to provide an opportunity for the ex-
pert to intervene the segmentation intuitively. The results on
CC segmentation in [13] showed that minor user interac-
tions could further improve the segmentation accuracy.

Our method is mostly inspired by [3]. However, in-
stead of using comprehensive artificial intelligence, we divide
the active contour into several parts according to our prior
knowledge of the segmented object. Each part of the contour
is assigned to a certain part of the object, and a set of defor-
mation rules are designed for each part, respectively. In this
way, each part of the contour is aware of its destination. Fur-
thermore, to ensure global awareness, these parts of the con-
tour are connected by several sensor points, which are the
end points of each part.

3. CONTEXT-SENSITIVE ACTIVE CONTOUR
SEGMENTATION OF THE CORPUS CALLOSUM

The anatomical structure of the CC is shown in Figure 1.
Accordingly, we can roughly divide the boundary curve of
the CC into 4 parts (see Figure 1), which are anterior (CA),
posterior (BD), upper boundary (DC), and lower boundary
(AB). Instead of using a closed-curve representation, we treat
the four parts as four separate curves, which are connected
by four sensor points. There are several advantages of using
open-curve. First, it implicitly integrates our prior knowl-
edge into the curve evolution process. In contrast, a closed
curve cannot be aware of any high-level information after it
has been initialized. Secondly, this curve partition allows us
to use different parameters of active contour evolution for
each part, so that each curve can better fit the curvature fea-
ture of the boundary. Thirdly, it will make fornix detection
easier, since we only need to search along curve AB to find
the fornix.

3.1. Initialization

The initialization requires the user to click three points
to form a polyline o1oo2 within the body of the CC (see
Figure 2(a)). After that, a seed contour is constructed in the
following fashion. First, an edge map is generated through
canny edge detection. Prior to edge detection and any other
operations, we perform a Gaussian smoothing to the im-
age in order to reduce the noise. The width σ of the Gaus-
sian function is selected so that there is no small edge in the
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Figure 2: Illustration of the seed initialization process. (a) User-
initialized polyline. (b) Point tracing. (c) Completed seed contour.

internal area of the CC. The edge map of the smoothed image
is shown in Figure 3(b).

We then do a point-tracing to find the four points on
the edge (see Figure 2(b)). Starting from o1, we trace along a
line perpendicular to line o1o in both directions to find edge
points a1 and c1. Each one is the first point on the edge along
our tracing direction. Similarly, we trace from o2 to find a2

and c2. In case there is a small gap, where the tracing line in-
tersects with the edge, we may either find an edge point on
the background, or never find an edge point until we reach
the image boundary (the image boundary is treated as edge
in our case). To avoid this problem, we trace along several
lines whose angles with the original tracing line are within a
small range [−θ, θ ], where θ is a positive small angle. Among
the first edge point on each tracing line, the one with the
smallest distance to the starting point is selected. If the gap
is so large that we cannot find any edge point within [−θ,
θ ], we will increase the value of θ to cover a larger search
range. However, in our experiment, θ = 20◦ can satisfy all
the images since there is usually high contrast on the upper
and lower boundary of the CC.

We then show how to construct points b1 and d1 in
Figure 2(c), and b2 and d2 following the same way. We as-
sume that there is always a small neighborhood around o1

completely inside the CC region. This assumption is rea-
sonable since the user can easily locate the end points in
the middle with some margin to both the upper and lower
boundaries. To best guarantee this assumption, we substitute
o1 with the middle point of line segment a1c1, denoted as

(a) (b)

(c)

Figure 3: An example of the initialized seed. (a) User-initialized
polyline. (b) The edge map. (c) The completed seed contour.
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Figure 4: Flow chart of the fornix removal algorithm.

o1
∗. Thus, we can draw a circle centered at o1

∗ with a small
enough radius (see Figure 2(c)). However, b1 and d1 are two
intersection points of line oo1

∗ and the circle. Now we have
the initial seed for each part of the curve—a1b1c1 for ante-
rior, c2b2a2 for posterior, a2d2od1a1 for upper boundary, and
c1d1od2c2 for lower boundary. The four seeds are connected
by four sensor points—a1, c1, a2, and c2. Figures 3(a) and
3(c) show the initial polyline and the completed seed on the
real image. Conceptually, this seed is a polygon with some
edges overlapping in the body of the CC, while the four sen-
sor points serve as both the separation of the entire curve and
the connection of each curve segment. During the curve evo-
lution process, these four points will not move since they are
already on the boundary.

The performance of the curve evolution can be guaran-
teed only if the initial seed is completely inside the CC re-
gion. The seeds of left and right parts can be inside based on
the above assumption. Normally, three points are sufficient
to make an inside polyline. However, for some abnormal CC
shapes, more points may be needed; so in our algorithm we
allow the user to click as many points as needed to make the
initial polyline.
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Figure 5: (a) Distinct points around the fornix. (b) The example of disconnected fornix. (c) The result without fornix removal. (d) The
result with fornix removal.
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Figure 6: (a) The seed contour initialized by the user. (b) The fornix begins to appear without fornix removal. (c) The results with fornix
removal. (d) The results overlaid on the edge map.

3.2. Contour evolution

Consider a family of smooth curves C (p, t ) connecting two
given end points, where p parameterizes the curve and t pa-
rameterizes the family. This family evolves according to the
following partial differential equation [14]:

∂C(p, t)
∂t

= F�n, C(p, 0) = C0(p), (1)

where �n is the unit normal vector of C (p, t), F is the speed
function, and t can be considered as the time parameter. The
speed function F has the form similar to that in [15]:

F = (v + εk)g − γ(∇g•�n ), (2)

where k is the curvature of the curve, v is a positive constant
speed, and ε, γ are two coefficients. g is a function derived
from the input image I; and

g(x) = 1

1 + α
(
NG(x)

)2 ,

NG(x) =
∥∥∇(Gσ∗I

)∥∥

max I

∥
∥∇(Gσ∗I

)∥∥ ,

(3)

where NG(x) is the normalized gradient magnitude at pixel
x of image I, Gσ∗I is the image smoothed by a Gaussian ker-
nel,∇ is the gradient operator, and α is a coefficient. The first
term in (2) causes the curve to grow along its normal direc-
tion, and the second term acts in an opposite direction to the
normal when the curve reaches the object boundary.

The orientation of the normal vector for each curve seg-
ment is specified upon initialization. We consider each curve
segment as part of a closed curve drawn counterclockwise,
and the normal orientation is defined as pointing outward
of this closed curve. In order to get a correct normal orienta-
tion, the points on each curve should be arranged in a proper
sequence.

3.3. Numerical integration

We employ explicit Lagrangian approach to solve the curve
evolution equation. Equation (1) can be approximated nu-
merically by

C(p, t + Δt) = C(p, t) + (Δt)F�n, (4)

where Δt is a small time step. Smooth curves are represented
by polygonal lines composed of vertices {Pi}Mi=1. In order to
achieve extra stability and accelerate the convergence, a tan-
gent speed component is added in the discrete curve evolu-
tion [14]:

Pk+1
i = Pki + Δtk

(
Fki �nki +Gk

i
�t ki
)
, (5)

where Pki indicates the location of vertex i in the kth iteration,
�nki and �t ki are the unit normal vector and tangent vector at
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Figure 7: (a) The seed contour initialized by the user. (b) The fornix begins to appear without fornix removal. (c) The results with fornix
removal. (d) The results overlaid on the edge map.

(a) (b)

Figure 8: (a) The portion between two circles is outside. (b) The
seed not covering the fornix.

Pki , respectively, and Fki is a discrete approximation of F. The
tangent speed component G is defined as

Gk
i =

dki − dki−1

dki + dki−1

, (6)

where dki is the distance between two neighboring vertices Pki
and Pki+1.

We use the method in [16] to estimate the time step Δtk:

Δtk = me

Mk
F

, (7)

where me is the unit grid cell length of the image data and
Mk

F is the maximum magnitude of the speed F in the Kth
iteration.

There are several ways to numerically calculate curvature
and normal direction of each curve point. The normal direc-
tion of a vertex is approximated by the average of the normal
vectors of two incident line segments. We use circular ap-
proximation in [14] to calculate curvature. Suppose A, O, B
are successive points on a curve, and we want to calculate the
curvature of O. The circular approximation is

k = 4S
abc

, (8)

where a = |AO|, b = |BO|, c = |AB|, and S is the area of tri-
angle ABO. We assign a sign to the curvature of each point.

With the normal pointing outwards, the convex point has a
negative curvature and the concave point has a positive cur-
vature.

All vertices are labeled active at the beginning. Vertex i
terminates its motion when Fki is sufficiently small [14], and
it is then labeled as inactive. When all vertices are inactive,
the curve evolution stops.

3.4. Curve regularity

To ensure that the numerical simulation of the curve evolu-
tion proceeds smoothly, we must maintain the regularity of
the curve. There are two issues to concern: point density and
self collision.

To maintain proper density of the curve points, a new
vertex is inserted between two adjacent vertices if the distance
between them is bigger than the maximum edge length, and
a vertex is deleted if its distance with one of its neighbors is
smaller than the minimum edge length. The inserted vertex
is initially marked active. The proper edge length should be
chosen so that the curve points are dense enough to capture
the details of the shape, while overhead points are avoided to
reduce computational cost. In our case, the maximum edge
length is 4 and the minimum edge length is 1, with the length
of the CC ranges between 130–160 (all in pixel unit).

To avoid self collision within each part of the curve, we
apply a collision detection technique. Our method is simi-
lar to that in [16] while more efficient in convergence. If the
distance between two nonadjacent vertices is smaller than the
minimum edge length, we connect the two vertices and delete
all the vertices in between.

3.5. Fornix removal

The fornix may or may not contact the CC in midsagit-
tal and surrounding slices. It is a thin structure with simi-
lar intensity level as the CC. For this reason, a standard ac-
tive contour model cannot extract the correct CC boundary
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connected to fornix. The work in [3] applied a find-fornix
routine based on the parallelism between the lower boundary
and the medial axis. Lee et al. [17] used a heuristic method to
detect the feature points of the fornix. Compared with their
methods, ours is much simpler. Since we know the fornix al-
ways appears beneath the body of the CC, we only need to
search along the lower boundary to detect it. As shown in
Figure 5(a), there are three distint points around the fornix.
If we find points a and b, we can connect them to get rid
of the fornix tip. By carefully studying the curvature char-
acteristics around the fornix, we design the following fornix
removal algorithm. The flow chart of the algorithm is shown
in Figure 4.

(1) Find c: Search along the lower boundary curve seg-
ment to find the fornix tip (point c ), which is the point
with the smallest curvature.

(2) Check c: if curvature ratio is bigger than a threshold,
continue the next step; otherwise, go back to Find c.

(3) Find a: Search between point c and the left end of this
curve to find the left corner of the fornix (point a ),
which has the biggest curvature.

(4) Check a: If point a is active, go back to Find c; other-
wise, continue the following steps.

(5) Find b: Search between point c and the right end of the
curve, and find point b such that the normal direction
of point b is perpendicular to the line from point a to
point b.

(6) Connect ab: Connect point a and point b, resample
points between a and b to maintain the curve regu-
larity, and mark the vertices between a and b inactive.

In the above algorithm, the curvature is a signed value with
the curvature sign defined in 3.3. In Step 2, curvature ratio
is the absolute value of the curvature of c divided by the ab-
solute value of the average curvature along the curve. In the
case of Figure 5(a), this ratio is much bigger than one be-
cause the curvature of the fornix tip is conspicuously smaller
than other points on the curve. However, there may be the
case that the fornix is not connected to the CC, such as in
Figure 5(b). Since there is no distinct fornix tip along this
curve, Find c routine in the initial algorithm may find an ar-
bitrary point which happens to have the smallest curvature.
In this case, the curvature ratio could not exceed a threshold
due to the smoothness of the curve, and the algorithm will
never do anything to the curve since it is always looped in
Find c.

Since the fornix tip will not appear until after a certain
time of active contour evolution, if we started removing it
too early, what we found may not be the real fornix. Step 4 is
to make sure it is the proper time to remove the fornix.

The resampling process in Connect ab introduces new
vertices between a and b, which would begin their motion to-
ward the fornix tip again. We mark them inactive so that they
will not form a new fornix after the end of the algorithm.

The results with and without the fornix are shown in Fig-
ures 5(c) and 5(d).

Table 1: Quantitative validation results.

FNF FPF TPF Dice overlap

Mean 0.0689 0.0613 0.9525 0.9364 0.8803

Std 0.0613 0.0401 0.0438 0.0178 0.0304

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1. Parameter setting

There are several parameters in (2) and (3). One advantage
of our method is that we can use different parameters for dif-
ferent parts of the CC boundary. We find the four parts have
different image features as well as curvature features. For ex-
ample, the anterior and posterior curves have more high-
curvature regions than the other two curves, and the up-
per boundary has more reliable edge than the lower bound-
ary. Accordingly, ε should be larger for the middle parts and
smaller for the left and right parts, and γ should be larger for
the lower boundary and smaller for the upper one. In our
experiment, the parameters in (2) and (3) fall into the fol-
lowing ranges: v = 2∼5, ε = 0.5∼2, γ = 7∼15, α = 100∼500,
σ = 2∼3 for Gaussian smoothing of the image. The threshold
of the curvature ratio in 3.6 is set to 10 in our experiment.

4.2. Segmentation results

We perform our algorithm on 2D brain MR images from
different subjects. The experiment is running on an Intel(R)
Pentium(R) D (2.8 GHz) PC with Windows Vista. The total
time for one MR image is 2-3 seconds.

Figure 6 shows the result on different MR slices of the
same subject. The first column shows the user-initialized
seed, the second column shows the fornix tip beginning to
appear without fornix removal mechanism, the third column
shows the results with the fornix removed, and the last col-
umn shows our result overlaid on the edge map. As we can
see in Figure 6, the shapes of the CC look similar, but the im-
age features at the boundaries as well as the fornix differ from
one slice to another. Even if there is no explicit fornix on the
image, there still might be a gap where the fornix is located,
thus causing a dip of the lower boundary curve. As shown in
Figure 6(d), our results can match the edge map accurately
and bridge the gaps.

Figure 7 shows the results on different subjects. The four
columns are the same as in Figure 6, and each row represents
the midsagittal slice of a different subject.

4.3. Validation

We use the measurements in [15, 18, 19] to quantitatively
evaluate our segmentation results. We denote the correct seg-
mentation result asCtrue, our segmentation result asCseg, and
|•| as the area enclosed within the result. The following mea-
surements are calculated.

(1) False negative fraction (FNF), which indicates the frac-
tion of structure included in the true segmentation but
missed by our method:
FNF = |Ctrue − Cseg|/|Ctrue|.
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(2) False positive fraction (FPF), which indicates the
amount of structure falsely identified by our method
as a fraction of true segmentation:
FPF = |Cseg − Ctrue|/|Ctrue|.

(3) True positive fraction (TPF), which indicates the frac-
tion of the total amount of structure in the true seg-
mentation that is overlapped with our method:
TPF = |Cseg ∩ Ctrue|/|Ctrue|.

(4) Dice similarity:
Dice = 2× |Cseg ∩ Ctrue|/(|Ctrue| + |Cseg|).

(5) Overlap coefficient:
overlap = |Cseg ∩ Ctrue|/|Ctrue ∪ Cseg|.

The last two measurements range between 0-1 with one indi-
cating a perfect agreement between Ctrue and Cseg. The over-
lap measurement is a stronger test than Dice similarity for
segmentation accuracy [18].

We use the results of manual segmentation by a trained
expert as the ground truth (Ctrue), and compare our results
(Cseg) with the ground truth. The time for an experienced
expert to segment the CC on one slice is about 20 minutes.
The experiment is performed on MR images of 16 subjects,
and the mean and standard deviation of each measurement
across subjects are listed in Table 1. The table shows low FNF
and FPF, and high values in the other three measurements.
This result indicates our method has high accuracy.

4.4. Initialization issue

We have designed some generic principles for the seed ini-
tialization. First, as stated in 3.1, the seed should be roughly
within the body of the CC and not extend to the anterior
and posterior parts. If the seed extends deep into the anterior
or posterior part, the final curve will not be able to cover the
whole anterior or posterior part. Second, the initial seed can-
not have any portion outside the CC (see Figure 8(a)). This
is because the normal orientation of each curve is predefined
given that they are all inside the CC. To ensure that the seed
is totally inside the CC, we allow the user to click more than
three points if needed. Third, the length of the seed should
cover the fornix gap, which means the right endpoint should
be on right of the fornix (see Figure 8(b)). This is to make
sure that the fornix tip only appears on the lower boundary
curve.

These principles are generally quite easy to follow. Since
users can recognize the body of the CC as well as the fornix,
they are able to locate the seed within the body and cover the
fornix span without difficulty.

5. CONCLUSION

In this paper, we have proposed a context-sensitive active
contour method for 2D corpus callosum segmentation. This
method takes advantage of prior knowledge by dividing the
active contour into several parts and connecting them by sen-
sor points. After a simple user initialization, a set of rules de-
rived from prior knowledge will complete the initialization
and guide the model deformation subsequently. The chal-
lenging problem caused by the fornix has been successfully

solved. Experimental results demonstrate our method is fast,
accurate, and easy to operate.

For future work, we plan to incorporate recognition into
our segmentation framework to further reduce the user in-
teraction by automatically locating the initial points in each
part of the object, as well as recognize the connectivity of
the fornix to the CC. Furthermore, although this algorithm
is designed specifically for the corpus callosum, we will in-
vestigate the possibility of applying the general principle of
context-sensitive active contour for segmenting other brain
structures as well.
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