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Abstract

We present a novel formulation for biochemical reaction networks in the context of protein signal transduction. The model
consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select
a set of ‘‘source’’ species, which are interpreted as input signals. Signals are transmitted to all other species in the system
(the ‘‘target’’ species) with a specific delay and with a specific transmission strength. The delay is computed as the maximal
reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system.
The transmission strength is the concentration change of the target species. The computed input-output transfer functions
can be stored in a matrix, fitted with parameters, and even recalled to build dynamical models on the basis of state changes.
By separating the temporal and the magnitudinal domain we can greatly simplify the computational model, circumventing
typical problems of complex dynamical systems. The transfer function transformation of biochemical reaction systems can
be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant novel
insights while remaining a fully testable and executable dynamical model for signal transduction. In particular we can
deconstruct the complex system into local transfer functions between individual species. As an example, we examine
modularity and signal integration using a published model of striatal neural plasticity. The modularizations that emerge
correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. Remarkably, we
found that overall interconnectedness depends on the magnitude of inputs, with higher connectivity at low input
concentrations and significant modularization at moderate to high input concentrations. This general result, which directly
follows from the properties of individual transfer functions, contradicts notions of ubiquitous complexity by showing input-
dependent signal transmission inactivation.
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Introduction

Biochemical reaction systems are usually conceptualized as

dynamical systems - systems that evolve in continuous time and

may or may not receive additional input to the system.

Mathematically, this can be expressed by sets of ordinary

differential equations (ODE), such that rates of concentration

changes correspond to mass-action kinetic parameters [1,2]. In

this paper we use existing mass-action dynamical systems to

propose an alternate or additional framework for modeling and

interpretation of biochemical reaction systems. We provide an

algebraic analysis of biochemical reaction systems as a matrix of

concentrations for all species, given certain input concentrations.

These concentrations correspond to steady-state amounts which

are reached after a delay time, and the delay times can be

measured by the system as well.

We use an arbitrary published model [3] as an example for

a ODE dynamical model of biochemical reactions. The model

simulates intracellular signal transduction from receptor binding to

molecular targets in different cellular compartments, as an

important component in the long-term regulation of protein

expression implied in neural and synaptic plasticity. In striatal

neurons, both a calcium-dependent pathway and a cAMP-de-

pendent pathway are activated during the initiation of neural

plasticity by NMDA/AMPA receptors and neuromodulator

receptors such as dopamine D1 receptors [4–6]. Their effects

and the integration of signaling on common targets such as kinases

and phosphatases have been the subject of a number of

computational models [7–11]. In particular, the role of the

DARPP-32 protein in striatal neurons in determining the outcome

of membrane signaling has been modeled by different groups,

based on a common set of experimental data [3,12,13], cf. [14–

18]. Many similar models [19] have been developed in the last 10–

12 years in different areas of biology. Models with dozens or more

of species have up to a 100 or more equations and are

consequently complex and difficult to understand as continuous

dynamical systems [20]. A transformation into a matrix-based

formulation of input-output functions, even at the cost of a loss of

fast dynamical modeling, promises considerable gain of insight and

access to a different set of mathematical tools. Simple mass-action

kinetic models may be criticized for disregarding the real

complexity of spatio-temporal molecular interactions. Some

alternatives use spatial grids and stochastic versions of biochemical

reactions to capture this complexity [21,22]. However, certain

variations, such as compartmental modeling with diffusion, altered

kinetics for anchored proteins, or employing molecular kinetics as

the basis for binding constants may be employed within the mass-
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action kinetic framework to achieve better correspondence with

the biological reality. These variations can be directly transferred

to the proposed model as well.

In our approach, we identify input nodes, and then pre-

compute the outcomes for all internal species (target species) in

response to biological meaningful ranges and combinations of

inputs. This allows to analyze a biochemical reaction system under

all possible input conditions. The analysis can be done for

arbitrary ODE models [19], provided minimal requirements on

conservation properties are realized (cf. section ‘‘Methods’’, [23]).

The results are stored as vectors or matrices (‘systemic protein

signaling functions’ (psfs)) and can be fitted with functional

parameters. It is an important aspect of the model that

computations are done systemically. In section ‘‘Elementary

Biochemical Reactions’’, source-target interactions are first

analyzed in isolation (‘elementary psfs’). They all constitute

hyperbolic saturation functions, therefore rate parameters can be

uniformly translated into functional parameters for signal trans-

mission strength. But in a systemic context, source-target

interactions change because of additional influences on the species

from other equations in the system (section ‘‘Systemic PSF

Analysis’’). Therefore a fitted systemic psf from A to B is different

from the elementary psf. The pre-computed, systemic psfs may be

used to create state-change simulation models, i.e. discrete-time

models, which can be compared with continuous ODE models

(section ‘‘Systemic Delay and State-change Dynamics’’). What is

significant and novel about our analysis is that we can extract

systemic transfer functions from the complex system, and thereby

dissect the system into parts. We can analyze the transmission

properties of individual species, compare their minimum and

maximum values, and the functional shape of their transmission

strength. Specifically, we can show under which circumstances

a link is functional, i.e. actually transmits information (section

‘‘Computing Input-dependent Modularity’’).

The analysis has a number of restrictions. An important

restriction is that our model does not allow for analysis of fast

interactions below the resolution of settling into steady-state. The

requirement of conservation of mass guarantees that for each input

concentrations will eventually settle to some equilibrium value, but

due to the prevalence of feedback interactions, they may still

produce transients or dampened oscillations. This means that fast

fluctuations of input will not be adequately simulated using pre-

computed psf functions alone. It is then necessary to refer to the

underlying ODE model. The model is most suitable for studying

disease states, pharmacological interventions, genetic manipula-

tions, miRNA interference, or any system conditions which

fundamentally alter the presence or concentration of molecular

species. These conditions may then be tested either in steady-state

or with a sequence of sufficiently slow input constellations. A

second restriction is that the model inherits parameter uncertainty

from mass-action kinetic models. These parameters are derived

from experimental measurements, but typically with a high degree

of uncertainty [24]. Our analysis offers a clear distinction between

elementary and systemic functional parameters and explains why

experimental measurements are so highly dependent on the

systemic context. In this paper, we have treated elementary

parameters as given by the underlying model [3]. In principle,

systemic functional interactions can be measured experimentally,

and in the model each interaction can be adjusted separately. This

may offer a novel theoretical approach towards finding adequate

elementary rate parameters.

Materials and Methods

System Definition
A biochemical reaction system formulation for signal trans-

duction contains two different types of reactions:

1. complex formation

½A�z½B�<½AB�

2. enzymatic reactions

½A�z½E�<½AE�?½A��zE

The system has concentrations for species A, B and E (A*,

AE and AB can be calculated), a set of kinetic rate parameters

kon and k off for the forward and backward binding reactions in

complex formation, and kcat for the rate of enzymatic

production. The equational structure, the kinetic parameters

and the initial concentrations of the model [3] are reproduced

in Tables 1, 2, 3, 4, with slight modifications: Equation 40 was

added to ‘close the loop’ from AMP to ATP and thus provide

for conservation of all molecules in the system. Conservation of

mass is necessary in order for all species to reach equilibrium. It

means that for any forward reaction there needs to be a reverse

reaction, such that any species receives both input and output

(‘weakly reversible system’, cf. [23]). This implies that pure loss

reactions, like endocytosis or diffusion across the cell membrane

(secretion) cannot adequately be modeled with this system,

unless balancing reactions are added which make up for the

loss. E.g., for endocytosis of a ligand-bound receptor, both the

ligand and the receptor, possibly independently, have to be

recycled, which means that bridging equations for receptor-

ligand dissolution in the endocytosed state, and input rates for

receptors and ligands have to be added. Secondly, the species

PP1 and its interactions (4 equations) were left out, since they

contain a complex which dissolves into its 3 components in one

step: this would require a, fairly trivial, addition to the current

psf system implementation. The system can be depicted as

a bipartite graph with nodes for species and nodes for reactions.

PSF Analysis
In order to set up source-target functions, we need to select

input nodes from the available species nodes. In this example, we

used Da (dopamine as ligand for the D1 receptor) and Ca

(extracellular calcium that diffuses through ion channels in the

membrane). We use input concentrations over a specified range

(e.g., between 60nM and 5mM for Da), sample over the range with

e. g. n = 20 steps, and use the differential equation implementation

of the system to calculate the output values for all species for each

sampling step. Because of the conservation of molecules, all species

reach steady-state after a sufficient period of time. We define

steady-state pragmatically by relative change of less than 2% over

100s. We also use the established terminology of EC10, EC50,

EC90 etc. to indicate 10, 50 or 90% of steady-state concentration

value. Additionally, we calculate the delay in reaching steady-state.

We store input-target concentration mappings in a vector (single-

input system), or a matrix (multiple-input system). We fit the

vectors with hyperbolic or linear functions, using standard

techniques in Matlab (fminsearch, [25]). In this way we derive

parameters which can be analyzed and used instead of the explicit

Transfer Functions for Protein Signal Transduction
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vectors. (In this paper, the fitting is only done for single-input

systems, multiple-input systems require different techniques.).

All information on source-target transfer functions for the

complete, complex signaling system (‘systemic psf’) can be stored in

a static data structure. For each species, it contains its concentra-

tion range, and for each reaction, it contains the parameters of the

functional fit. We gain the possibility to regard any species as

source and any other species as target (they may be coupled by an

arbitrary number of reactions) and obtain a systemic psf as the

transfer function between them. This representation allows to

analyze the complex signaling system by its parts, i.e. as a set of

matrices or vectors, which is the main achievement relative to the

ODE dynamical system. In addition, dynamical simulation with

appropriate update times may be realized by the psf representation

alone, i.e. the psf simulation is not in itself atemporal, but only

discrete and fairly slow.

We visualize the data structure as a bipartite graph, and label it

with the calculated numeric values. Each species node is labeled

with its attainable concentration range given the input range. For

complex formation reactions, we show both ½A�?½AB� and

½B�?½AB�. For enzymatic reactions we show [E] as the source

and [A*] as the target (½E�?½A��). The result is a labeled bipartite

graph, called a ‘weighted dynamic graph’.

Results

Elementary Biochemical Reactions
We want to represent a biochemical reaction by a time-

independent signal transfer function, such that y~f (x) for two

species x,y. We do this by designating a source species x and then

calculating the steady-state value for another species, the target

species y, for any value of x, given the differential equations for the

biochemical reaction. For complex formation

½A�z½B�<½AB�

where the total concentrations for [A] and [B] and kinetic rate

parameters kon, k off (with Kd~ koff
kon

) are given, the differential

equations are:

dxdt(A)~k off ½AB�{kon½A�½B�

dxdt(B)~k off ½AB�{kon½A�½B�

dxdt(AB)~{k off ½AB�zkon½A�½B�

Table 1. Reactions in the cAMP pathway.

kon koff kcat

1 Da+D1R«DaD1R 0.00111 10

2 DaD1R+Gabc«DaD1RGabc 0.0006 0.001

3 Gabc+D1R«GabcD1R 6e-005 0.0003

4 GabcD1R+Da«DaD1RGabc 0.00333 10

5 DaD1RGabcRDaD1R+GoaGTP+Gbc 20

6 GoaGTPRGoaGDP 10

7 GoaGDP+GbcRGabc 100

8 GoaGTP+AC5«AC5GoaGTP 0.0385 50

9 ATP+AC5GoaGTP«AC5GoaGTP_ATPRcAMP+AC5GoaGTP 0.000128 0.261 28.46

10 AC5+Ca«AC5Ca 0.001 0.9

11 AC5Ca+GoaGTP«AC5CaGoaGTP 0.0192 25

12 ATP+AC5CAGoaGTP«AC5CaGoaGTP_ATPRcAMP+AC5aGoaGTP 6e-005 0.131 14.23

13 PDE1+Ca4CaM«PDE1CaM 0.1 1

14 cAMP+PDE1CaM«PDE1CaM_cAMPRAMP+PDE1CaM 0.0046 44 11

15 cAMP+PDE4«PDE4_cAMPRAMP+PDE4 0.02 72 18

16 PKA+cAMP«PKAcAMP2 2.6e-005 0.006

17 PKAcAMP2+cAMP«PKAcAMP4 3.46e-005 0.06

18 PKAr+PKAc«PKAcAMP4 0.00102 0.0048

doi:10.1371/journal.pone.0055762.t001

Table 2. Reactions in the Ca pathway.

kon koff kcat

19 Ca4CaM+PP2B«PP2BCa4CaM 1 0.3

20 PP2BCa2CaM+Ca«PP2BCa4CaM 0.1 10

21 CaM+PP2B«PP2BCaM 1 3

22 Ca2CaM+PP2B«PP2BCa2CaM 1 0.3

23 PP2BCaM+Ca«PP2BCa2CaM 0.006 0.91

24 CaM+Ca«Ca2CaM 0.006 9.1

25 Ca2CaM+Ca«Ca4CaM 0.1 1000

26 Ca4CaM+CaMKII«CaMKIICA4CaM 0.00075 0.1

27 CaMKIICa4CaMRCaMKIIpCa4CaM 0.005

28 CaMKIIpCa4CaMRCaMKIICa4CaM 0.015

doi:10.1371/journal.pone.0055762.t002
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We may now calculate the concentration values f (x)~y for

a target species [AB] given a range of input values for x, e.g. the

source species [A]. (Fig. 1A).

In this way we separate the calculation of the signal response

magnitude, i. e. the steady-state concentration, from the calcula-

tion of the time until a steady-state value is reached, the delay. For

different x, f (x) will be reached after a variable delay (Fig. 1B).

With some modification, the same transformation applies to

enzymatic reactions. The kinetic rate parameters are Kd~ koff
kon

(for

<) and kcat (for ?).

½A�z½E1�<½AE1�?½A��z½E1�

Here it is required that the enzymatic reaction is reversible, i.e.

a reaction

½A��?½A�

exists. (For instance,

½A��z½E2�<½A�E2�?½A�z½E2�

is a reaction that reverses [A*]. ) The differential equations, with

kcat2 for ½A��?½A�, are:

dxdt(A)~koff ½AE1�{kon½A�½E1�zkcat2½A��

dxdt(E1)~(koff zkcat)½AE1�{kon½A� � ½E1�

dxdt(A � )~kcat½AE1�{kcat2½A��

dxdt(AE1)~kon½A�½E1�{(koff zkcat)½AE1�

Given concentrations for E1, A and kinetic rate parameters Kd,
kcat and kcat2, we may now derive a function with x as the source

species ½E1� and y as the target species ½A�� (Fig. 1C).
In both cases the resulting curve can be fitted by a saturating

hyperbolic function.

y~f (x)~ymax{(
ymax{ymin

1z( x
C
)n

)

Here ymin, the baseline concentration, is usually set to 0.

If we choose [A] as the target of [E1], we get a negative slope

psf.

y~f (x)~ymin{(
ymin{ymax

1z( x
C
)n

)

We call this function the elementary protein signaling
function or elementary psf. This function is somewhat related to

a Hill equation [26,27]. A Hill equation is a function fitted to an

experimental measurement to derive a dose-response relationship,

comparable to the psf. The Hill equation allows to calculate

a fractional concentration h for the target (e.g. a receptor-ligand

complex) from the source concentration ½L�, given Kd , and fitting

a parameter n for the steepness of the curve.

h~
½L�n

Kdz½L�n

Table 3. DARPP-32 reactions.

kon koff kcat

29 DARPP32+PKAc«DARPP32PKAcRpThr34+PKAc 0.0027 8 2

30 PP2A+PKAc«PKAcPP2ARPP2Ap+PKAc 0.0025 0.3 0.1

31 PP2Ap+PP2A 0.004

32 pThr34+PP2BCaCaM«pThr34PP2BRDARPP32+PP2BCa4CaM 0.001 2 0.5

33 pThr34+PP2A«pThr34PP2ARDARPP32+PP2A 0.0001 2 0.5

34 DARPP32+Cdk5«DARPP32Cdk5RpThr75+Cdk5 0.00045 2 0.5

35 pThr75+PKAc«pThr75PKc 0.00037 1

36 pThr75+PP2Ap«PThr75PP2ApRDARPP32+PP2Ap 0.0004 12 3

37 pThr75+PP2A«PThr75PP2ARDARPP32+PP2A 0.0001 6.4 1.6

38 1PP2A+4Ca«1PP2Ac 7.72e-012 0.01

39 pThr75+PP2Ac«PThr75PP2AcRDARPP32+PP2Ac 0.0004 12 3

40 AMPRATP 10

doi:10.1371/journal.pone.0055762.t003

Table 4. Initial Concentrations.

D1R 500 CaMKII 20000 PDE1 4000 PP1 5000

Gabc 3000 DARPP32 50000 PDE4 2000 Cdk5 1800

AC5 2500 PP2A 2000 PKA 1200 Ca 1000

ATP 2e+006 PP2B 4000 CaM 10000 Da 5000

doi:10.1371/journal.pone.0055762.t004
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The concentration of the other compound of the complex is not

used (assumed large), and the absolute magnitude of the target is

not calculated. An equivalent for enzymatic reactions is not

defined. The parameter n allows to measure the effect of

competing binding reactions (n = 1 if none are present), which in

our terminology translates into a systemic psf with multiple

binding partners for a single target compound. Systemic psfs are

a more general concept than Hill equations, but they relate to the

same type of data, namely dose-response functions in steady-state.

We have seen that signal transmission strength is uniformly

characterized by saturating hyperbolic functions. This means that

it is highest for low x and diminishes as x increases (Fig. 1D). For

instance, in Fig. 1D, a 100% signal increase leads to 100%, 18%

or only 6% increase in the target depending on the source

concentration. For enzymatic reactions, absolute concentration

changes have different effects for sources and targets of a signaling

interaction. Signal transmission strength depends on the absolute

concentration of the source, the target concentration is irrelevant.

This is an important observation, since protein signaling systems

are subject to long-term regulation of concentrations. In the

context of disease states or other sources of protein expression

up2/downregulation, independence of transmission strength from

target concentration may be an important conservative property.

Signal transmission is strongest if a source species is expressed at

a low concentration. We need to bear in mind however, that

reaction velocity operates inversely to signal transmission strength:

a low source concentration means a slow reaction (Fig. 1B). A

functioning signaling system would therefore have to use an

intermediate range to maximize signal transmission within time

constraints. Our analysis opens a new way of analysis for

a signaling system: Optimization techniques could find a best

source range for both time and signal transmission constraints.

Systemic PSF Analysis
A source-target psf can be derived for any pair of species in

a complex biochemical reaction system. For a complex system, or

set of equations, we define a set of input nodes, and compute the

output values for each possible input configuration. The analysis

gives us the output concentration range (notwithstanding tran-

sients in a dynamic context, s. below) for each species, as well as

a (fitted) function, or matrix of input-output correspondences. A

biochemical reaction will produce a different psf, when it is

elementary or when it is embedded in a context, where the

participants of the elementary reaction also participate in other

reactions. This is true for both protein complex formation and

enzymatic reactions. We therefore call source-target functions

‘systemic psfs’, when they are derived from the context of a specific

signaling system.

We have provided this analysis for the example system. We

show the concentration ranges and the signal transmission

functions for the whole system [3] as a weighted dynamic graph

for Da as a single input (Fig. 2). We label each species node with its

Figure 1. Properties of psf functions. A. Complex formation: Psfs were generated for ½A�z½B�<½AB� with Kd~200,500,2000,
½A�0~10nM{10mM ; ½B�0~7mM , and fitted with the saturating hyperbolic function shown in the figure. For an elementary reaction, C~Kd . All
other curves were generated only by varying C, where ymax~½B�0 and n= 1. The slope at C indicates the signal transmission strength. B. Dynamics of
complex formation: ½A�z½B�<½AB� with Kd~200, ½B�0~200nM ; ½A�0~200nM{7mM . Increasing concentrations for the source species ½A�0 speeds
up the reaction. C. Enzymatic Reactions with Reverse Reaction: Example reaction with ½A�0 = 200, kon = 0.00026; koff =1.5; kcat = 30.4; kcat2 = 0.26
(shown in red) and variations (shown in green, blue). Both the forward reaction (kcat) and reverse reaction (kcat2) parameters are varied by 30%–200%.
Variability in signal transmission is expressed by the fitted parameter C (half-maximal activation) in a uniform way. D. Signal Transmission Strength: A
100% increase of input yields diminishing increases at higher concentrations. Signals are shown at EC5, EC50 and EC95.
doi:10.1371/journal.pone.0055762.g001
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concentration range, determine source and target species nodes for

each reaction node, and provide fits for the systemic psf, the

transfer function that characterizes each reaction. We see from

(Fig. 2) that a number of systemic psfs can be fitted well with

a linear function (y~mxzb), showing that systemic psfs

sometimes consist only of a short section from a full mapping of

concentration values. Also, many species have only small

concentration ranges, which means they don’t have much

response to Da input.

It is an obvious advantage of the psf analysis that we are able to

dissect the complex system and extract local properties, such as

concentration ranges of individual species, and transfer functions

for individual reactions under input stimulation. This allows to

critically analyze a model, compare these properties with

biological data, and adjust or improve the model in a detailed

manner.

In Fig. 3, the concentration ranges for some target species are

given. We see, for instance, that among DARPP-32 phosphory-

lation variants, pThr75 is always more abundant that pThr34, by

an order of magnitude. This is an example of a high-level

property, which could be related to biological data. As another

example, we notice that the active receptor conformation (Da-

D1R) remains below 160 nM even under stimulation with 1mM
Da and more. With a D1R total concentration of 500 nM, we

could adjust the ligand binding coefficient to produce more or less

active receptors. Finally, the analysis shows a very low maximal

PKAc level (12nM ) in spite of a total PKA concentration of

1:2mM. In the original model [3], blind parameter adjustment has

probably generated a very low level of PKAc in order to achieve

high signal transmission for phosphorylation of the target species

pThr34, which is experimentally required, but which could be

achieved in other ways (e.g. PP2B) as well.

With our analysis, properties of individual species become

apparent, and they can be compared to biological data, tested and

adjusted on a localized basis. Even more interestingly, we could

look for principles of ‘rational system design’, for instance question

the transmission of a seven-fold increase of cAMP in the mM range

to a maximal three-fold increase in the 109s of nM for PKAc, and

analyze given biological systems from this perspective.

In addition to the concentration ranges, we also have access to

the functional mapping between species in the model. The

systemic psfs, like the elementary psfs, are stored as vectors, which

are matched by functional parameters. The advantage of the psf

analysis is that we can probe a complex system on a single reaction

level because the influence of the cellular context is encoded in the

systemic psf. Thus we can compare the elementary psf with its

transformation as a systemic psf for individual reactions. Fig. 4A

shows elementary and systemic psfs for G-protein activation of

AC5 and the calcium-activated complex AC5Ca. We see that the

systemic psfs are somewhat deflected, compared to the elementary

psf, which is what we expect from the parallel activation of AC5Ca

and AC5 by the same species. We may specify a desired psf using

only functional parameters, and adjust elementary parameters to

match the psf (Fig. 4B). A local change to the Kd binding

coefficient between AC5Ca and GoaGTP allows a change in the

systemic function. Since other systemic psfs may be affected by

such a change - this can be detected by re-computing the weighted

dynamic graph - more adjustments of elementary rate parameters

may be indicated, possibly by an iterative process (cf. [28]).

Sampling for multiple inputs yields a transfer function matrix,

which can be analyzed for dependence of the target concentration

Figure 2. Weighted Dynamic Network View of the Model System. Input conditions are Ca = 8mM and Da= 60nM{5mM (total available
concentration). Each species node is labeled with its steady-state concentration range. Reaction nodes are labeled by parameters for a hyperbolic fit,
or a linear fit if that was sufficient. Complex formation reactions (red) are labeled for both ½A�?½AB� and ½B�?½AB� (left to right), enzymatic reactions
(blue) are only labeled for ½E�?½A��. The low free concentration for Ca (64–69 nM) is a feature of this model, where Kds are set in such a way that
most Ca is bound to calmodulin, and then to other proteins (cAMKII Kinase, PP2B phosphatase and PDE1), such that all ions are indeed accounted for
(some species have 2 or 4 Ca ions bound). The present analysis allows to critically evaluate the effect of elementray kinetic parameters on steady-state
properties.
doi:10.1371/journal.pone.0055762.g002
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on each input separately. This can be done by standard matrix

analysis such as principal component analysis (PCA). For our

example, we show how species which are poised to integrate

signals from two different sources do this under the numeric

conditions (Fig. 5). For cAMP production (AC5), we find that

AC5GoaGTP is dependent only on Da (Fig. 5A), AC5Ca is only

dependent on Ca (Fig. 5B), while AC5CaGoaGTP is almost not

activated at all (Fig. 5C). Even though a link of reactions (Ca-

AC5Ca-AC5CaGoaGTP-cAMP) exists, signal integration of Ca

and Da on AC5 fails because of the weak transmission from

GoaGTP to AC5Ca. Signal integration between Ca and Da

occurs for cAMP degradation by calcium-dependent calmodulin

regulation of PDE1. PP2A with the two variants (calcium-

activated) PP2Ac and (PKAc-activated) PP2Ap is another potential

source of signal integration (Fig. 5D,E,F). The psf analysis shows

when signal integration occurs (here: Da having influence on

PP2Ac), and when this effect is negligible (here: Ca not having

influence on PP2Ap). This may now be studied for correspondence

with the biological situation. These results emphasize the necessity

for numeric analysis of input-dependence, beyond the mere

existence of links.

Systemic Delay and State-change Dynamics
We would like to be able to use systemic psfs with their simple

and transparent mathematical structure for dynamical simulations.

This allows direct experimental testing and fitting by time series

measurements beyond dose-response relationships. In order to do

this, we need to compute the systemic delays, i.e. the reaction time

until a steady state is formed. Then we can build a state-change

dynamical model from systemic psfs alone, using the appropriate

delays for the input and the update of a system state.

Systemic delays depend on the absolute size of the signal and

also the direction (increase/decrease) of signaling. Delays for

species in the example system in response to input are shown in

Table 5. For the computation of target concentrations, we only

need a ratio such as kon
koff

~Kd (binding coefficient) or kcat
kcat2

for

forward and backward enzymatic reactions. For the delays, the

difference between kon and koff or kcat and kcat2 defines reaction

times for synthesis and degradation. Therefore, delay computa-

tions are fairly complex, but the results are often within a fairly

narrow range for each reaction (Table 5). For discrete state-change

simulations we may use maximal delays for each species.

From a biological perspective, this table provides an important

test on the validity of the model. In many cases, systemic delays

can be measured. For instance, the delay for PKAc at 150–250 s

rather than 30–60 s, as measured in [29] (cf. [9]), seems large and

may be an indication for a revision of the underlying parameters.

From the theoretical perspective, this system seems to operate on

separate time scales: 1–10 s, 150–300 s and 450–600 s. Such

a separation of reactions by their characteristic delay times is

interesting, since it could lead to simulation models with different

discrete time scales. Here we may calculate psf values for fast

species with 10 s time resolution, for intermediate species with

300 s time resolution, and for slow species with 600 s time

resolution, i.e. system update time for state changes (Fig. 6A,B). It

is an empirical question, whether separate time scales rather than

a continuum of delay values will prove to be an organizing

principle in protein signaling systems [30]. A general study, for

instance, using models from the BioModels Database [19], might

give answers to this question. Time scale separation may provide

a conservative property of a signaling system against fluctuations of

concentrations. If total concentrations in the system change, e.g.

by protein expression up- or down regulation, miRNA interaction,

or diffusional processes across compartments, the relevant

interactions will continue within each time slice. Concerted

regulation of protein expression levels may set a clock for the

rapidity of signal transduction.

Systemic dynamics, in contrast to elementary reaction dynam-

ics, need not follow a hyperbolic curve. If there are feedbacks in

the system, the dynamics may contain transients, i.e. the

concentration may be higher or lower before it settles into its

steady-state value [31]. The dynamic response of target species to

input are shown in Fig. 6A,B. For a species without a transient

Figure 3. Ranges of Concentrations in Response to Input (Da). For a number of relevant target species from the biological model, the range
of concentrations for input (Da) from 100 nM to 5mM is shown (Ca - high, 8mM).
doi:10.1371/journal.pone.0055762.g003
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response, the actual value of a species at a shorter delay is always

bounded by the steady-state value, and all possible concentrations

in a continuous-time dynamical system are bounded by the psf

concentration range [30]. However, if there are transients, a psf-

based dynamical simulation will miss these transients and plot

a simplified trajectory. This means that results from a psf analysis

with slow inputs cannot be extrapolated to much faster input

dynamics - in contrast to continuous-timed dynamical systems

where arbitrary time units can be chosen. This restriction may

capture a biological reality: steady-state behavior provides the

framework and may operate according to rules and principles

which are separate from the effects of short term fluctuations.

The psf system allows to generate a dynamical system as

a sequence of states defined by fluctuations of input. Fig. 6C,D

Figure 4. Local adjustment of a transfer function. A. Elementary (dashed) and systemic (continuous) psfs for two targets of GoaGTP. A new
systemic psf for GoaGTP-AC5CaGoaGTP is defined by functional parameter adjustment (black line). B. Elementary parameters were changed to match
the new systemic psf. For AC5CaGoaGTP, kon = 0.0192, k off = 25 was adjusted to kon = 0.022, k off = 1.5, for AC5GoaGTP, kon = 0.0385, k off =50 was
adjusted to kon = 0.0495, k off = 48.5.
doi:10.1371/journal.pone.0055762.g004
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shows an overlay of a differential equation simulation and psf state

change simulation for a sequence of inputs with 10 s duration.

Accordingly, the psf approximation is excellent for all species with

a delay time of v10s. If we plot psf values for slow species at

intervals corresponding to their maximal delays, we may linearly

interpolate between points, and in this case achieve a good

approximation of the continuous-time model.

A psf-based dynamical system is an important tool in order to

generate a time-series simulation from a calculated model system

for comparison with experimental data. The psf system utilizes

parameters which are uniform and have linear error ranges (cf.

Fig. 1A,C), and therefore should improve interaction of the model

with the experimental reality. The psf model will also allow to

predict the optimal stimulation times for different inputs such that

responses can be measured in steady-state.

Computing Input-dependent Modularity
Since we are able to define signal transmission capacity, we have

a tool to investigate modularity of a signaling system. As species

saturate or return to basal levels, they act as inactive links, i.e. they

are stuck at the same concentration value, and cannot transmit

further increases or decreases of inputs. We hypothesize that this

effect is actually important in many protein signaling systems. We

may define an inactive connection as a species node which has

only limited (e.g. v10%) signal transmission capacity. The

interconnectedness of a system is then proportional to the number

of inactive connections, and a module is a part of the system with

few or no active connections to the rest of the system.

In the following we discuss the activation/inactivation of links

with respect to input increases. I.e. given a certain level of

extracellular signaling, what happens if this level is raised and then

kept at the higher level for some time, sufficient for the system to

settle into a new steady state? Which species nodes will respond to

the increase and transmit it to downstream targets, and which

species will become saturated and only respond with their

saturated value? It is also clear that species which have become

saturated (inactive) will not respond to fast extracellular signals

anymore. This analysis is therefore useful both for the steady-state

context and for understanding fast input fluctuations. There is an

input level for each target species, where the species ceases to be

responsive to further input increases. If that input level has been

reached, the species can be considered to have become an inactive

connection, i.e. a node which does not transmit signals. We may

define systemic psfs for ‘input-target psfs’ from the input to any

target species (Fig. 7). We notice how number of steps in the

computation of a species concentration relates to a lower cut-off

Figure 5. Dependence of target species on Ca and Da inputs. The 2D psf shows species which segregate to only one of the input pathways
(A, B, F), a species which remains unresponsive (C), and species which show some signal integration in their input constellation (D, E).
doi:10.1371/journal.pone.0055762.g005

Table 5. Delays.

Species 0.06R0.5mM 0.06R4.5mM 0.5R00.6mM 4.5R0.06mM

DaD1R 3.6 0.8 10.1 10

AC5GoaGTP 7.8 2.4 19 20

AC5CaGoaGTP 8.1 2.4 19.5 26

cAMP 7.8 3.1 18.1 18

PKAc 251 164 347 300

pThr34 288 200 369 307

PP2Ap 511 387 706 683

PP2Ac 600 483 756 717

pThr75 493 359 756 755

For near instantaneous input signal Da at shown concentrations, the table
shows delays (in s) to reach EC5/EC95 for target species. Decrease is usually
slower than increase, due to the asymmetry of kon/koff binding parameters.
Delay times are sensitive to the absolute size of the signal, with delays being
faster for larger signals.
doi:10.1371/journal.pone.0055762.t005
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value for signal transmission (e.g. DaD1R, AC5GoaGTP, cAMP

vs. PKAc, pThr34, pThr75). In other words, earlier steps in the

sequence saturate at a higher input level than later steps. Two

parallel targets (pThr34, PP2Ap) of an intermediate step (PKAc)

may saturate at very different input levels (~33mM for pThr34 vs.

1:5mM for PP2Ap). This mechanism demonstrates the effect of

a sequence of saturating functions, and constitutes a general

principle in the construction of a signal transduction system.

The model allows to study whether a node responds to a specific

input with any change of steady-state. In Fig. 8 and figures S1, S2,

we show modularization of the system under various Da and Ca

input conditions. With Da input and high Ca (Figure 8B), species

which are proximal to Da input, the receptor-ligand complex

DaD1R, the signaling complex through G proteins and adenylyl

cyclase AC5, as well as cAMP, are most responsive to Da over

a large range of input. Species in the ‘integration zone’ between

Da and Ca, such as DARPP-32, PP2A cease responding to Da

increases at lower levels and become inactive links at higher levels.

Species in the system with no significant change in concentration

at any input level are for the most part proximal to Ca instead of

Da, and thus highlight modularity among pathways. In this case,

we see that Da inputs are transmitted to distant targets only up to

an intermediate range and that there are a significant number of

species which do not react to Da at all. Above that range, even

though closely coupled targets still respond to the input, the signal

increase is not registered beyond cAMP production and synthesis.

With Ca low (Figure S1) there is widespread responsivity to Da up

to 1–2mM and only a few of the calcium-related species do not

respond at all. The Da signal is therefore able to influence the

calcium-related pathway, provided calcium is low.

When Ca is the input (Fig. 8A), the calcium-responsive proteins

like calmodulin, CaMKII, calcium-activated PP2B (calcineurin)

transmit signals, while the GPCR pathway remains almost

completely unresponsive. There is some signal integration with

calmodulin-activated PDE1 for cAMP. Other than that, we see

that PP2Ac and the pThr34 variant of DARPP-32 respond

strongest to calcium while PP2Ap and the pThr75 variant of

DARPP-32 have less or no responsiveness to calcium. With Da

low, as in Figure S2, again, most of the GPCR-related species do

not respond to Ca at all, or cease responding at 10–25% of

maximal Ca (1–4mM). However Ca-related species like calmod-

ulin, CamkII, PP2B remain responsive. The difference between

the high and low Da condition is small. Here the few existing links

from Ca to GPCR (such as Ca regulation of AC5) are not strong

enough to influence the GPCR pathway significantly in any

condition. In this case, it is not just the saturation that matters, the

input signal has limited reach in influencing distant species in

general.

We are analyzing a biological system with two ‘pathways’, the

cAMP and the calcium pathway, which are cross-linked in

a convergence zone of species which are influenced by both

pathways. It is remarkable how clearly three different modules

appear: the GPCR/cAMP pathway, the Ca pathway, and the

signal integration zone.

There is also a general observation to be made about signal

transmission in a protein signaling system: Signal integration is

strongest when inputs are low. This is a direct consequence of the

effect of coupling saturating nodes. It means that there are few

saturating species in the system which impose modularity, and

signals spread further. Widespread interconnectedness is only

Figure 6. Dynamics of target species to Da input. A. Fast species (v10s) have transients. The psf approximation only calculates the steady-
state value. B. For slow species no transients are apparent. It may take several minutes to reach steady state. C, D. Dots mark systemic psf values,
thick lines are continuous dynamical simulations by differential equations, thin lines are interpolations between 10s psf values. Red arrows mark time
points for interpolations for slow species like PP2Ac, PP2Ap, pThr34.
doi:10.1371/journal.pone.0055762.g006
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possible at low input levels. Because activation curves for

biochemical reactions are mostly uniform hyperbolic (saturating),

a stronger modularization with many inactive links results from

higher input levels. This may also have implications on transient

responses. For instance, phosphatase and kinase response often

differs with kinases being saturated only at higher input levels. If

and where that is the case, we may observe transient responses that

only reflect kinase activity, since phosphatases are saturated and

do not participate in signaling, they do not add or subtract and in

this way obscure the kinase signal. This shows that the steady-state

input-response system may work well as the framework wherein

fluctuating signaling operates.

Discussion

Continuous dynamical systems - systems that use change over

time as a system primitive - are notoriously difficult to analyze and

may not be the best choice of a tool for signal transduction systems

of moderate or large size. Steady-state matrix computations are

simple and fast, scale well to very large sizes, and offer multiple

Figure 7. Systemic psfs for input to target. Shown are EC90 and EC10 concentrations as cut-off thresholds for effective signaling by input and
the slope values at threshold.
doi:10.1371/journal.pone.0055762.g007
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opportunities for analysis. By calculating transfer functions from

a systemic dynamical model, we also gain the opportunity to

extract and analyze parts of the system. This may help in creating

re-usable system parts. This paper demonstrated a transformation

of a mass-action kinetic biochemical reaction model implemented

by a set of differential equations into an input-response transfer

function model. The transformation is done by calculating steady-

state concentrations for each species in response to a range of input

values, and then analyzing the resulting vectors (matrices) as the

basis of a transfer function (‘psf’). For small, toy-like networks of

few components, such dose-response relationships have been

investigated by [32]. They analyse kinetic models in the same way,

however, they don’t make a distinction between parameters in

elementary interactions, and the actual parameters in a systemic

context. They also do not address the question of temporal

embedding of the dose-response relations. In our approach, we use

dose-response functions, similar to Hill functions, but we are

extending the concept. By using rectangular signals, i.e. constant

signaling levels, we calculate the response as the steady-state value.

In addition, we calculate the time to steady-state from the

underlying dynamical model. Only because of this additional

computation can one attempt to create a discrete dynamical model

– something that is not within the purview of a Hill equation

model. Hill equations attempt to fit or create systemic parameters,

which are different from elementary parameters, i.e. they do

recognize the dependence of the transfer function on the systemic

context. The psf model is an approach of making Hill equations

(dose-response relations) work in large-scale modeling.

There are numerous attempts to simplify dynamical models in

the temporal domain by creating hybrid models (e.g. [33]).

Sometimes slow interactions are regarded as constant, and only

fast interactions are dynamically modeled. Sometimes, fast

interactions are replaced by time-independent values and only

slow interactions are dynamically modeled (many examples, for

instance [34]). There are also attempts to replace an ODE model

by a delay-differential equation (DDE) model, i.e. to compute and

use explicit time delays and eliminate many intermediate species,

simplifying the size of the model [35].

In our approach, time and concentration are regarded as

separate, which makes it different from any hybrid approach. The

main restriction is the assumption of a constant signaling level over

periods of time sufficient to induce steady-state. The approach is

therefore best suited to check the limiting conditions of a dynamical

model, e.g. in drug development applications, where multiple

dose-response relations derived from the model can be cross-

checked and used to locally improve the model. However, the

simple, atemporal transfer functions can also be applied directly:

(a) in experimental settings where signal duration can be

controlled, and (b) in physiological settings, when fluctuations

occur around different mean values, and we model the step

changes for the mean extracellular signaling level, but not the

short-term fluctuations. It could be shown that psfs are sufficient to

create discrete time dynamical models, with certain restrictions on

fast dynamical inputs below the time resolution of the system. The

primary focus of the analysis was on single-input systems, where

signaling functions can be matched by parameterized hyperbolic

functions. We showed how the analysis can be extended to

multiple-input systems by computing and analyzing psf transfer

matrices. The psf functions allow to cut through the complexity of

the model and examine interactions in a localized way. If

continuous dynamical models are being used with the goal of

adequately simulating cellular processes, this kind of analysis is an

indispensable tool to check for the consequences of the modeling

assumptions in terms of dose-response relationships. The analyt-

ical tools of the psf approach may also be used to systematically

investigate the effect of localized changes to the system [28,36],

and to offer local corrections to the complex system in a trans-

parent way.

The extraction of input-target psfs with characteristic hyperbolic

saturating properties allows to determine input level dependent

inactivation of a species node. Accordingly, we can define the

limits of signal transmission by the distribution of inactive nodes.

In the example system, a strong distinction of calcium- and cAMP-

dependent pathways and a signal integration zone were revealed.

We could see that at low levels of input, widespread interactions

are possible, while at higher levels of input, many species enter into

a state of a constant function value and become inactive links. This

corresponds to biological results and expectations, and provides

a foundation for the concept of pathways in signal transduction.

For transient responses, the steady-state input-response system

Figure 8. Modularity in signal transmission. Species nodes are colored according to their saturation/depletion status (EC90/EC10) in response
to percentage of input. A. Input is Ca (100 nM…10mM), Da is set at 5mM . The figure shows a large number of species which have no response (less
than 10%) to Ca input, two separate pathways are apparent. Species inactivate at low input levels in the ‘integration zone’. B. Input is Da
(20 nM…5mM), Ca is set at 8mM . The graph shows input-dependent inactivation of links. Individual effects can be studied. For instance, PDE4 (in
contrast to PDE1, PDE1CaM) shows responsivity to Da input because of a larger complex formation with cAMP, which subtracts from the enzyme
concentration.
doi:10.1371/journal.pone.0055762.g008
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provides the boundary values to which the system eventually

settles. This is especially interesting if we have saturating response

levels, which are unresponsive to further signaling (e.g. phospha-

tases), and allow transient signals (e.g. kinases) to emerge.

Signal transduction may also be analyzed from the perspective

of rational system design. Such work is still in its infancy. We may

for instance investigate the effect of negative feedback links on

concentration ranges and times to steady state. Another question

would be the optimization of a signal transduction system for the

trade-off between speed and efficacy of signal transmission. With

this choice of model, many new questions can be raised, and old

problems like parameter dependency, modularity or signal in-

tegration can be addressed in a novel way.

Supporting Information

Figure S1 Graph representation of signal transmission.
Input concentration for Da is 20nM … 5mM, for Ca is 100nM.

There is widespread interconnectedness for low inputs.

(EPS)

Figure S2 Graph representation of signal transmission.
Input concentration for Da is 100nM, for Ca is 100nM … 10mM.

The Da/GPCR pathway is clearly separated from Ca inputs.

(EPS)
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