
Citation: Philippova, A.N.;

Vorobyeva, D.V.; Gribanov, P.S.;

Dolgushin, F.M.; Osipov, S.N.

Diastereoselective Synthesis of

Highly Functionalized Proline

Derivatives. Molecules 2022, 27, 6898.

https://doi.org/10.3390/

molecules27206898

Academic Editor: Valentine G.

Nenajdenko

Received: 27 September 2022

Accepted: 12 October 2022

Published: 14 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Diastereoselective Synthesis of Highly Functionalized
Proline Derivatives
Anna N. Philippova 1, Daria V. Vorobyeva 1, Pavel S. Gribanov 1 , Fedor M. Dolgushin 2,3

and Sergey N. Osipov 1,*

1 A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov str. 28/1,
119334 Moscow, Russia

2 N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky
Prosp., 119071 Moscow, Russia

3 Plekhanov Russian University of Economics, 36 Stremyanny per., 117997 Moscow, Russia
* Correspondence: osipov@ineos.ac.ru; Tel.: +7-499-135-1873

Abstract: An efficient way to access highly functionalized proline derivatives was developed based
on a Cu(I)-catalyzed reaction between CF3-substituted allenynes and tosylazide, which involved a
cascade of [3 + 2]-cycloaddition/ketenimine and a rearrangement/Alder-ene cyclization to afford the
new proline framework with a high diastereoselectivity.
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1. Introduction

Proline and its functionalized derivatives are constituents of numerous natural prod-
ucts [1–3] and are widely used as pharmaceuticals, in biomedical research and as templates
in structure–function relationship studies directed toward the elucidation of biologically
active conformations [4,5]. In this context, ring-substituted and quaternary proline ana-
logues are of particular interest [6–13]. Some representative examples of bioactive prolines
are depicted in Figure 1. Because of the unique properties of fluorine-containing com-
pounds [14–18], fluorinated α-amino acids, especially their α-fluoromethyl substituted
counterparts [19–23], which can function as selective enzyme inhibitors [24,25], are very
attractive target molecules for the design of biologically active compounds.

Recently, we elaborated on a straightforward way to access functionalized allenynes
2 based on the [2,3]-sigmatropic rearrangement of propargyl-containing nitrogen ylides
generated in situ from α-CF3-diazo Compounds 1 and N,N-bis(propargyl)methylamine
(Scheme 1A) [26]. Allenynes 2 have proved to be unique doubly unsaturated synthons
that can afford a variety of the corresponding α-amino acid derivatives. Thus, the po-
tential of 2 has been clearly revealed in their synthetic transformation under transition
metal catalysis, e.g., during Pd-catalyzed Sonogashira coupling followed by intramolecular
[2 + 2] cycloaddition [27] and a co-mediated Pauson–Khand reaction [26], Cu-catalyzed
tandem amination/cyclization [28] and in intermolecular Ru-catalyzed dimerization [29]
(Scheme 1B). Now we wish to disclose a highly diastereoselective pathway to new densely
functionalized proline derivatives via a cascade reaction between allenynes 2 and tosy-
lazide, which is involved in Cu(I)-catalyzed alkyne-azide [3 + 2]-cycloaddition, ketenimine
rearrangement and Alder-ene cyclization (Scheme 1C). To the best of our knowledge, this
type of 1,6-allenyne transformation under metal catalysis to access proline derivatives has
been not reported before.
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2. Results and Discussion

In continuation of our long-term program on the synthesis of new fluorinated amino acids
using the transition-metal catalyzed transformation of the unsaturated precursors [30–34],
we tested the Cu(I)-catalyzed [3 + 2] cycloaddition reaction of allenyne 2a with tosylazide,
and we initially planned to obtain the corresponding allene-containing 1,2,3-triazole for
the investigation of its further chemical behavior, keeping in mind that 1,2,3-triazoles
with an electron-withdrawing aryl sulfonyl group on nitrogen are able to form extremely
reactive carbenoid species under metal catalysis [35–39]. However, during the course of
screening the optimal conditions and catalytic systems, the formation of CF3-substituted
proline derivative 4a was unexpectedly revealed in a good yield and had an excellent
diastereoselectivity (Scheme 2). The only diastereomer 4a was easily isolated in its pure
form via column chromatography on silica gel; its structure was unambiguously confirmed
by NMR-spectroscopy (1H, 13C and 19F) and X-ray analysis (Figure 2). The best yield of
proline 4a (62%) can be achieved by heating equimolar amounts of reagents in toluene at
90 ◦C in the presence of CuI (10 mol%) and 2,6-dimethylpyridine (1.5 equiv.) as a base for
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8 h. The usage of other copper catalysts (CuBr, CuTC, cationic complex Cu(MeCN)4PF6),
organic bases (Et3N, DIPEA and pyridines) and solvents (DCE, chloroform and dioxane))
leads to a significant decrease in the product yield.
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Figure 2. Structure of proline 4a (CCDC 2208592).

Then, we discovered that if the reaction is carried out at room temperature, another
product, acrylamidine 3a, is formed. The latter compound was isolated in a 60% yield
and was fully characterized using standard physico-chemical methods. It was also found
that allene-containing acrylamidine 3a is able to undergo intramolecular cyclization under
heating in toluene at 90 ◦C in the absence of any catalysts yielding proline 4a almost
quantitatively (Scheme 2).

A feasible reaction pathway (Scheme 3) may include the initial formation of copper
triazolide A, which can be further transformed into the corresponding ketenimine B via
the release of nitrogen gas [40–43]. The latter undergoes a skeleton rearrangement via the
formation of a relatively unstable four-membered ring intermediate C, leading to acrylami-
dine 3a. A similar rearrangement has been previously described for the intramolecular
annulation of N-tethered N-sulfonyl-1,2,3-triazoles [44]. Finally, the intramolecular Alder-
ene cycloisomerization of allene-containing acrylamidine 3a (1,6-allenene) occurs with the
participation of an allene hydrogen through the concerted six-center transition state D to
give the product 4a with a high degree of diastereoselectivity. Such a thermal ene-type
reaction, in which the terminal allene acts as the ene-component and the alkene as the
enophile, has not been previously described. The closest literature analogy includes the
Alder-ene cycloisomerization of 1,6-allenynes, namely α-allenyl propiolamides [45].

It turns out that the analogous cascade process also takes place in the case of readily
available allenyne 1b [29] to afford the corresponding proline 4b as a single diastereomer
in an acceptable isolated yield under the same catalytic conditions (Scheme 4).

The presence of an ethynyl group in the structure of prolines 4a,b makes them unique
synthons for further useful transformations. For instance, 3-ethynyl substituted prolines
and their triazole-containing derivatives have been recently applied as universal building
blocks for the development of new ligands for the activation of ionotropic glutamate recep-
tors, which are important excitatory neurotransmitters in the central nervous system [13,46].
Therefore, in order to demonstrate one of the possible synthetic utilizations of the new
compounds 4a,b, we investigated their Cu(I)-catalyzed alkyne-azide coupling, i.e., the
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so-called “click” reaction, with alkyl and aryl azides. For these purposes, a series of copper
(I)/organic base systems were tested to activate the reaction. As a result, it was revealed
that the optimum condition providing the best yields of the target triazoloprolines 5 and
6 was the usage of copper thiophene-2-carboxylate (CuTC) in amounts of 5 mol.% in the
absence of any base. The reaction went to completion at room temperature in toluene for
4 h (Scheme 5).
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3. Materials and Methods
3.1. General Information

All the solvents used in the reactions were freshly distilled from appropriate drying
agents before use. All the reagents were used as purchased from Sigma-Aldrich (Mu-
nich, Germany). An analytical TLC was performed with Merck silica gel 60 F254 plates
(Darmstadt, Germany), and visualization was accomplished with UV light, iodine vapors
or by spraying with Ce(SO4)2 solution in 5% H2SO4. Chromatography was carried out
using Merck silica gel (Kieselgel 60, 0.063–0.200 mm, Darmstadt, Germany) and petroleum
ether/ethyl acetate as an eluent. NMR spectra were obtained with Bruker AV-300 (1H, 19F)
and AV-400 (1H, 13C, 19F) spectrometers (Karlsruhe, Germany), operating at 400 MHz for
1H (TMS reference), at 101 MHz for 13C, 282 and at 376 MHz for 19F (CCl3F reference).
High-Resolution Mass Spectrometry spectra were carried out using AB Sciex Triple TOF
5600+ (Framingham, MA, USA), which supported different ionization sources. The starting
allenynes were synthesized via the previously described protocol. The melting points
were determined on a Melting Point Apparatus Stuart SMP 10 (Wertheim, Germany) and
are uncorrected.

3.2. General Procedure for Preparation of 4a and 4b

An oven-dried 10 mL Schlenk tube equipped with a magnetic stirrer was under
vacuum and then back-filled with argon. Under a stream of argon, the allenyne (100 mg,
0.404 mmol) in anhydrous toluene (2 mL) was added, followed by the tosyl azide (84 mg,
0.424 mmol, 1.05 equiv.), CuI (7.7 mg, 10 mol.%) and 2,6-luthidine (65 mg, 0.606 mmol,
1.5 equiv.) sequentially. After the reaction mixture was stirred at RT for 4 h and 90 ◦C
overnight, it was cooled to room temperature and concentrated under reduced pressure.
The residue was purified by column chromatography on silica gel (petroleum ether/ethyl
acetate) to obtain the desired product 4a and 4b. This procedure worked perfectly on a
0.5 g scale without decreasing the product yield.

3.3. General Procedure for Preparation of 5a–5d and 6a–6c

To a solution of 4a or 4b (0.24 mmol) in anhydrous toluene (2 mL), the corresponding
amount of azide (0.48 mmol, 2 equiv.) and CuTC (copper (I) thiophene-2-carboxylate)
(2.3 mg, 5 mol.%) was added. The reaction mixture was stirred at room temperature for 4 h.
Upon the completion of the reaction (monitored) by TLC, the mixed solvent was removed
under reduced pressure and the residue was purified by column chromatography on silica
gel (petroleum ether/ethyl acetate, ethyl acetate) to obtain the corresponding triazole.
Methyl 2-(N-methyl-N′-tosylacrylimidamido)-2-(trifluoromethyl)penta-3,4-dienoate (3a)
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(3R*,4R*,Z)-Diethyl 3-ethynyl-1,4-dimethyl-5-(tosylimino)pyrrolidine-2,2-dicarboxylate (4b) 

 

An oven-dried 10 mL Schlenk tube equipped with a magnetic stirrer was under vacuum and
then back-filled with argon. Under a stream of argon, the allenyne (100 mg, 0.404 mmol)
was added, followed by the tosyl azide (84 mg, 0.424 mmol), CuI (7.7 mg, 10 mol.%) and
2,6-luthidine (65 mg, 0.606 mmol, 1.5 equiv.) in anhydrous toluene (2 mL). After the reaction
mixture was stirred at RT for 4h, it was concentrated under reduced pressure. The residue
was purified via column chromatography on silica gel (petroleum ether/ethyl acetate) to
obtain the desired product 3a.
Yield: 60% (101 mg) as a light-yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.72 (d, J = 8.2 Hz,
2H), 7.27 (d, J = 8.1 Hz, 2H), 6.64 (dd, J = 18.0, 12.0 Hz, 1H), 5.83 (d, J = 12.0 Hz, 1H), 5.72
(d, J = 18.0 Hz, 1H), 5.58 (t, J = 6.7 Hz, 1H), 5.05–4.96 (m, 2H), 3.56 (s, 3H), 3.20 (s, 3H),
2.41 (s, 3H). 19F NMR (376 MHz, CDCl3) δ-67.69. 13C NMR (101 MHz, CDCl3) δ 208.5,
164.7, 164.1, 142.7, 139.5, 129.1, 128.6, 126.8, 126.2, 123.2 (q, J = 288.3 Hz), 85.6, 80.5, 70.5 (q,
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J = 26.8 Hz), 53.3, 36.6, 21.6. HRMS (ESI): calcd. for C18H20F3N2O4S [M + H]+: 417.1090;
found: 417.1096.
(2R*,3R*,4R*,Z)-Methyl 3-ethynyl-1,4-dimethyl-5-(tosylimino)-2-(trifluoromethyl)pyrrolidine-2-
carboxylate (4a)
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h. Upon the completion of the reaction (monitored) by TLC, the mixed solvent was re-
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on silica gel (petroleum ether/ethyl acetate, ethyl acetate) to obtain the corresponding 
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An oven-dried 10 mL Schlenk tube equipped with a magnetic stirrer was under vacuum 

and then back-filled with argon. Under a stream of argon, the allenyne (100 mg, 0.404 

mmol) was added, followed by the tosyl azide (84 mg, 0.424 mmol), CuI (7.7 mg, 10 

mol.%) and 2,6-luthidine (65 mg, 0.606 mmol, 1.5 equiv.) in anhydrous toluene (2 mL). 

After the reaction mixture was stirred at RT for 4h, it was concentrated under reduced 

pressure. The residue was purified via column chromatography on silica gel (petroleum 

ether/ethyl acetate) to obtain the desired product 3a. 

Yield: 60% (101 mg) as a light-yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.72 (d, J = 8.2 Hz, 

2H), 7.27 (d, J = 8.1 Hz, 2H), 6.64 (dd, J = 18.0, 12.0 Hz, 1H), 5.83 (d, J = 12.0 Hz, 1H), 5.72 (d, 

J = 18.0 Hz, 1H), 5.58 (t, J = 6.7 Hz, 1H), 5.05–4.96 (m, 2H), 3.56 (s, 3H), 3.20 (s, 3H), 2.41 (s, 

3H). 19F NMR (376 MHz, CDCl3) δ-67.69. 13C NMR (101 MHz, CDCl3) δ 208.5, 164.7, 164.1, 

142.7, 139.5, 129.1, 128.6, 126.8, 126.2, 123.2 (q, J = 288.3 Hz), 85.6, 80.5, 70.5 (q, J = 26.8 Hz), 

53.3, 36.6, 21.6. HRMS (ESI): calcd. for C18H20F3N2O4S [M + H]+: 417.1090; found: 417.1096. 

(2R*,3R*,4R*,Z)-Methyl 

3-ethynyl-1,4-dimethyl-5-(tosylimino)-2-(trifluoromethyl)pyrrolidine-2-carboxylate (4a) 

 

Yield: 62% (104 mg) as a white solid. 1H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 8.2 Hz, 2H), 

7.25 (d, J = 8.0 Hz, 2H), 3.99 (p, J = 7.5 Hz, 1H), 3.87 (s, 3H), 3.64 (dd, J = 8.9, 2.5 Hz, 1H), 

2.90 (s, 3H), 2.44 (d, J = 2.5 Hz, 1H), 2.38 (s, 3H), 1.54 (d, J = 7.3 Hz, 1H). 19F NMR (376 MHz, 

CDCl3) δ-71.12. 13C NMR (101 MHz, CDCl3) δ 171.9, 164.8, 142.8, 140.0, 129.4, 126.5, 123.2 

(q, J = 286.2 Hz), 75.6 (q, J = 28.6 Hz), 75.3, 53.8, 38.2, 36.4, 30.9, 21.6, 15.6. HRMS (ESI): 

calcd. for C18H20F3N2O4S [M + H]+: 417.1090; found: 417.1095. 

(3R*,4R*,Z)-Diethyl 3-ethynyl-1,4-dimethyl-5-(tosylimino)pyrrolidine-2,2-dicarboxylate (4b) 

 

Yield: 62% (104 mg) as a white solid. 1H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 8.2 Hz, 2H),
7.25 (d, J = 8.0 Hz, 2H), 3.99 (p, J = 7.5 Hz, 1H), 3.87 (s, 3H), 3.64 (dd, J = 8.9, 2.5 Hz, 1H),
2.90 (s, 3H), 2.44 (d, J = 2.5 Hz, 1H), 2.38 (s, 3H), 1.54 (d, J = 7.3 Hz, 1H). 19F NMR (376 MHz,
CDCl3) δ-71.12. 13C NMR (101 MHz, CDCl3) δ 171.9, 164.8, 142.8, 140.0, 129.4, 126.5, 123.2
(q, J = 286.2 Hz), 75.6 (q, J = 28.6 Hz), 75.3, 53.8, 38.2, 36.4, 30.9, 21.6, 15.6. HRMS (ESI):
calcd. for C18H20F3N2O4S [M + H]+: 417.1090; found: 417.1095.
(3R*,4R*,Z)-Diethyl 3-ethynyl-1,4-dimethyl-5-(tosylimino)pyrrolidine-2,2-dicarboxylate (4b)
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An oven-dried 10 mL Schlenk tube equipped with a magnetic stirrer was under vacuum 

and then back-filled with argon. Under a stream of argon, the allenyne (100 mg, 0.404 

mmol) was added, followed by the tosyl azide (84 mg, 0.424 mmol), CuI (7.7 mg, 10 

mol.%) and 2,6-luthidine (65 mg, 0.606 mmol, 1.5 equiv.) in anhydrous toluene (2 mL). 

After the reaction mixture was stirred at RT for 4h, it was concentrated under reduced 

pressure. The residue was purified via column chromatography on silica gel (petroleum 

ether/ethyl acetate) to obtain the desired product 3a. 

Yield: 60% (101 mg) as a light-yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.72 (d, J = 8.2 Hz, 

2H), 7.27 (d, J = 8.1 Hz, 2H), 6.64 (dd, J = 18.0, 12.0 Hz, 1H), 5.83 (d, J = 12.0 Hz, 1H), 5.72 (d, 

J = 18.0 Hz, 1H), 5.58 (t, J = 6.7 Hz, 1H), 5.05–4.96 (m, 2H), 3.56 (s, 3H), 3.20 (s, 3H), 2.41 (s, 

3H). 19F NMR (376 MHz, CDCl3) δ-67.69. 13C NMR (101 MHz, CDCl3) δ 208.5, 164.7, 164.1, 

142.7, 139.5, 129.1, 128.6, 126.8, 126.2, 123.2 (q, J = 288.3 Hz), 85.6, 80.5, 70.5 (q, J = 26.8 Hz), 

53.3, 36.6, 21.6. HRMS (ESI): calcd. for C18H20F3N2O4S [M + H]+: 417.1090; found: 417.1096. 

(2R*,3R*,4R*,Z)-Methyl 

3-ethynyl-1,4-dimethyl-5-(tosylimino)-2-(trifluoromethyl)pyrrolidine-2-carboxylate (4a) 

 

Yield: 62% (104 mg) as a white solid. 1H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 8.2 Hz, 2H), 

7.25 (d, J = 8.0 Hz, 2H), 3.99 (p, J = 7.5 Hz, 1H), 3.87 (s, 3H), 3.64 (dd, J = 8.9, 2.5 Hz, 1H), 

2.90 (s, 3H), 2.44 (d, J = 2.5 Hz, 1H), 2.38 (s, 3H), 1.54 (d, J = 7.3 Hz, 1H). 19F NMR (376 MHz, 

CDCl3) δ-71.12. 13C NMR (101 MHz, CDCl3) δ 171.9, 164.8, 142.8, 140.0, 129.4, 126.5, 123.2 

(q, J = 286.2 Hz), 75.6 (q, J = 28.6 Hz), 75.3, 53.8, 38.2, 36.4, 30.9, 21.6, 15.6. HRMS (ESI): 

calcd. for C18H20F3N2O4S [M + H]+: 417.1090; found: 417.1095. 

(3R*,4R*,Z)-Diethyl 3-ethynyl-1,4-dimethyl-5-(tosylimino)pyrrolidine-2,2-dicarboxylate (4b) 

 

Yield: 45% (79 mg) as a light-yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.83 (d, J = 8.1 Hz,
2H), 7.27 (d, J = 7.8 Hz, 2H), 4.37 – 4.28 (m, 4H), 4.09 (dd, J = 8.5, 2.3 Hz, 1H), 3.97–3.89 (m,
1H), 3.00 (s, 3H), 2.40 (s, 3H), 2.37 (d, J = 2.3 Hz, 1H), 1.52 (d, J = 7.4 Hz, 3H), 1.32 (td, J = 7.1,
3.9 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 172.0, 166.6, 166.0, 142.5, 140.5, 129.3, 126.5, 76.7,
76.2, 76.0, 63.5, 63.0, 38.7, 38.1, 31.9, 21.6, 15.4, 14.2, 14.1. EA calcd. for C21H26N2O6S (%): C,
58.05; H, 6.03; N, 6.45. Found: C, 57.93; H, 5.99; N, 6.40.
(2R*,3S*,4R*,Z)-Methyl 1,4-dimethyl-3-(1-phenyl-1H-1,2,3-triazol-4-yl)-5-(tosylimino)-2-(trifluor
omethyl)pyrrolidine-2-carboxylate (5a)
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Yield: 45% (79 mg) as a light-yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.83 (d, J = 8.1 Hz, 

2H), 7.27 (d, J = 7.8 Hz, 2H), 4.37 – 4.28 (m, 4H), 4.09 (dd, J = 8.5, 2.3 Hz, 1H), 3.97–3.89 (m, 

1H), 3.00 (s, 3H), 2.40 (s, 3H), 2.37 (d, J = 2.3 Hz, 1H), 1.52 (d, J = 7.4 Hz, 3H), 1.32 (td, J = 7.1, 

3.9 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 172.0, 166.6, 166.0, 142.5, 140.5, 129.3, 126.5, 

76.7, 76.2, 76.0, 63.5, 63.0, 38.7, 38.1, 31.9, 21.6, 15.4, 14.2, 14.1. EA calcd. for C21H26N2O6S 

(%): C, 58.05; H, 6.03; N, 6.45. Found: C, 57.93; H, 5.99; N, 6.40. 

(2R*,3S*,4R*,Z)-Methyl 

1,4-dimethyl-3-(1-phenyl-1H-1,2,3-triazol-4-yl)-5-(tosylimino)-2-(trifluoromethyl)pyrrolidine-2-

carboxylate (5a) 

 

Yield: 77% (99 mg) as a white solid. M.p. 147–149 °C. 1H NMR (400 MHz, CDCl3) δ 7.90 (s, 

1H), 7.87 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 7.1 Hz, 2H), 7.55 (t, J = 7.7 Hz, 2H), 7.47 (t, J = 7.8 Hz, 

1H), 7.30 (d, J = 8.0 Hz, 2H), 4.26 (d, J = 8.8 Hz, 1H), 4.20–4.13 (m, 1H), 3.86 (s, 3H), 3.02 (s, 

3H), 2.43 (s, 3H), 1.49 (d, J = 7.4 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 173.0, 165.3, 142.7, 

140.4, 140.3, 136.7, 129.9, 129.4, 129.1, 126.5, 123.8 (q, J = 286.6 Hz), 122.3, 120.4, 75.6 (q, J = 

28.3 Hz), 54.0, 40.6, 40.2, 30.8, 21.6, 16.1. 19F NMR (376 MHz, CDCl3) δ-70.51. EA calcd. for 

C24H24F3N5O4S (%): C, 53.83; H, 4.52; N, 13.08. Found: C, 54.08; H, 4.55; N. 13.17. 

(2R*,3S*,4R*,Z)-Methyl 

1,4-dimethyl-3-(1-p-tolyl-1H-1,2,3-triazol-4-yl)-5-(tosylimino)-2-(trifluoromethyl)pyrrolidine-2-

carboxylate (5b) 

 

Yield: 73% (96 mg) as a white solid. M.p. 162–164 °C. 1H NMR (300 MHz, CDCl3) δ 7.91–

7.83 (m, 3H), 7.59 (d, J = 8.3 Hz, 2H), 7.36–7.27 (m, 4H), 4.26 (d, J = 8.9 Hz, 1H), 4.20–4.11 

(m, 1H), 3.86 (s, 3H), 3.02 (s, 3H), 2.43 (s, 6H), 1.48 (d, J = 7.3 Hz, 3H). 19F NMR (376 MHz, 

CDCl3) δ-70.53. 13C NMR (101 MHz, CDCl3) δ 173.0, 165.3, 142.7, 140.3, 140.2, 139.3, 134.4, 

130.4, 129.4, 126.5, 123.8 (q, J = 286.8 Hz), 122.2, 120.4, 75.6 (q, J = 28.0 Hz), 54.0, 40.6, 40.2, 

30.9, 21.6, 21.2, 16.1. EA calcd. for C25H26F3N5O4S (%): C, 54.64; H, 4.77; N, 12.74. Found: C, 

54.62; H, 4.82; N, 12.75. 

(2R*,3S*,4R*,Z)-methyl 

3-(1-benzyl-1H-1,2,3-triazol-4-yl)-1,4-dimethyl-5-(tosylimino)-2-(trifluoromethyl)pyrrolidine-2-

carboxylate (5c) 

 

Yield: 77% (99 mg) as a white solid. M.p. 147–149 ◦C. 1H NMR (400 MHz, CDCl3) δ 7.90 (s,
1H), 7.87 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 7.1 Hz, 2H), 7.55 (t, J = 7.7 Hz, 2H), 7.47 (t, J = 7.8 Hz,
1H), 7.30 (d, J = 8.0 Hz, 2H), 4.26 (d, J = 8.8 Hz, 1H), 4.20–4.13 (m, 1H), 3.86 (s, 3H), 3.02 (s,
3H), 2.43 (s, 3H), 1.49 (d, J = 7.4 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 173.0, 165.3, 142.7,
140.4, 140.3, 136.7, 129.9, 129.4, 129.1, 126.5, 123.8 (q, J = 286.6 Hz), 122.3, 120.4, 75.6 (q,
J = 28.3 Hz), 54.0, 40.6, 40.2, 30.8, 21.6, 16.1. 19F NMR (376 MHz, CDCl3) δ-70.51. EA calcd.
for C24H24F3N5O4S (%): C, 53.83; H, 4.52; N, 13.08. Found: C, 54.08; H, 4.55; N. 13.17.
(2R*,3S*,4R*,Z)-Methyl 1,4-dimethyl-3-(1-p-tolyl-1H-1,2,3-triazol-4-yl)-5-(tosylimino)-2-(trifluor
omethyl)pyrrolidine-2-carboxylate (5b)
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Yield: 45% (79 mg) as a light-yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.83 (d, J = 8.1 Hz, 
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76.7, 76.2, 76.0, 63.5, 63.0, 38.7, 38.1, 31.9, 21.6, 15.4, 14.2, 14.1. EA calcd. for C21H26N2O6S 

(%): C, 58.05; H, 6.03; N, 6.45. Found: C, 57.93; H, 5.99; N, 6.40. 
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140.4, 140.3, 136.7, 129.9, 129.4, 129.1, 126.5, 123.8 (q, J = 286.6 Hz), 122.3, 120.4, 75.6 (q, J = 

28.3 Hz), 54.0, 40.6, 40.2, 30.8, 21.6, 16.1. 19F NMR (376 MHz, CDCl3) δ-70.51. EA calcd. for 

C24H24F3N5O4S (%): C, 53.83; H, 4.52; N, 13.08. Found: C, 54.08; H, 4.55; N. 13.17. 

(2R*,3S*,4R*,Z)-Methyl 

1,4-dimethyl-3-(1-p-tolyl-1H-1,2,3-triazol-4-yl)-5-(tosylimino)-2-(trifluoromethyl)pyrrolidine-2-

carboxylate (5b) 

 

Yield: 73% (96 mg) as a white solid. M.p. 162–164 °C. 1H NMR (300 MHz, CDCl3) δ 7.91–

7.83 (m, 3H), 7.59 (d, J = 8.3 Hz, 2H), 7.36–7.27 (m, 4H), 4.26 (d, J = 8.9 Hz, 1H), 4.20–4.11 

(m, 1H), 3.86 (s, 3H), 3.02 (s, 3H), 2.43 (s, 6H), 1.48 (d, J = 7.3 Hz, 3H). 19F NMR (376 MHz, 

CDCl3) δ-70.53. 13C NMR (101 MHz, CDCl3) δ 173.0, 165.3, 142.7, 140.3, 140.2, 139.3, 134.4, 

130.4, 129.4, 126.5, 123.8 (q, J = 286.8 Hz), 122.2, 120.4, 75.6 (q, J = 28.0 Hz), 54.0, 40.6, 40.2, 

30.9, 21.6, 21.2, 16.1. EA calcd. for C25H26F3N5O4S (%): C, 54.64; H, 4.77; N, 12.74. Found: C, 

54.62; H, 4.82; N, 12.75. 

(2R*,3S*,4R*,Z)-methyl 

3-(1-benzyl-1H-1,2,3-triazol-4-yl)-1,4-dimethyl-5-(tosylimino)-2-(trifluoromethyl)pyrrolidine-2-

carboxylate (5c) 

 

Yield: 73% (96 mg) as a white solid. M.p. 162–164 ◦C. 1H NMR (300 MHz, CDCl3) δ
7.91–7.83 (m, 3H), 7.59 (d, J = 8.3 Hz, 2H), 7.36–7.27 (m, 4H), 4.26 (d, J = 8.9 Hz, 1H),
4.20–4.11 (m, 1H), 3.86 (s, 3H), 3.02 (s, 3H), 2.43 (s, 6H), 1.48 (d, J = 7.3 Hz, 3H). 19F NMR
(376 MHz, CDCl3) δ-70.53. 13C NMR (101 MHz, CDCl3) δ 173.0, 165.3, 142.7, 140.3, 140.2,
139.3, 134.4, 130.4, 129.4, 126.5, 123.8 (q, J = 286.8 Hz), 122.2, 120.4, 75.6 (q, J = 28.0 Hz), 54.0,
40.6, 40.2, 30.9, 21.6, 21.2, 16.1. EA calcd. for C25H26F3N5O4S (%): C, 54.64; H, 4.77; N, 12.74.
Found: C, 54.62; H, 4.82; N, 12.75.
(2R*,3S*,4R*,Z)-methyl 3-(1-benzyl-1H-1,2,3-triazol-4-yl)-1,4-dimethyl-5-(tosylimino)-2-(trifluoro
methyl)pyrrolidine-2-carboxylate (5c)

Molecules 2022, 27, x FOR PEER REVIEW 7 of 12 
 

 

Yield: 45% (79 mg) as a light-yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.83 (d, J = 8.1 Hz, 
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(%): C, 58.05; H, 6.03; N, 6.45. Found: C, 57.93; H, 5.99; N, 6.40. 

(2R*,3S*,4R*,Z)-Methyl 

1,4-dimethyl-3-(1-phenyl-1H-1,2,3-triazol-4-yl)-5-(tosylimino)-2-(trifluoromethyl)pyrrolidine-2-

carboxylate (5a) 
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28.3 Hz), 54.0, 40.6, 40.2, 30.8, 21.6, 16.1. 19F NMR (376 MHz, CDCl3) δ-70.51. EA calcd. for 

C24H24F3N5O4S (%): C, 53.83; H, 4.52; N, 13.08. Found: C, 54.08; H, 4.55; N. 13.17. 
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(m, 1H), 3.86 (s, 3H), 3.02 (s, 3H), 2.43 (s, 6H), 1.48 (d, J = 7.3 Hz, 3H). 19F NMR (376 MHz, 

CDCl3) δ-70.53. 13C NMR (101 MHz, CDCl3) δ 173.0, 165.3, 142.7, 140.3, 140.2, 139.3, 134.4, 

130.4, 129.4, 126.5, 123.8 (q, J = 286.8 Hz), 122.2, 120.4, 75.6 (q, J = 28.0 Hz), 54.0, 40.6, 40.2, 

30.9, 21.6, 21.2, 16.1. EA calcd. for C25H26F3N5O4S (%): C, 54.64; H, 4.77; N, 12.74. Found: C, 

54.62; H, 4.82; N, 12.75. 

(2R*,3S*,4R*,Z)-methyl 

3-(1-benzyl-1H-1,2,3-triazol-4-yl)-1,4-dimethyl-5-(tosylimino)-2-(trifluoromethyl)pyrrolidine-2-

carboxylate (5c) 

 

Yield: 86% (113 mg) as a white solid. M.p. 158–160 ◦C. 1H NMR (400 MHz, CDCl3) δ 7.85
(d, J = 8.2 Hz, 2H), 7.43–7.35 (m, 3H), 7.33 (s, 1H), 7.28 (d, J = 8.2 Hz, 2H), 7.22 (d, J = 5.3 Hz,
2H), 5.60 (d, J = 14.9 Hz, 1H), 5.46 (d, J = 14.9 Hz, 1H), 4.17 (d, J = 8.9 Hz, 1H), 4.05 (p,
J = 7.7 Hz, 1H), 3.69 (s, 3H), 2.97 (s, 3H), 2.41 (s, 3H), 1.40 (d, J = 7.4 Hz, 3H). 13C NMR
(101 MHz, CDCl3) δ 173.0, 165.4, 142.7, 140.3, 140.1, 134.5, 129.4, 129.1, 128.0, 126.5, 123.8
(q, J = 287.0 Hz), 123.8, 75.7 (q, J = 28.8 Hz), 54.3, 53.8, 40.8, 40.0, 30.9, 21.7, 16.2. 19F NMR
(282 MHz, CDCl3) δ-70.50. EA calcd. for C25H26F3N5O4S (%): C, 54.64; H, 4.77; N, 12.74.
Found: C, 54.47; H, 4.86; N, 12.73.
(2R*,3S*,4R*,Z)-methyl 3-(1-cinnamyl-1H-1,2,3-triazol-4-yl)-1,4-dimethyl-5-(tosylimino)-2-(triflu
oromethyl)pyrrolidine-2-carboxylate (5d)
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Yield: 86% (113 mg) as a white solid. M.p. 158–160 °C. 1H NMR (400 MHz, CDCl3) δ 7.85 

(d, J = 8.2 Hz, 2H), 7.43–7.35 (m, 3H), 7.33 (s, 1H), 7.28 (d, J = 8.2 Hz, 2H), 7.22 (d, J = 5.3 Hz, 

2H), 5.60 (d, J = 14.9 Hz, 1H), 5.46 (d, J = 14.9 Hz, 1H), 4.17 (d, J = 8.9 Hz, 1H), 4.05 (p, J = 

7.7 Hz, 1H), 3.69 (s, 3H), 2.97 (s, 3H), 2.41 (s, 3H), 1.40 (d, J = 7.4 Hz, 3H). 13C NMR (101 

MHz, CDCl3) δ 173.0, 165.4, 142.7, 140.3, 140.1, 134.5, 129.4, 129.1, 128.0, 126.5, 123.8 (q, J = 

287.0 Hz), 123.8, 75.7 (q, J = 28.8 Hz), 54.3, 53.8, 40.8, 40.0, 30.9, 21.7, 16.2. 19F NMR (282 

MHz, CDCl3) δ-70.50. EA calcd. for C25H26F3N5O4S (%): C, 54.64; H, 4.77; N, 12.74. Found: 

C, 54.47; H, 4.86; N, 12.73. 

(2R*,3S*,4R*,Z)-methyl 

3-(1-cinnamyl-1H-1,2,3-triazol-4-yl)-1,4-dimethyl-5-(tosylimino)-2-(trifluoromethyl)pyrrolidine

-2-carboxylate (5d) 

 

Yield: 84% (116 mg) as a white solid. M.p. 136–138 °C. 1H NMR (400 MHz, Chloroform-d) 

δ 7.83 (d, J = 8.1 Hz, 2H), 7.51 (s, 1H), 7.37–7.30 (m, 4H), 7.29 (d, J = 5.1 Hz, 1H), 7.24 (s, 2H), 

6.58 (d, J = 15.8 Hz, 1H), 6.36–6.26 (m, 1H), 5.10 (t, J = 6.8 Hz, 2H), 4.18 (d, J = 8.9 Hz, 1H), 

4.09–4.04 (m, 1H), 3.77 (s, 3H), 2.97 (s, 3H), 2.38 (s, 3H), 1.40 (d, J = 7.4 Hz, 3H). 13C NMR 

(101 MHz, CDCl3) δ 173.0, 165.3, 142.6, 140.3, 139.8, 135.6, 135.4, 129.3, 128.9, 128.7, 126.8, 

126.4, 123.9, 123.8 (q, J = 286.2 Hz), 121.6, 75.7 (q, J = 27.8 Hz), 53.9, 52.4, 40.7, 40.1, 30.8, 

21.6, 16.1. 19F NMR (376 MHz, CDCl3) δ -70.5. EA calcd. for C27H28F3N5O4S (%): C, 56.34; H, 

4.90; N, 12.17. Found: C, 56.21; H, 4.97; N, 12.29. 

(3S*,4R*,Z)-diethyl 1,4-dimethyl-3-(1-phenyl-1H-1,2,3-triazol-4-yl)-5-(tosylimino) pyrroli-

dine-2,2-dicarboxylate (6a) 

 

Yield: 90% (120 mg) as a white solid. M.p. 137–139 °C. 1H NMR (400 MHz, CDCl3) δ 7.95 

(s, 1H), 7.84 (d, J = 7.9 Hz, 2H), 7.70 (d, J = 7.8 Hz, 2H), 7.50 (t, J = 7.7 Hz, 2H), 7.41 (t, J = 7.4 

Hz, 1H), 7.25 (d, J = 8.2 Hz, 2H), 4.64 (d, J = 8.5 Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H), 4.22–4.15 

(m, 1H), 4.12–4.04 (m, 2H), 3.09 (s, 3H), 2.38 (s, 3H), 1.50 (d, J = 7.3 Hz, 3H), 1.24 (t, J = 7.3 

Hz, 3H), 1.08 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 173.0, 166.8, 166.5, 142.4, 

141.5, 140.7, 136.9, 129.9, 129.3, 128.9, 126.4, 122.3, 120.4, 63.2, 62.9, 42.9, 40.1, 32.1, 21.6, 

15.9, 14.0, 13.8. EA calcd. for C27H31N5O6S (%): C, 58.58; H, 5.64; N, 12.65. Found: C, 58.66; 

N, 5.67; H, 12.68. 

(3S*,4R*,Z)-diethyl 1,4-dimethyl-3-(1-p-tolyl-1H-1,2,3-triazol-4-yl)-5-(tosylimino) pyrroli-

dine-2,2-dicarboxylate (6b) 

Yield: 84% (116 mg) as a white solid. M.p. 136–138 ◦C. 1H NMR (400 MHz, Chloroform-d)
δ 7.83 (d, J = 8.1 Hz, 2H), 7.51 (s, 1H), 7.37–7.30 (m, 4H), 7.29 (d, J = 5.1 Hz, 1H), 7.24 (s, 2H),
6.58 (d, J = 15.8 Hz, 1H), 6.36–6.26 (m, 1H), 5.10 (t, J = 6.8 Hz, 2H), 4.18 (d, J = 8.9 Hz, 1H),
4.09–4.04 (m, 1H), 3.77 (s, 3H), 2.97 (s, 3H), 2.38 (s, 3H), 1.40 (d, J = 7.4 Hz, 3H). 13C NMR
(101 MHz, CDCl3) δ 173.0, 165.3, 142.6, 140.3, 139.8, 135.6, 135.4, 129.3, 128.9, 128.7, 126.8,
126.4, 123.9, 123.8 (q, J = 286.2 Hz), 121.6, 75.7 (q, J = 27.8 Hz), 53.9, 52.4, 40.7, 40.1, 30.8, 21.6,
16.1. 19F NMR (376 MHz, CDCl3) δ -70.5. EA calcd. for C27H28F3N5O4S (%): C, 56.34; H,
4.90; N, 12.17. Found: C, 56.21; H, 4.97; N, 12.29.
(3S*,4R*,Z)-diethyl 1,4-dimethyl-3-(1-phenyl-1H-1,2,3-triazol-4-yl)-5-(tosylimino) pyrrolidine-2,2-
dicarboxylate (6a)
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Yield: 86% (113 mg) as a white solid. M.p. 158–160 °C. 1H NMR (400 MHz, CDCl3) δ 7.85 

(d, J = 8.2 Hz, 2H), 7.43–7.35 (m, 3H), 7.33 (s, 1H), 7.28 (d, J = 8.2 Hz, 2H), 7.22 (d, J = 5.3 Hz, 

2H), 5.60 (d, J = 14.9 Hz, 1H), 5.46 (d, J = 14.9 Hz, 1H), 4.17 (d, J = 8.9 Hz, 1H), 4.05 (p, J = 

7.7 Hz, 1H), 3.69 (s, 3H), 2.97 (s, 3H), 2.41 (s, 3H), 1.40 (d, J = 7.4 Hz, 3H). 13C NMR (101 

MHz, CDCl3) δ 173.0, 165.4, 142.7, 140.3, 140.1, 134.5, 129.4, 129.1, 128.0, 126.5, 123.8 (q, J = 

287.0 Hz), 123.8, 75.7 (q, J = 28.8 Hz), 54.3, 53.8, 40.8, 40.0, 30.9, 21.7, 16.2. 19F NMR (282 

MHz, CDCl3) δ-70.50. EA calcd. for C25H26F3N5O4S (%): C, 54.64; H, 4.77; N, 12.74. Found: 

C, 54.47; H, 4.86; N, 12.73. 

(2R*,3S*,4R*,Z)-methyl 

3-(1-cinnamyl-1H-1,2,3-triazol-4-yl)-1,4-dimethyl-5-(tosylimino)-2-(trifluoromethyl)pyrrolidine

-2-carboxylate (5d) 

 

Yield: 84% (116 mg) as a white solid. M.p. 136–138 °C. 1H NMR (400 MHz, Chloroform-d) 

δ 7.83 (d, J = 8.1 Hz, 2H), 7.51 (s, 1H), 7.37–7.30 (m, 4H), 7.29 (d, J = 5.1 Hz, 1H), 7.24 (s, 2H), 

6.58 (d, J = 15.8 Hz, 1H), 6.36–6.26 (m, 1H), 5.10 (t, J = 6.8 Hz, 2H), 4.18 (d, J = 8.9 Hz, 1H), 

4.09–4.04 (m, 1H), 3.77 (s, 3H), 2.97 (s, 3H), 2.38 (s, 3H), 1.40 (d, J = 7.4 Hz, 3H). 13C NMR 

(101 MHz, CDCl3) δ 173.0, 165.3, 142.6, 140.3, 139.8, 135.6, 135.4, 129.3, 128.9, 128.7, 126.8, 

126.4, 123.9, 123.8 (q, J = 286.2 Hz), 121.6, 75.7 (q, J = 27.8 Hz), 53.9, 52.4, 40.7, 40.1, 30.8, 

21.6, 16.1. 19F NMR (376 MHz, CDCl3) δ -70.5. EA calcd. for C27H28F3N5O4S (%): C, 56.34; H, 

4.90; N, 12.17. Found: C, 56.21; H, 4.97; N, 12.29. 

(3S*,4R*,Z)-diethyl 1,4-dimethyl-3-(1-phenyl-1H-1,2,3-triazol-4-yl)-5-(tosylimino) pyrroli-

dine-2,2-dicarboxylate (6a) 

 

Yield: 90% (120 mg) as a white solid. M.p. 137–139 °C. 1H NMR (400 MHz, CDCl3) δ 7.95 

(s, 1H), 7.84 (d, J = 7.9 Hz, 2H), 7.70 (d, J = 7.8 Hz, 2H), 7.50 (t, J = 7.7 Hz, 2H), 7.41 (t, J = 7.4 

Hz, 1H), 7.25 (d, J = 8.2 Hz, 2H), 4.64 (d, J = 8.5 Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H), 4.22–4.15 

(m, 1H), 4.12–4.04 (m, 2H), 3.09 (s, 3H), 2.38 (s, 3H), 1.50 (d, J = 7.3 Hz, 3H), 1.24 (t, J = 7.3 

Hz, 3H), 1.08 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 173.0, 166.8, 166.5, 142.4, 

141.5, 140.7, 136.9, 129.9, 129.3, 128.9, 126.4, 122.3, 120.4, 63.2, 62.9, 42.9, 40.1, 32.1, 21.6, 

15.9, 14.0, 13.8. EA calcd. for C27H31N5O6S (%): C, 58.58; H, 5.64; N, 12.65. Found: C, 58.66; 

N, 5.67; H, 12.68. 

(3S*,4R*,Z)-diethyl 1,4-dimethyl-3-(1-p-tolyl-1H-1,2,3-triazol-4-yl)-5-(tosylimino) pyrroli-

dine-2,2-dicarboxylate (6b) 

Yield: 90% (120 mg) as a white solid. M.p. 137–139 ◦C. 1H NMR (400 MHz, CDCl3) δ
7.95 (s, 1H), 7.84 (d, J = 7.9 Hz, 2H), 7.70 (d, J = 7.8 Hz, 2H), 7.50 (t, J = 7.7 Hz, 2H), 7.41
(t, J = 7.4 Hz, 1H), 7.25 (d, J = 8.2 Hz, 2H), 4.64 (d, J = 8.5 Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H),
4.22–4.15 (m, 1H), 4.12–4.04 (m, 2H), 3.09 (s, 3H), 2.38 (s, 3H), 1.50 (d, J = 7.3 Hz, 3H), 1.24 (t,
J = 7.3 Hz, 3H), 1.08 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 173.0, 166.8, 166.5,
142.4, 141.5, 140.7, 136.9, 129.9, 129.3, 128.9, 126.4, 122.3, 120.4, 63.2, 62.9, 42.9, 40.1, 32.1,
21.6, 15.9, 14.0, 13.8. EA calcd. for C27H31N5O6S (%): C, 58.58; H, 5.64; N, 12.65. Found: C,
58.66; N, 5.67; H, 12.68.
(3S*,4R*,Z)-diethyl 1,4-dimethyl-3-(1-p-tolyl-1H-1,2,3-triazol-4-yl)-5-(tosylimino) pyrrolidine-2,2-
dicarboxylate (6b)
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Yield: 85% (116 mg) as a white solid. M.p. 157–158 °C. 1H NMR (400 MHz, CDCl3) δ 7.92 

(s, 1H), 7.86 (d, J = 8.0 Hz, 2H), 7.59 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 7.29–7.26 (d, 

J = 7.1 Hz, 2H), 4.66 (d, J = 8.4 Hz, 1H), 4.27 (q, J = 6.9 Hz, 2H), 4.23–4.16 (m, 1H), 4.14–4.04 

(m, 2H), 3.10 (s, 3H), 2.41 (s, 3H), 2.40 (s, 3H), 1.52 (d, J = 7.4 Hz, 3H), 1.26 (t, J = 7.3 Hz, 3H), 

1.09 (t, J = 7.2 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 173.0, 166.8, 166.6, 142.4, 141.4, 140.7, 

139.1, 134.6, 130.4, 129.3, 126.4, 122.2, 120.4, 63.2, 62.9, 43.0, 40.2, 32.1, 21.6, 21.2, 15.9, 14.0, 

13.8. EA calcd. for C28H33N5O6S (%): С, 59.24; H, 5.86; N, 12.34. Found: C, 58.99; H, 5.89; N, 

12.38. 

(3S*,4R*,Z)-diethyl 3-(1-benzyl-1H-1,2,3-triazol-4-yl)-1,4-dimethyl-5-(tosylimino) pyrroli-

dine-2,2-dicarboxylate (6c) 

 

Yield: 91% (124 mg) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.83 (d, J = 8.0 Hz, 2H), 

7.39 (s, 1H), 7.37–7.32 (m, 3H), 7.26–7.24 (m, 2H), 7.23–7.19 (m, 2H), 5.54 (d, J = 14.9 Hz, 

1H), 5.45 (d, J = 14.9 Hz, 1H), 4.54 (d, J = 8.5 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 4.14–4.06 (m, 

1H), 4.01–3.87 (m, 2H), 3.05 (s, 3H), 2.39 (s, 3H), 1.41 (d, J = 7.4 Hz, 3H), 1.19 (t, J = 7.1 Hz, 

3H), 1.00 (t, J = 7.2 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 173.0, 166.8, 166.6, 142.4, 141.3, 

140.8, 134.8, 129.3, 129.3, 128.9, 128.0, 126.4, 123.9, 63.1, 62.8, 54.2, 43.1, 40.1, 32.1, 21.6, 15.8, 

14.0, 13.7. EA calcd. for C28H33N5O6S (%): С, 59.24; H, 5.86; N, 12.34. Found: C, 59.03; H, 

5.85; N, 12.13. 

3.4. X-ray Structure Determination of 4a 

Crystals (C18H19F3N2O4S, M = 416.41) were monoclinic and had a space group P21/c, 

at 120K a = 9.7168(13), b = 16.001(2), c = 12.2398(17) Å , β = 99.355(3)°, V = 1877.7(4) Å 3, Z = 4, 

dcalc. = 1.473 g/cm3, μ = 2.29 cm−1. Data collection was carried out with a Bruker SMART 

APEX II diffractometer, λ(MoKα) = 0.71073 Å , ω-scan technique, T = 120(2) K, 3670 in-

dependent reflections (Rint = 0.0674) with 2θmax = 52.0° were collected and used in re-

finement. The structure was solved with direct methods and were refined using the full 

matrix least-squares technique against F2 with the anisotropic thermal parameters for all 

non-hydrogen atoms. At the final stage, the structure was refined as a 2-component twin 

(the BASF was 0.291(2)). The hydrogen atoms were placed geometrically and were in-

cluded in the structure factors calculations in the riding motion approximation. The re-

finement converged to wR2 = 0.1177 and GOF = 1.027 for all the independent reflections 

(R1 = 0.0492 was calculated against F for 2834 observed reflections with I > 2σ(I)). All the 

calculations were performed using the SHELXL program package [47]. CCDC deposition 

number 2208592 contains the supplementary crystallographic data for this paper. These 

data can be obtained free of charge from The Cambridge Crystallographic Data Centre. 

4. Conclusions 

In conclusion, we elaborated on an efficient pathway for densely functionalized 

proline derivatives. The method is based on a Cu(I)-catalyzed reaction between 

Yield: 85% (116 mg) as a white solid. M.p. 157–158 ◦C. 1H NMR (400 MHz, CDCl3) δ 7.92
(s, 1H), 7.86 (d, J = 8.0 Hz, 2H), 7.59 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 7.29–7.26 (d,
J = 7.1 Hz, 2H), 4.66 (d, J = 8.4 Hz, 1H), 4.27 (q, J = 6.9 Hz, 2H), 4.23–4.16 (m, 1H), 4.14–4.04
(m, 2H), 3.10 (s, 3H), 2.41 (s, 3H), 2.40 (s, 3H), 1.52 (d, J = 7.4 Hz, 3H), 1.26 (t, J = 7.3 Hz, 3H),
1.09 (t, J = 7.2 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 173.0, 166.8, 166.6, 142.4, 141.4, 140.7,
139.1, 134.6, 130.4, 129.3, 126.4, 122.2, 120.4, 63.2, 62.9, 43.0, 40.2, 32.1, 21.6, 21.2, 15.9, 14.0,
13.8. EA calcd. for C28H33N5O6S (%): C, 59.24; H, 5.86; N, 12.34. Found: C, 58.99; H, 5.89;
N, 12.38.
(3S*,4R*,Z)-diethyl 3-(1-benzyl-1H-1,2,3-triazol-4-yl)-1,4-dimethyl-5-(tosylimino) pyrrolidine-2,2-
dicarboxylate (6c)
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Yield: 91% (124 mg) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.83 (d, J = 8.0 Hz, 2H), 

7.39 (s, 1H), 7.37–7.32 (m, 3H), 7.26–7.24 (m, 2H), 7.23–7.19 (m, 2H), 5.54 (d, J = 14.9 Hz, 

1H), 5.45 (d, J = 14.9 Hz, 1H), 4.54 (d, J = 8.5 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 4.14–4.06 (m, 

1H), 4.01–3.87 (m, 2H), 3.05 (s, 3H), 2.39 (s, 3H), 1.41 (d, J = 7.4 Hz, 3H), 1.19 (t, J = 7.1 Hz, 

3H), 1.00 (t, J = 7.2 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 173.0, 166.8, 166.6, 142.4, 141.3, 

140.8, 134.8, 129.3, 129.3, 128.9, 128.0, 126.4, 123.9, 63.1, 62.8, 54.2, 43.1, 40.1, 32.1, 21.6, 15.8, 
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finement. The structure was solved with direct methods and were refined using the full 

matrix least-squares technique against F2 with the anisotropic thermal parameters for all 

non-hydrogen atoms. At the final stage, the structure was refined as a 2-component twin 

(the BASF was 0.291(2)). The hydrogen atoms were placed geometrically and were in-

cluded in the structure factors calculations in the riding motion approximation. The re-
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calculations were performed using the SHELXL program package [47]. CCDC deposition 
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4. Conclusions 

In conclusion, we elaborated on an efficient pathway for densely functionalized 

proline derivatives. The method is based on a Cu(I)-catalyzed reaction between 

Yield: 91% (124 mg) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.83 (d, J = 8.0 Hz, 2H),
7.39 (s, 1H), 7.37–7.32 (m, 3H), 7.26–7.24 (m, 2H), 7.23–7.19 (m, 2H), 5.54 (d, J = 14.9 Hz,
1H), 5.45 (d, J = 14.9 Hz, 1H), 4.54 (d, J = 8.5 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 4.14–4.06 (m,
1H), 4.01–3.87 (m, 2H), 3.05 (s, 3H), 2.39 (s, 3H), 1.41 (d, J = 7.4 Hz, 3H), 1.19 (t, J = 7.1 Hz,
3H), 1.00 (t, J = 7.2 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 173.0, 166.8, 166.6, 142.4, 141.3,
140.8, 134.8, 129.3, 129.3, 128.9, 128.0, 126.4, 123.9, 63.1, 62.8, 54.2, 43.1, 40.1, 32.1, 21.6, 15.8,
14.0, 13.7. EA calcd. for C28H33N5O6S (%): C, 59.24; H, 5.86; N, 12.34. Found: C, 59.03; H,
5.85; N, 12.13.
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3.4. X-ray Structure Determination of 4a

Crystals (C18H19F3N2O4S, M = 416.41) were monoclinic and had a space group P21/c,
at 120K a = 9.7168(13), b = 16.001(2), c = 12.2398(17) Å, β = 99.355(3)◦, V = 1877.7(4) Å3,
Z = 4, dcalc. = 1.473 g/cm3, µ = 2.29 cm−1. Data collection was carried out with a Bruker
SMART APEX II diffractometer, λ(MoKα) = 0.71073 Å, ω-scan technique, T = 120(2) K,
3670 independent reflections (Rint = 0.0674) with 2θmax = 52.0◦ were collected and used
in refinement. The structure was solved with direct methods and were refined using the
full matrix least-squares technique against F2 with the anisotropic thermal parameters for
all non-hydrogen atoms. At the final stage, the structure was refined as a 2-component
twin (the BASF was 0.291(2)). The hydrogen atoms were placed geometrically and were
included in the structure factors calculations in the riding motion approximation. The
refinement converged to wR2 = 0.1177 and GOF = 1.027 for all the independent reflections
(R1 = 0.0492 was calculated against F for 2834 observed reflections with I > 2σ(I)). All the
calculations were performed using the SHELXL program package [47]. CCDC deposition
number 2208592 contains the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

4. Conclusions

In conclusion, we elaborated on an efficient pathway for densely functionalized proline
derivatives. The method is based on a Cu(I)-catalyzed reaction between CF3-substituted
allenynes and tosylazide, which involves the cascade of [3 + 2]-cycloaddition/ketenimine
and a rearrangement/Alder-ene cyclization to afford the new 3-ethynyl proline derivatives
in moderate-to-good yields and with a high diastereoselectivity. The synthetic potential of
the latter compounds was demonstrated in a Cu(I)-catalyzed “click” reaction with alkyl
and aryl azides, which provided access to the corresponding triazole-containing prolines
as single diastereomers in high yields.
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