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Endoplasmic reticulum stress (ER stress) is a condition that is defined by abnormal
accumulation of unfolded proteins. It plays an important role in maintaining cellular
protein, lipid, and ion homeostasis. By triggering the unfolded protein response (UPR)
under ER stress, cells restore homeostasis or undergo apoptosis. Chronic ER stress is
implicated in many human diseases. Despite extensive studies on related signaling
mechanisms, reliable image biomarkers for ER stress remain lacking. To address this
deficiency, we have validated a morphological image biomarker for ER stress and have
developed a deep learning-based assay to enable automated detection and analysis of this
marker for screening studies. Specifically, ER under stress exhibits abnormal
morphological patterns that feature ring-shaped structures called whorls (WHs). Using
a highly specific chemical probe for unfolded and aggregated proteins, we find that
formation of ER whorls is specifically associated with the accumulation of the unfolded and
aggregated proteins. This confirms that ER whorls can be used as an image biomarker for
ER stress. To this end, we have developed ER-WHs-Analyzer, a deep learning-based
image analysis assay that automatically recognizes and localizes ER whorls similarly as
human experts. It does not require laborious manual annotation of ER whorls for training of
deep learning models. Importantly, it reliably classifies different patterns of ER whorls
induced by different ER stress drugs. Overall, our study provides mechanistic insights into
morphological patterns of ER under stress as well as an image biomarker assay for
screening studies to dissect related disease mechanisms and to accelerate related drug
discoveries. It demonstrates the effectiveness of deep learning in recognizing and
understanding complex morphological phenotypes of ER.
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INTRODUCTION

The endoplasmic reticulum (ER) is a continuous membrane-bound organelle network that plays key
roles in protein synthesis and modification, lipid biogenesis, and ionic homeostasis (Friedman and
Voeltz, 2011). Dysregulation of protein synthesis and modification caused by intra- and extra-
cellular cues leads to excessive accumulation of unfolded proteins, which triggers ER stress (Lee et al.,
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2015; Schwarz and Blower, 2016). Unfolded protein response
(UPR) often refers to the signal transduction pathway for cellular
response to ER stress (Hetz et al., 2020). There are three main
UPR transducers: inositol-requiring enzyme 1 (IRE1)
(Tirasophon et al., 1998; Wang et al., 1998), protein kinase
RNA-like ER kinase (PERK) (Harding et al., 1999), and
activating transcription factor 6 (ATF6) (Harding et al., 2000;
Ron and Walter, 2007). By orchestrating cellular processes such
as mRNA splicing by endoribonuclease IRE1α (Tirasophon et al.,
1998; Wang et al., 1998), translation attenuation by kinases PERK
(Harding et al., 1999), and protein folding assistance by
chaperone BiP (binding immunoglobulin protein) (Shimizu
et al., 2017), the UPR engages different outputs to restore ER
protein homeostasis under mild stress conditions or to activate
apoptosis under chronic stress conditions (Yoon et al., 2012; Nie
et al., 2017; Ramachandran et al., 2021).

ER stress is strongly implicated in the onset and progression of a
wide range of human diseases, including neurodegenerative diseases,
metabolic diseases, and cancer (Ozcan et al., 2004; Zhang et al., 2005;
Wang andKaufman, 2016). It can cause not only alterations of protein
synthesis or folding but also deleterious cellular responses including
accumulation of lipids and activation of autophagy. Modulating ER
stress shows great potential in the treatment of these diseases. Several
compounds, including IRE1α inhibitor KIRA6 and PERK inhibitor
GSK2656157 (Axten et al., 2012;Wang et al., 2012; Ghosh et al., 2014),
have been identified in target-based drug screening to modulate ER
stress and have shown therapeutic benefits (Nunes et al., 2012; Ghosh
et al., 2014; Kitakaze et al., 2019). In comparison to target-based
screening, phenotypic screening utilizes readouts that are more
observable and physiologically relevant for drug discoveries
(Swinney and Anthony, 2011; Moffat et al., 2017). It can accelerate
drug discoveries by using cell models of diseases with the support of
high-throughput imaging (Zheng et al., 2013; Moffat et al., 2017).
However, reliable and sensitive image biomarkers are required for
phenotypic screening. Although ER morphology is a key cellular
phenotypic feature, it is unclear whether it can serve as an image
biomarker for ER stress. In addition, for any image biomarker, a
reliable and efficient detection assay is essential for phenotypic
screening (Kazama et al., 2018). Such an assay has yet to be
developed for ER stress.

Changes in ER morphology correlate well with ER stress
(Schuck et al., 2009; Mateus et al., 2018). The classical ER
structure consists of a continuous envelope surrounding the
nucleus in the perinuclear region and a polygonal network of
interconnected tubules and sheets in the peripheral region
(Friedman and Voeltz, 2011). In ER-stressed cells, ER
membranes are compacted to form ER whorls (Nii et al.,
1968; Snapp et al., 2003). Formation of ER whorls provides an
effective structural response to prolonged ER stress (Xu et al.,
2020). It accompanies the activation of PERK and works together
with vesicle transport machinery such as ESCRT (endosomal
complexes required for transport) and COPII (coat protein
complex II) complex to counter-balance ER stress-induced
protein translation and ER expansion (Bernales et al., 2006;
Schuck et al., 2014; Schäfer et al., 2020; Xu et al., 2020). ER
whorls have been observed in yeast and mammalian cells under
ER stress activated by various stimuli, including drugs and herpes

simplex virus infection (Nii et al., 1968; Schäfer et al., 2020). To
use ER whorls as an image biomarker for phonotypic drug
screening, reliable and automated detection is essential.
However, detection of ER whorls within the complex and
dense ER network morphology poses a substantial technical
challenge (Kazama et al., 2018).

The past decade witnessed the rapid rise of deep learning as a
transformative artificial intelligence technique that computes using
deep neural networks (DNNs). It has achieved breakthrough
performance in many challenging tasks of analyzing natural
images (LeCun et al., 2015). It has also achieved breakthrough
performance in analyzing cellular images that previously are
considered intractable for traditional methods (Moen et al.,
2019). Unlike traditional methods, which rely on manually
designed features to represent phenotypes in images, deep
learning models automatically learn phenotypic features through
their supervised training (LeCun et al., 2015). Recently, for
example, deep learning models such as ResNet (He et al., 2016)
and DenseNet (Huang et al., 2017) have achieved great success in
recognizing cell states (Godinez et al., 2017; Sommer et al., 2017)
and protein subcellular localization patterns (Kraus et al., 2016;
Pärnamaa and Parts, 2017).

In this study, by comparing ER morphology under normal
conditions versus IRE1α activation, we found that the formation
of ER whorls is initiated specifically when UPR pathways are
activated under induced ER stress and that it is dependent on the
duration and strength of the induced ER stress. By using a highly
specific chemical probe, we found that whorls are tightly associated
with unfolded and aggregated proteins. This confirms that ER
whorls can serve as an image biomarker for ER stress. To use it
as an image biomarker for screening studies, we have developed a
deep learning-based image analysis assay, the ER-WHs-Analyzer,
that recognizes and localizes ER whorls automatically. It includes a
feature recognition module that achieves over 95% accuracy in
recognizing ER whorls and classifying their patterns. It also
includes a feature localization module that reliably detects regions
of ER whorls in a manner consistent with the visual inspection by
human experts. Training of deep learning models of ER-WHs-
Analyzer requires no manual annotation of precise locations of ER
whorls. Through a double-blind experiment, we further confirmed
that ER whorls can serve as a reliable image biomarker for ER stress.
Importantly, ER-WHs-Analyzer can reliably classify different
patterns of ER whorls induced by different ER stress activation
reagents. Overall, our study provides mechanistic insights into the
relations between unfolded and aggregated proteins and ER whorls.
It also provides an image biomarker assay for automated and
quantitative analysis of ER stress that is well suited for
phenotypic screening for related disease mechanism studies and
drug discoveries.

MATERIALS AND METHODS

Induction and Western Blot Analysis of ER
Stress in HEK293T Cells
HEK293T cells were treated with DMSO or ER stress induction
compounds Thapsigargin (Tg) or Dithiothreitol (DTT) for
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various lengths of time based on experimental designs, typically
6 h, then trypsinized, pelleted (800 × g, 4 min, room temperature)
and lysed in RIPA buffer (Millipore) with protease inhibitor
(Roche) and phosphatase inhibitor on ice. The supernatant was
collected by centrifugation (13,000 × g, 15 min, 4°C) and the
protein concentration was determined using BCA protein assay
(Beyotime). Proteins were resolved by 12% SDS-PAGE,
transferred to PVDF membranes, then blocked with 5% non-
fat milk in TBST for 1 h at room temperature. The membranes
were then washed with TBST (3 × 10 min) and incubated with
anti-IRE1 (CST), anti-p-IRE1 (Abcam), or anti-Caspase 3 (CST)
overnight at 4°C. Next, the membranes were washed with TBST (3
× 10 min) and incubated with goat-anti-rabbit-HRP or goat-anti-
mouse-HRP in TBST for 1 h at room temperature. After washing
with TBST for 3 times, the blots were developed using an ECL
detection reagent.

Live Cell Imaging
High-resolution images of ER in live cells were acquired under
two conditions, i.e., normal ER morphology in control cells and
abnormal ER morphology (i.e., with ER whorls) in cells under
induced ER stress. HEK293T cells labeled with ER marker GFP-
sec61b were treated with DMSO, Tg or DTT for various lengths of
time based on experimental designs, typically 6 h. To check
abundance and location of ER proteins on whorls, BFP-KDEL
was transiently expressed in HEK293T cells to label luminal
proteins. And mCherry-Rtn4a, mCherry-ATL3, and GFP-
REEP5 were transiently expressed in HEK293T cells to
label ER morphology regulator proteins reticulon, atlastin,
and REEP5, respectively. Treated cells were then imaged using
conventional spinning disk confocal microscopy at ∼200 nm
resolution (Nikon CSU-W1 under 100× and 1.45 NA,
excitation wavelength: 488 nm, emission wavelength:
535 nm) or 3D-SIM at ∼70 nm resolution (Nikon N-SIM,
100× SR objective, excitation wavelength: 488 nm, emission
wavelength: 535 nm).

Synthesis of the AIEgen Probe for Misfolded
and Aggregated Proteins
A 250 ml round bottom flask was charged with isophorone
(6.0 ml, 40 mmol), malononitrile (2.9 g, 44 mol) and
piperidine (cat.). The mixture was heated to reflux and stirred
for 30 h. After cooling to room temperature, the solution was
slowly poured into water and the precipitated solid was filtered.
Recrystallization from EtOH afforded S1 as a brown solid (2.1 g,
28%). To a 25 ml round bottom flask S1 (186.3 mg, 1.0 mmol), 4-
(bis(2-hydroxyethyl)amino) benzaldehyde (313.8 mg,
1.0 mmol) and piperidine (cat.) were stirred in 10 ml EtOH at
85°C for 20 h. The solution was cooled to room temperature, and
water was added to the solution. Then the mixture was extracted
with DCM (3 × 20 ml). The organic phase was combined and
dried over Na2SO4. After filtration and concentration in vacuo,
the residue was purified via flash silica gel chromatography
(10–40% EtOAc in hexane) to provide the compound AIEgen as
violet solid (231.4 mg, 61.3%) and analyzed by 1H-NMR
(400 MHz, CDCl3).

In vitro Thermal Shift Assay
AIEgen (25 μM) and 1) WT-DHFR (50 μM), 2) mut-DHFR
(50 μM), and 3) sortase (50 μM) were mixed in acidic
aggregation buffer (NaOAc 200 mM, KCl 100 mM, acidified by
AcOH to pH � 6.23) and incubated at 60°C for 5 min 4) AIEGEN
(25 μM) and human Ig (50 μM) were mixed in acidic aggregation
buffer (NaOAc 200 mM, KCl 100 mM, acidified by AcOH to pH
� 6.23) and incubated at 80°C for 5 min 5) AIEGEN (25 μM)
SOD1 (50 μM) were mixed in buffer A (50 mM Tris-HCl,
100 mM NaCl, acidified by HCl to pH � 8.0) and EDTA
disodium salt (250 mM). The mixture was incubated at 60°C
for 5 min. Spectra were collected with excitation wavelength of
561 nm. All measurements were carried out using Tecan Spark
fluorescence plate reader in BeyoGoldTM 96-well black opaque
plates.

ER-WHs-Analyzer
Image pre-processing and data augmentation – Each of the high-
resolution ER images acquired contains multiple cells. Each single
cell was first cropped from the acquired full-size images. The
cropped images were resized into 256 × 256 pixels with zero
padding for its shorter side to keep the original aspect ratio of the
single cell. Intensity stretch and histogram equalization were
applied to enhance the images. To avoid overfitting when
training deep learning models, data augmentation by random
flipping and rotation was performed online during training. This
produced a considerably diverse data combination. Further
details on the image datasets are given in the Results section.

Feature recognition module – It is the module used for
recognizing and classifying ER morphological patterns, with or
without ER whorls. Two types of representative DNNs, the
ResNet (He et al., 2016) and DenseNet (Huang et al., 2017),
were chosen as the backbone network of the feature recognition
module. The recognition of ER whorls, present or absent, is a
standard classification problem. The Softmax function was used
to map output of the DNNs into a classification score:

p(yl
∣∣∣∣x) � e−f

l

∑je
−fj (1)

In Eq. 1, x denotes the input image; p(yl|x) denotes the
probability that the image x is classified as in class l; f is the
output of the DNN parameterized by f � F(x;W), where F is
the composition of the network parameters and W represents
model weights; fj is the j-th element in f, which denotes the
probability that image x is classified as in the j-th class. The
following Cross-Entropy loss was used for model training:

L � 1
N

∑N

i�1 − yl
i logp(ŷi|xi), (2)

where yl
i is the one-hot coding of the ground-truth for the i-th

input image; the l-th element of yl
i takes the value of 1 for its

ground-truth class, and the rest takes the value of 0; p(ŷi|xi)
represents the predictions of the network for the input image,
which are normalized using Eq. 1; N is the number of training
examples. The goal is to minimize the loss by training the DNNs
to obtain predictions that best match the ground truth. The
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standard optimization method stochastic gradient descent (SGD)
was used in this study.

Training strategies - Two training strategies were used:
training from scratch and finetuning from a pre-trained
model, i.e., transfer learning (Tan et al., 2018), a widely
used approach to stabilize the training of deep learning
models. To this end, a large dataset was collected primarily
from open-source microscopy images, named as CBMI-Extra,
which includes ∼70k images from ∼120 classes. Some of the
images in CBMI-Extra were acquired using imaging protocols
similar as those for the ER images in this study. In this way, a

deep learning model pre-trained using CBMI-Extra provided a
sound starting point to stabilize its subsequent training using
ER images.

Feature localization module – A deep learning model with
good performance is expected to capture image features similarly
as human experts. The feature visualization tool, Grad-CAM
(Selvaraju et al., 2017), was used to check whether the DNN
models can correctly recognize features of the ER whorls. Given
an input image for a forward pass in a trained network, the feature
visualization tool generates a class activation mapping (CAM) in
the form of a heatmap, visualizing the importance of each

FIGURE 1 | Upregulated ER stress markers and abnormal ER shapes in HEK293T cells treated with Tg at different concentrations. (A) Immunoblot analysis of
p-IRE1α, IRE1α, caspase3 (pro and cleaved) and β-tubulin from cell lysates after treatment of HEK293T cells with DMSO or Tg at the indicated concentrations for 6 h.
The ratio of p-IRE1α to IRE1 α is shown for each concentration. (B) Representative ER structures labeled with GFP-Sec61β (green) in HEK293T cells treated with Tg at
the indicated concentrations for 6 h. PI staining was used to detect cell apoptosis. No substantial PI staining signal was detected in Tg treated cells (second row).
Etoposide treated cells were used as a reference and a positive control for PI staining. Scale bar: 10 μm. (C) Percentage of HEK293T cells with ER whorls after treatment
with DMSO or Tg at different concentrations for 6 h. Error bars indicate standard deviation (SD) calculated from three independent experiments. **: p < 0.01, ***: p <
0.001.
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location in the input image in terms of its contribution to the
prediction of the network. In this way, the feature visualization
tool Grad-CAM constitutes the first part of the feature
localization module by identifying up to several hotspots
(i.e., clusters with higher scores) in the heatmap. It has been
observed that the identified hotspots in the ER images match well
with the ER morphological features that a human expert would
identify. Based on the hotspots in heatmaps, an image processing-
based pipeline was used to detect locations of the regions of ER
whorls. This pipeline, which consists of segmentation, instance
labeling and bounding-box assignment, constitutes the second
part of the feature localization module (Supplementary
Figure S1).

RESULTS

ER Stress Induces Morphological
Deformation That Forms Whorls
We used ER stress activator Thapsigargin (Tg) to set up our
experimental assay (Dibdiakova et al., 2019). Because Tg
activation of ER stress increases the level of phosphorylated
IRE1α (Han et al., 2009), we used the amount of
phosphorylated IRE1α normalized by the total amount of
IRE1α as an indicator of ER stress. We checked this
indicator at different concentrations and durations of Tg
treatment (Figures 1A, 2A). We found that Tg treatment
can reliably activate ER stress at a concentration ranging from
0.1 to 10 μM and a duration ranging from 6 to 12 h without

affecting cell viability (Figures 1A, 2A). Based on these
results, we set the concentration and duration of Tg
treatment at 5 μM and 6 h, respectively, for subsequent
experiments.

To investigate whether activated ER stress causes
morphological changes, ER was labeled by stable expression of
GFP-Sec61 β, a subunit of the Sec61 translocon complex located
on ER membrane. After activation with Tg, ER morphology in
HEK293T cells was examined using spinning disk confocal
microscopy at three concentrations for comparison (1, 5,
10 μM). Consistent with Western blot analysis of IRE1 α, live-
cell imaging of ER revealed morphological changes at all three
concentrations (Figures 1B,C). In control cells treated with only
DMSO, ER exhibited an interconnected membrane network that
extends from the nuclear envelope (Figure 1B). However, under
Tg treatment, ER formed multiple whorls that aggregate near the
nuclear envelope (Figure 1B). Previous studies found that
formation of ER whorls is a dynamic and reversible response
to strong ER stress (Xu et al., 2020). Consistent with this finding,
over 50.0 ± 5.6% (n � 3) of cells treated with 5 μMTg for 6 h
exhibited the whorl phenotype (Figure 1C). In comparison,
11.2 ± 3.3% (n � 3) of control cells treated with DMSO
exhibited whorl patterns (Figure 1C). Furthermore, Tg
treatment at 1 μM for 6 h induced whorls formation in 33.1%
of the treated cells (Figure 1C). Together, these results indicate
that ER stress induced by Tg treatment drives whorl formation in
a dose-dependent manner.

To check whether ER whorls can be induced by drugs other
than Tg, we treated HEK293T cells with several reagents reported

FIGURE 2 | Progressive changes of ER structure under ER stress over time. (A) Immunoblot analysis of p-IRE1α, IRE1α, caspase3 (pro and cleaved) and β-tubulin
from cell lysates after treatment of HEK293T cells with DMSO or 5 μM Tg for the indicated durations. (B) Representative ER structures labeled with GFP-Sec61 β (green)
in HEK293T cells treated with 5 μM Tg for the indicated durations. Yellow arrows point to where initial formation and evolution of an ERwhorl occur. Scale bar: 20 μm. (C)
Percentages of HEK293T cells with ERwhorls after treatment with 5 μM Tg for the indicated durations. Data were presented as mean ± SD from three independent
experiments. (D) 5 × magnified 3D views of the ring-like ER whorl in the region marked by the red box in the leftmost sub-panel. Scale bar: 10 μm.
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in the literature, including MK-28, a PERK activator (Ganz et al.,
2020); Palmitic Acid, a long-chain saturated fatty acid (Xu et al.,
2020; Harada et al., 2002); Bufalin, a Na+/K+-ATPase inhibitor
(Shen et al., 2014); and CB-5083, a p97 inhibitor (Bastola et al.,
2016). These reagents are known to induce ER stress via different
mechanisms (Ganz et al., 2020; Harada et al., 2002; Shen et al.,
2014; Bastola et al., 2016). We generally found them to be less
effective than DTT and Tg in inducing ER stress and performed
all treatments at 1 μM for 12 h. Treatment by these reagents all
induced formation of ER whorls (Supplementary Figure S2). In
addition to these reagents, Cyclopiazonic Acid (CPA) and
Lipopolysaccharide (LPS) have also been reported to induce
formation of ER whorls in a dose-dependent manner (Xu
et al., 2020). Together, these results show that formation of ER
whorls is a general hallmark of ER stress rather than a specific
outcome of Tg treatment.

Because prolonged ER stress may lead to cell death, we
checked whether formation of whorls was caused by cell
apoptosis. Using treatment of 10 μM Etoposide to inhibit
DNA replication as a positive control, Propidium Iodide (PI)
staining found no cell death under the performed Tg treatment
(Figure 1B). Consistent with this result, cleavage of Caspase-3
was not detected by Western blot analysis (Figure 1A). In
addition, it was reported that cells treated with Tg for 6 h
recovered to exhibit normal ER morphology after Tg was
washed out (Xu et al., 2020). Together, these results indicate
that formation of whorls results from ER stress rather than
cell death.

Dynamic ER Whorl Formation and
Structural Deformation
To examine the dynamic formation of ER whorls, we
performed time-lapse live cell imaging. Along with the
membrane expansion and aggregation under stress, initial
formation of ER whorls started approximately 0.5–1 h after
Tg treatment. Severe membrane deformation led to further
local ER aggregation (Figure 2B). Over the next 1–5 h, the
number of ER whorls continued to increase while existing
whorls became more condensed. After 6 h, the number of
whorls and their morphologies generally became stable. The
whorls occupied most of the intracellular space, and ER
network connections were mostly lost (Figure 2B).
Quantitative analysis revealed that whorls appeared in
∼21.0% of cells after 1 h treatment (Figure 2C), and the
percentage increased over time (Figure 2C). We also
examined the three-dimensional structure of whorls
(Figure 2D) and found that they were composed of warped
ER membranes without ER tubules. Expansion and
deformation of ER sheets could contribute to whorl
formation. Importantly, canonical ER network connections
were largely lost due to absence of ER tubules.

To check the abundance and location of ER proteins on the
whorls, we examined fluorescently labeled Rtn4a, ATL3, and
receptor accessory protein 5 (REEP5) under induced ER stress.
We also checked ER luminal proteins by expressing fluorescently
labeled lumen marker KDEL (Supplementary Figure S3A).

Overall, Rtn4a rarely locates to ER whorls under Tg treatment.
Luminal proteins labeled by KDEL locates to ER whorls in ∼10%
of the treated cells, REEP5 locates to ER whorls in ∼20% of the
treated cells but ATL3 locates to ER whorls in ∼80% of the treated
cells (Supplementary Figure S3B). Overall, these results reveal
differential abundance and location of ER proteins on ER whorls.

Unfolded and Aggregated Proteins are
Attached to ER Whorls
The results so far have revealed tight connections between ER
whorl formation and ER stress. Unfolded proteins are a key driver
of ER stress (Braakman and Bulleid, 2011). To check whether ER
whorls may be used as a reliable image biomarker for ER stress,
we examined their relations with unfolded proteins using an
AIEgen probe. It exhibited highly specific binding affinity to
unfolded and aggregated proteins (Figures 3A–C and
Supplementary Figure S4) such as E. coli dihydrofolate
reductase (DHFR), a model protein for thermal shift assay
that detects levels of protein aggregation (Figure 3C). The
specific binding affinity of the AIEgen probe was further
checked in mut-DHFR, sortase, human immunoglobulin, and
superoxide dismutase (SOD1). Relative increase of fluorescence
intensity ranging from ∼2 to ∼10 folds was detected, suggesting
AIEgen can serve as a general probe for misfolded and aggregated
proteins in vitro (Figure 3D). With illumination by AIEgen,
misfolded and aggregated proteins were detected as puncta in
vivo in live HEK293T cells and were found to be mobile or
immobile (Figure 3E). The puncta were mostly rounded in shape
under Structure Illumination Microscopy (SIM), with a diameter
of ∼0.5 μm (Figure 3F).

In addition to Tg treatment, ER stress can also be activated by
Dithiothreitol (DTT) treatment, which causes protein misfolding
and aggregation by blocking formation of disulfide bonds. Similar
as under Tg treatment, DTT treatment at 10 mM for 6 h induced
formation of ER whorls in 75.7% of treated cells (Figures 4A,B).
In contrast, treatment of HEK293T cells with 1 mM of DTT for
6 h only induced formation of ER whorls in a small percentage
(4.3%) of cells (Supplementary Figures S5A–C). When the
concentration of DTT was increased to 3 mM, formation of
ER whorls was detected in 45.3% of treated cells
(Supplementary Figures S5A–C), indicating ER stress induced
by DTT treatment drives whorl formation in a dose-dependent
manner. The rate of whorl formation was significantly lower in
control experiments, at 1.2 ± 0.2% (DTT 0 mM, 0 h), 1.2 ± 0.2%
(DTT 0 mM, 6 h), and 0.8 ± 0.1% (DTT 10 mM, 0 h). In DTT
treated cells, 81.7 ± 2.1% of them showed both puncta of unfolded
proteins and ER whorls (Figures 4B,C), significantly higher than
that of control cells (11.4 ± 1.6% in DTT 0 mM 6 h, 3.7 ± 0.3% in
DTT 0 mM 0 h, and 4.1 ± 0.3% in DTT 10 mM 0 h; p < 0.0001;
mean ± SEM; n � 235 cells from nine experiments). Interestingly,
we noticed that the puncta of unfolded protein were tightly
associated with deformed ER (Figure 4C). Specifically, 87.5 ±
0.2% of puncta of unfolded proteins were attached to ER
whorls during their formation. They were either attached to
outer surfaces of the whorls (68.3 ± 0.3%) or were wrapped
inside the whorls (19.3 ± 0.2%) (Figures 4C,D) (average ± SEM,
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n � 355 whorls from 151 cells). Taken together, these results
indicate that whorls can serve as a morphological image
biomarker for ER stress. The tight attachment of unfolded
proteins to ER whorls also suggests a direct role of whorls in
isolating misfolded and aggregated proteins.

Development of ER-WHs-Analyzer for
Automated Detection of ER Whorls
So far, we have shown that ER whorls can serve as an image
biomarker for ER stress. To use it for screening studies, we
developed a deep learning-based analysis assay, which we refer
to as ER-WHs-Analyzer, for automated detection and analysis of
the whorls. The overall workflow of ER-WHs-Analyzer is shown
in Figure 5A. First, raw images were cropped from acquired full-
size ER images. Then, cropped images were standardized in their

sizes and enhanced in their quality through preprocessing. The
feature recognition module (DNNs-based classification model)
was trained using the preprocessed images along with their binary
labels, i.e., WT (wildtype without whorls) or WHs (with whorls)
(Figure 5C). The trained feature recognition module was then
used to detect whether an ER image contains whorls. If ER whorls
were detected, the feature localization module was used to
generate a heatmap of features learned by the recognition
module. Based on the heatmap, regions of whorls were
localized by simple thresholding (Figure 5A; Supplementary
Figure S1). Two types of representative DNNs, the ResNet
(He et al., 2016) and DenseNet (Huang et al., 2017)
(Supplementary Figures S6, S7), were used in this study.
Their performance was compared using architectures with
different depths including ResNet14, ResNet34, ResNet50,
ResNet101, DenseNet121, DenseNet161, DenseNet169 and

FIGURE 3 |Detecting unfolded and aggregated protein in vitro and in vivo by AIEgen. (A) A cartoon illustration of the formation of misfolded oligomers and insoluble
aggregated DHFR model proteins. (B) Structural features of the AIEgen. (C) Thermal shift assay using OD330 turbidity (black curve) and the fluorescence of the AIEgen
(red curve). Fluorescence of AIEgen occurs slightly earlier than the formation of insoluble aggregates measured by OD330 turbidity assay, indicating that the fluorescence
originates from misfolded oligomers. (D) Fluorescence of AIEgen detecting the folded verses misfolded and aggregated proteins. AIEgen (25 μM) and WT-DHFR
(50 μM), mut-DHFR (50 μM), sortase (50 μM), Human Ig (1 mg/ml) and SOD1 (50 μM) were mixed in acidic aggregation buffer (NaOAc 200 mM, KCl 100 mM, acidified
by AcOH to pH � 6.23) and incubated at 60 °C or 80 °C for 5 min. Spectra were collected with an excitation wavelength of 561 nm. (E)Both mobile (blue arrowhead) and
immobile (white and yellow arrowheads) unfolded proteins are tightly associated with ER (green). Scale bar � 1 μm. (F) SIMmicroscopy shows round shapes of unfolded
proteins. Scale bar � 1 μm.
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DenseNet201, where the numbers indicate the count of trainable
model layers (Figure 5B; Supplementary Figure S6).

Training and Testing Deep Learning Models
of ER-WHs-Analyzer
For training and testing of the feature recognition module in ER-
WHs-Analyzer, we constructed a dataset that we referred to as
ER-Stress-A. We collected 490 cell images of normal ER
morphology (labeled as WT) or abnormal ER morphology
with whorls (labeled as WHs). We split the images into a

training set, a validation set, and a test set (Supplementary
Table S1). The training and validation sets were used to
finetune training hyper-parameters (Supplementary Table S2).
The test set was used for standalone testing. Standard
performance metrics for image classification were used,
including F1 (F1 score), AUC (area under ROC curve), ACC
(accuracy), Spc (specificity), Sen (sensitivity), Pre (precision). The
validation set in ER-Stress-A was used to compare performance
of different architectural configurations of backbone networks.

Validation results of different configurations of backbone
networks are compared in Figure 5B. Several observations can

FIGURE 4 | ER whorls tether unfolded proteins under stress. (A) ER whorls and unfolded protein (UP) puncta appear only under stress. Scale bar � 10 μm. (B)
Quantification of unfolded protein puncta and whorls under stress. A 6-h treatment of 10 mM DTT induced both unfolded protein and whorls formation at a final ratio of
81.7 ± 2.1% and 75.7 ± 2.0% (mean ± SD; from n � 235 cells), respectively. ****: p < 0.0001. (C) 3D view of colocalization of unfolded proteins and whorls. Unfolded
proteins may be in contact with the outside surfaces of whorls (a) or exist inside the whorls (b). Scale bar � 1 μm. (D)Quantification of localization of unfold proteins
with respect to whorls, 68.3 ± 0.3% (mean ± SD; from n � 355) of whorls have UPs attached to the membrane (ON), 19.3 ± 0.2% of whorls wrapped UPs inside (IN).
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be made. First, deeper networks generally provided better
performance. For example, ResNet50 with 50 weight-
learnable layers obtained a higher F1-score than ResNet34
and ResNet18. And DenseNet generally outperformed
ResNet. Second, models pretrained with CBMI-Extra
(indicated by *) generally outperformed models without
pretraining. The benefit of pretraining was more pronounced
for shallow models. For example, the ResNet34 pretrained with
CBMI-Extra outperformed DenseNet121 without pretraining.
Third, deeper networks such as ResNet101 and DenseNet201
were more prone to overfitting. This problem can be mitigated
by finetuning. DenseNet 201 achieves overall the highest rate of
recognizing ER whorls (98.78%) (Figure 5B). Other
performance metrics are listed in Supplementary Table S5.
We chose DenseNet201 with pretraining for the feature
recognition module of ER-WHs-Analyzer. In standalone
testing, the model achieved excellent performance with F1 �
98.27%, AUC � 99.65%, ACC � 98.54%, Spc � 99.16%, Sen �
97.70%, Pre � 98.84%. In model testing, the ratio of abnormal
ER structures labeled by experts was 42.33%, while the ratio
detected by ER-WHs-Analyzer is 42.16%, reaching a high level
of agreement. After feature recognition, the feature localization

module of ER-WHs-Analyzer determined positions of the
regions of whorls based on a heatmap of learned feature and
subsequent thresholding (Figure 5A).

Representative images from ER-Stress-A test set and their
correct classification labels are shown in the second row and the
first row of Figure 5C, respectively. The heatmaps of learning
features are shown in the third row of Figure 5C, while their
recognition results using the feature recognition module are
shown in the fourth and fifth rows, respectively. Together, the
results showed that ER-WHs-Analyzer can accurately recognize
and localize individual ER whorls (Figure 5C; Supplementary
Figure S8). We also used a t-SNE map (Maaten and Hinton,
2008) to visualize the representative features that our method
learned to separate morphology of normal ER from ER with
whorls (Figure 5D). We found that morphology of ER under
normal condition and induced stress can be well differentiated.

Separating Different Sub-Phenotypes of ER
Whorls Using ER-WHs-Analyzer
ER stress is induced by treatment of Tg and DTT via different
mechanisms (Dibdiakova et al., 2019). Tg induces ER stress via

FIGURE 5 | Deep learning-based morphological classification of ER morphology. (A) Overall workflow of the proposed ER-WHs-Analyzer. (B) Performance
evaluation of various DNNs-based classification models in the feature recognition module of ER-WHs-Analyzer. * indicates that the model was finetuned from a pre-
trainedmodel. Numbers on X axis indicate different depth of the deep learningmodels. Red arrow indicates the best performedmodel, the DenseNet-201 which consists
of 201 weights-learnable layers. (C) Results of images from the ER-Stress-A dataset processed by ER-WHs-Analyzer-v1, including the raw images, their
corresponding feature heat maps, their prediction scores, and their predicted labels. (D) Based on the phenotypic features learned, a t-SNE map was used to visualize
the distribution of wildtype ER images (WT) and the ER images with whorls (WHs).

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 7678669

Guo et al. Morphological Classification of Stressed ER

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


interfering with calcium ion transport, while DTT induces ER
stress by blocking the formation of disulfide bonds required for
protein folding (Jiang et al., 2015). Differently from Tg or
Tunicamycin (Tm), DTT is also considered as a robust pro-
apoptotic ER stress inducer (Labunskyy et al., 2009). As
expected, DTT treatment at a concentration of 3 mM caused
formation of ER whorls. However, ER whorls induced by DTT
(Figure 6A, second row, panels 5–6) showed morphological
difference from those induced by Tg treatment (Figure 6A,
second row, panels 3–4). Specifically, whorls induced by Tg
treatment generally tend to be circular and small whereas whorls
induced by DTT treatment tend to be elliptic and large. Cells
treated with Tg generally tend to have a low number of whorls,
typically one or two. Cells treated with DTT generally tend to
have more whorls, typically two or more. We quantitatively
analyzed the number and area of whorls in the cells treated by
Tg and DTT using feature localization module (Supplementary
Figure S1). Overall, DTT treatment induced an average of
2.43 ± 1.36 whorls per cell (mean ± SD; n � 112 cells) and

an average area of whorls of 29.27 ± 16.75 μm2 (n � 272 whorls).
In contrast, Tg treatment induced an average of 1.37 ± 0.80
whorls per cell (n � 150 cells) and an average area of 14.88 ±
11.79 μm2 (n � 206 whorls). The differences in whorl
number and area between the two treatments are statistically
significant (p < 0.0001).

To verify whether our ER-WHs-Analyzer can separate these
morphological subphenotypes of ER whorls, we constructed another
dataset that we refer to as ER-Stress-B. It contains three categories:
Wildtype,WHs-Type I andWHs-Type II.WHs-Type I contains one
or twowhorls andWHs-Type II containsmore than twowhorls. ER-
Stress-B contains a total of 1404 cell images. We partitioned all the
images into a training set and a validation set (Supplementary Table
S3). We used the same deep learning model and performance
metrics as in previous experiments. For this multi-class
recognition task, we replaced the previous two-class output layer
with a three-class output layer and retrained the models. Again, we
compared the performance of our models with and without
pretraining with the CBMI-Extra dataset (Supplementary Table

FIGURE 6 | Two sub-phenotypes of ER whorls were identified by ER-WHs-Analyzer-v2. (A) Results of images from the ER-Stress-B dataset processed by ER-
WHs-Analyzer-v2, including the raw images, their corresponding feature heat maps, their prediction scores, and their predicted labels. (B) Based on the phenotypic
features learned, a t-SNE map was used to visualize the distribution of wildtype ER images (WT), the ER images with WHs-Type I, and the ER images with WHs-Type II.
(C) Double-blind testing results between human experts (H) and ER-WHs-Analyzer v2 (M). Purple bars show the distribution of WHs-Type I. Red bars show the
distribution of WHs-Type II. Error bars indicate SEM, which was computed from 81 sampled images. **: p < 0.01; ***: p < 0.001; ****: p < 0.0001, ns: not significant.
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S4). From the results, we observed a similar trend as in previous two-
class classification experiments. Overall, DenseNet outperforms
ResNet, and models with pretraining (indicated by *) outperform
those without. However, differently from previous experiments,
DenseNet161 shows overall the best performance, whose F1 score
reaches 98.86%. Detailed evaluation metrics are compared in
Supplementary Table S6. We chose DenseNet161 with
pretraining for the feature recognition module and referred to the
overall assay as ER-WHs-Analyzer v2.

Next, we checked whether ER-WHs-Analyzer v2 can reliably
separate different subphenotypes of ER whorls. Figure 6A shows
the results, which confirms that ER morphologies of WHs-Type I
and WHs-Type II can be reliably differentiated. The t-SNE map
(Figure 6B) shows that ER-WHs-Analyzer v2 has learned
representative features to distinguish the sub-phenotypes of ER
whorls.

Finally, we performed a double-blind experiment to compare
ER-WHs-Analyzer v2 against human experts in classifying ER
images acquired under control, Tg treatment, and DTT treatment
respectively. Based on the classification results, we counted the
numbers of the cells belonging to different sub-phenotypes for the
control group and the two experimental groups. From the results,
we have observed clear distribution differences of these three
groups of cells (Figure 6C). According to classification by human
experts, the control group contains 96.1 ± 7.3% WT, 3.9 ± 1.2%
WHs-Type I and 0.0 ± 0.0% WHs-Type II. The Tg treatment
group contains more WHs-Type I, with 78.7 ± 4.8% WT, 14.6 ±
3.5% WHs-Type I, and 6.8 ± 2.1% WHs-Type II (Figure 6C). In
contrast, the DTT treatment group contains more WHs-Type II,
with 13.6 ± 6.8% WT, 17.0 ± 4.2% WHs-Type I, 69.3 ± 7.1%
WHs-Type II (Figure 6C). Classification results by ER-WHs-
Analyzer v2 generally matched those by human experts (p > 0.07,
n > 81 from seven experiments) (Figure 6C). Together, these
experimental results suggested that ER-WHs-Analyzer v2 can
reliably detect morphological differences of ER whorls induced by
different treatments.

DISCUSSION

In this study, we examined morphological patterns of ER under
stress and identified ER whorls as an image biomarker of ER stress
for screening studies. ER whorls are found in both yeast and
mammalian cells, and their formation is considered as an integral
part of cellular response to ER stress (Bernales et al., 2006; Schäfer
et al., 2020; Xu et al., 2020), an important target of drug development
studies for treatment of cancer as well as metabolic and
neurodegenerative diseases. Although a wide variety of chemical
and genetic tools for assessing ER stress have been developed (Sicari
et al., 2020), image biomarkers for efficient phenotypic screening
have been lacking. Our study fills this gap.

Monitoring ER stress by detecting and analyzing ER whorls
carry some important advantages. Canonical ER stress detection
is carried out by Western blot analysis of the expression or
phosphorylation of ER stress modulators or their transcription
by quantitative reverse transcription polymerase chain reaction
(RT-PCR) (Haynes and Wiseman, 2018). These are endpoint

assays that are laborious. More importantly, they cannot measure
ER stress in single cells. Another approach to detect ER stress is to
monitor the transcription reporters of molecules key to UPR,
such as XBP1 and ATF4, by fluorescence. But it is not a real-time
approach because of the time delay between initiation of
transcription and the illumination of reporter proteins. In
comparison, our study shows that ER morphological changes
correlate well ER stress, and ER whorls can be used as an image
biomarker to detect ER stress. They appear as early as 1 h after
stress induction, indicating that they respond quickly to ER stress.
Furthermore, high-resolution live-cell imaging of whorls
makes real-time and single-cell level monitoring of ER
stress possible. Our study combines automated high-
resolution ER microscopy with deep learning-based
analysis using ER-WHs-Analyzer to achieve high-
throughput observation and quantification. This automated
monitoring and analysis assay can be used as an effective tool
for screening or validation of ER stress-related targets or
drugs. It can reliably separate different sub-phenotypes of
ER morphology under stress induced by different drugs. It can
also be trained for use with other specific image biomarkers
for ER stress. However, experimental settings of our study
such as concentration and duration of Tg and DTT treatment
remain be further optimized.

The mechanism regulating ER whorl formation is
complicated. Although the causal relation between formation
of ER whorls and COPII, ESCRT has been established, the
relation between formation of ER whorls and PERK signaling
remains unclear (Schäfer et al., 2020; Xu et al., 2020). Our study
shows that formation of ER whorls accompanies activation of
IRE1 α. Therefore, multiple signaling pathways likely contribute
to whorl formation. The precise functions of ER whorls are not
completely clear either. The oligomerization and trans-
autophosphorylation are considered as an activation of ER
stress sensors. Therefore, whether whorls contribute to the
activation of PERK and IRE1 α should be tested. In addition,
ER whorls are reported to separate the translocon complex and
suppress protein translation (Xu et al., 2020). We have also
found that they isolate misfolded and aggregated proteins.
However, whether they serve other cellular functions and
whether they contribute to cell fate determination under
prolonged ER stress remained to be determined. The
automated image biomarker assay developed in this study
will help address these questions.
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