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The establishment of a monitoring technique for imatinib is necessary in clinical and

environmental toxicology. Leaf extracts of Lycoris longituba were used as reducing

agent for the one-step synthesis of reduced graphene oxide-Ag nanocomposites. This

nanocomposite was characterized by TEM, FTIR, XRD, and other instruments. Then, the

graphene/Ag nanocomposite was used as a modifier to be cemented on the surface of

the glassy carbon electrode. This electrode exhibited excellent electrochemical sensing

performance. Under the optimal conditions, the proposed electrode could detect imatinib

at 10 nM−0.28mM with a low limit of detection. This electrochemical sensor also has

excellent anti-interference performance and reproducibility.

Keywords: biosynthesis, imatinib, silver nanoparticle, graphene composite, Lycoris longituba

INTRODUCTION

Cancer is one of the most important diseases facing humanity today. Cancer is lethal because
its cells are uncontrolled and proliferate indefinitely and spread throughout the body. Cytostatic
agents are the most commonly used class of anti-cancer drugs (Karthik et al., 2017; Liu et al.,
2018; Muti and Muti, 2018; Zahed et al., 2018). Their purpose is to inhibit the growth of cancer
cells. However, the widespread use of cytostatic agents has caused some other effects, such as on
environmental toxicology. Among them, imatinib is a specific inhibitor. Imatinib is frequently
used in the treatment of chronic myeloid leukemia and gastrointestinal stromal tumors (Cahill
et al., 2017; Hochhaus et al., 2017). For example, patients with chronic myeloid leukemia can use
400mg of imatinib per day. Previous reports have demonstrated that the cytogenetic andmolecular
response to imatinib is associated with low plasma concentrations in patients with chronic myeloid
leukemia (Serrano et al., 2019; Buclin et al., 2020). Therefore, monitoring of imatinib is necessary,
both in the clinical and environmental toxicology fields.

Currently, the detection methods for imatinib include UV-vis spectroscopy (Grante et al., 2014),
HPLC (Roth et al., 2010), and electrophoresis (Li et al., 2012; Ahmed et al., 2019). Although these
methods can be used for the rapid detection of imatinib, they all have their own drawbacks. For
example, UV-vis spectroscopy requires a large number of samples. HPLC methods are slower
and require large instruments. The detection sensitivity of electrophoresis method is not enough.
Therefore, it is necessary to develop a technique for the rapid detection of imatinib. Electrochemical
sensors are a fast and sensitive detection technology. It enables highly sensitive detection of
electrochemically active substances. Previous studies have demonstrated that imatinib can be
oxidized at lower potentials, so assembling an imatinib-based electrochemical sensor is an approach
worth investigating.
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Conventional electrochemical sensors use carbon electrodes
for the detection of target molecules (Fu et al., 2019; Mahmoudi-
Moghaddam et al., 2019; Zhou et al., 2020). Carbon electrodes
have a stable electrochemical window and do not react easily
with other substances. However, the electrochemical signal
of ordinary carbon electrodes is weak (Karimi-Maleh et al.,
2021a), so it is difficult to meet the demand of highly sensitive
detection. Modification on the surface of ordinary carbon
electrodes is a common method to improve the electrochemical
activity of sensors (Cao et al., 2019; Alam et al., 2020; Fu
et al., 2020). Recent studies have shown that modification of
carbon nanomaterials on the surface of glassy carbon electrodes
can improve the performance (Karimi-Maleh et al., 2020).
For example, modification of graphene on the surface of
glassy carbon electrodes can increase the electrical conductivity.
However, the layer-layer interaction of graphene is so strong
that direct modification can cause agglomeration, which in turn
reduces the performance of the sensor (Kumar et al., 2019; Jadoon
et al., 2020). Surface modification of polymers allows the surface
of graphene to be loaded with tubular energy groups. Under
the principle of homogeneous charge repulsion, the layer-layers
of graphene can be separated from each other. However, the
modified graphene also cannot perform very well due to the
poor electrical conductivity of the polymer (Liu et al., 2019).
Another strategy is to grow nanoparticles between graphene. The
graphene lamellae are separated by nanoparticles. This approach
is most beneficial for the modification of electrochemical sensors
(Karimi-Maleh et al., 2021b). The presence of nanoparticles can
increase the electrochemically active surface area. Also, some
nanoparticles have electrochemical catalytic properties that can
improve the sensitivity of detection.

Graphene-nanoparticle composites are synthesized by many
methods. In recent years, the one-step synthesis of graphene-
nanoparticle composites using plant extracts has attracted much
attention (Nandgaonkar et al., 2014; Keerthi et al., 2018; Khanam
and Hasan, 2019). This method does not require polluting
reducing agents and easily controls the size of nanoparticles.
For example, Song and Shi (2019) reported the synthesis

FIGURE 1 | (A) XRD pattern and (B) TEM image of biosynthesized G/Ag.

of graphene/Ag nanocomposites using Shewanella oneidensis.
Weng et al. (2018) reported the synthesis of graphene/Fe
nanocomposites using eucalyptus leaves.

In this work, we chose the leaf extract of Lycoris longituba
as a reducing agent. The graphene/Ag nanocomposites were
reduced by a one-step hydrothermal method. We characterized
the conforming materials. The synthesized composites were
used for surface modification of glassy carbon electrodes and
successfully used for electrochemical detection of imatinib. This
novel electrochemical sensor allows highly sensitive detection
of imatinib.

EXPERIMENTS

All reagents, including KH2PO4, Na2HPO4 and silver nitrate
were purchased from Macklin Co. Ltd. and used without
purification. Graphene oxide (GO) was purchased from Nanin
Youshan Biotech Co. Ltd. Lycoris longituba was purchased from
local nursery. The working electrode, counter electrode and
reference electrode were glassy carbon electrode (GCE), Pt wire
and Ag/AgCl (3M), respectively. Phosphate buffer solution (PBS)
was prepared by mixing stock solutions of 0.1M disodium
hydrogen phosphate and sodium dihydrogen phosphate. The
electrochemical determination of imatinib was carried out
using a CHI760 electrochemical workstation. Differential pulse
voltammetry (DPV) was used for electrochemical recording. The
scan range was 0–1.2V. The pulse amplitude was 50mV. The
pulse width was 0.05 s. The pulse period was 0.5 s.

The XRD pattern of sample was collected by a XRD with
Cu Kα (λ = 0.1546 nm) radiation (D8-Advanced, Bruker).
Transmission electron microscopy (TEM) image was observed
with a JEOL JEM-2100 high-resolution transmission electron
microscope. FTIR spectra were collected by a Fourier transform
infrared spectroscopy (Nicolet iS5, Thermo Scientific).

To prepare the aqueous extract of Lycoris longituba, its
crushed leaf (1:20 ratio) was shaken overnight at 200 rpm with
water as solvent. Then, the mixture was filtered, and the resulting
extract was used for further experiment. Then, 5mL of the extract
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was diluted to 20mL, and silver nitrate (10mM) was added to
it. This solution was transferred to an autoclave and heated at
120◦C for 10 h. The composite was collected after filtration and
re-dispersed into water to form a 0.5 mg/mL dispersion (denoted
as G/Ag).

RESULTS AND DISCUSSION

Figure 1A shows the XRD pattern of the synthesized G/Ag. It can
be seen that four distinct planes of the sample corresponding to
(200), (220), (311), and (222) lattice plane of silver face-centered-
cube (fcc) crystal (Waterhouse et al., 2001). This result was
mated to the reference data in JCPDS file no. 04-0783, suggesting
the successful formation of the Ag nanoparticles. Moreover, an
additional peak appearing at 26.10◦ can be also noticed, due to
the partial reduced GO sheets to form an ordered crystalline
structure (Wang et al., 2013). Figure 1B shows the TEM image
of the synthesized G/Ag. By the contrast with the background,
we can see the layered graphene. On the graphene lamellae we

FIGURE 2 | FTIR spectrum of Lycoris longituba leaf extract and G/Ag.

can see the growing Ag nanoparticles. According to the statistics,
the average size of Ag nanoparticles is 24 nm.

Figure 2 shows the FTIR spectra of Lycoris longituba, and
biosynthesized G/Ag. It can be seen that the extract of Lycoris
longituba exhibited a series bands at range from 700 to 2,000
cm−1. The absorbance peak at 1,322 cm−1 is corresponding
to the C–O stretching (Ranjana and Mendhulkar, 2015). In
addition, the peak located at 883 cm−1 can be assigned to the
C–N vibrations of the nitroso groups. These two peaks were also
found in the biosynthesized G/Ag, suggesting the biomolecules
of the Lycoris longituba were attached on the composite surface.
The intensity of the oxygen containing groups on the G/Ag
is relatively low, indicating the reduction of GO during the
hydrothermal treatment.

Figure 3A shows the DPV curves of G/Ag/GCE in 10µM
imatinib solution in the pH range between 4.0 and 8.0. It can be
seen that the oxidation potential of imatinib shifted to positive
direction along with the increase of the pH. Figure 3B shows the
plot of oxidation potential of imatinib vs. pH value. It can be seen
that a slope of 56.9 mV/pH was obtained, suggesting the equal

FIGURE 4 | DPV curves of the bare GCE, GO/GCE, Ag/GCE, and G/Ag/GCE

toward 10µM imatinib.

FIGURE 3 | (A) DPV curves of the G/Ag/GCE in 10µM imatinib solution in the pH range between 4.0 and 8.0. (B) Plots of oxidation potential of imatinib vs. pH value.
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number of electron and proton were participated in the reaction.
In addition, the maximum oxidation response for imatinib was
observed at pH = 7.0. Therefore, pH = 7.0 was selected as the
optimal condition.

Figure 4 shows the DPV curves of 10µM imatinib using
bare GCE, GO/GCE, Ag/GCE, and G/Ag/GCE. It can be seen
that the GCE only exhibited a very small oxidation peak with
a current response of 1.34 µA. The modification of GO on the

FIGURE 5 | (A) LSV curves of the G/Ag/GCE in 10µM imatinib solution in the scan rate between 10 and 200 mV/s. (B) Plots of v1/2 vs. current response.

FIGURE 6 | (A) Chronoamperograms of the G/Ag/GCE in imatinib solution in the concentration of 10, 20, and 50µM. (B) Plots of t−1/2 vs. current response.

FIGURE 7 | (A) DPV curves of the G/Ag/GCE in imatinib solution in the concentration from 10nM to 280µM. (B) Linear calibration plot of G/Ag/GCE toward

concentration of imatinib.
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GCE showed no clear enhancement. In contrast, the modification
of Ag nanopartciles on the GCE surface showed an excellent
performance toward imatinib oxidation. An enhanced oxidation
peak was observed with 4.52 µA response, suggesting the good
electrical conductivity of Ag nanoparticles can enhance the
sensing performance. In addition, the G/Ag/GCE showed an even
higher response toward imatinib with a much lower oxidation
potential, suggesting the combination of Ag and reduced GO
can trigger the electrocatalytic reaction with imatinib. The
electrocatalytic activity of the Ag nanoaprtciles was observed
when the corporation with carbon basedmaterials (Asadian et al.,
2017; Liu et al., 2017; Majidi and Ghaderi, 2017; Kumar and
Goyal, 2018).

Figure 5 shows the LSV curves of G/Ag/GCE toward 10µM
imatinib with different scan rate (from 10 to 200 mV/s). It

TABLE 1 | Electrochemical imatinib sensor performance comparison.

Method Linear

detection

range

Detection limit Reference

SWV 19

nM−1.9µM

5.55 nM Chen et al., 2014

MS 0.1

nM−1µM

– Friedecký et al.,

2015

DPV 10

nM−200µM

7.39 nM Hatamluyi and

Es’haghi, 2017

DPV 30

nM−0.25µM

6.3 nM Brycht et al., 2016

LC/MS/MS 100

nM−7.091µM

0.1µM Andriamanana et al.,

2013

Liquid

chromatography-

tandem

mass

spectrometry

20

nM−2.052µM

– Yang et al., 2013

DPV 10 nM-

280µM

1.1 nM This work

FIGURE 8 | Anti-interference property of the G/Ag/GCE.

can be seen that, the electrochemical oxidation current of the
imatinib had a liner relationship with the v1/2 while the oxidation
potential shifted positively along with the increase of the scan
rate, indicating the electrochemical behavior of the imatinib
obeyed the diffusion-controlled process (Ivanishchev et al., 2016).

Figure 6A shows the chronoamperograms of G/Ag/GCE
toward imatinib with 10, 20, and 50µM. Figure 6B shows
the corresponded cottrell plots. The diffusion coefficient was
calculated to be∼1.94×10−5 cm2/s.

As shown in Figure 7, under the optimal experimental
conditions, the DPV curves of G/Ag/GCE for different
concentrations of imatinib were recorded. G/Ag/GCE has a linear
relationship with the concentration of imatinib, with a linear
range of 10 nM−280µM and a detection limit of 1.1 nM (S/N
= 3). As shown in Table 1, compared with other methods, this
method has a lower detection limit and a wider linear range.
Although there are some detection methods that work better
than our proposed sensors, such as LC/MS/MS and LC/TMS,
these methods require large instruments and cannot achieve
rapid detection.

In order to discuss the selectivity of G/Ag/GCE, 13
common ions that may interfere with the actual detection
of imatinib were investigated in this experiment, as shown
in Figure 8. The results show that when the concentration
of sodium ion, potassium ion, copper ion, manganese ion,
cobalt ion, magnesium ion, mercury ion, zinc ion, lead
ion, nickel ion, barium ion, aluminum ion and chromium
ion is 10 times higher than that of imatinib, there is no
obvious interference to the actual detection of imatinib.
Therefore, the proposed sensor exhibited an excellent anti-
interference property.

The proposed sensor has been then used for determining
the content of imatinib in serum samples. Standard addition
of imatinib was used. Table 2 shows the performance of
the sensor for real sample analysis. It can be seen that
excellent recovery performance was observed for each test,
indicating the proposed sensor can be applied for real
sample sensing.

CONCLUSIONS

The stable Ag nanoparticles were synthesized with the
reduction of GO using leaf extracts of Lycoris longituba under
hydrothermal condition. TEM, XRD and FTIR were used for
characterizations. Based on the enhancement effect of imatinib

TABLE 2 | Electrochemical determination of imatinib content in serum samples

using G/Ag/GCE.

Sample Detected (nM) Added (nM) Detected (nM) Recovery (%)

1 0 10.00 9.77 97.70

2 0 20.00 20.47 102.35

3 0 50.00 50.44 100.88

4 0 100.00 99.36 99.36
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on the electrochemical oxidation signal, an electrochemical
sensor was constructed using G/Ag nanocomposite.Under the
optimal experimental conditions, a linear range of imatinib
detection was obtained between 10 nM and 280µM with a
limit of detection of 1.1 nM. The proposed G/Ag/GCE showed
an excellent anti-interference property. In addition, it can be
applied to the detection of imatinib in real serum sample.
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