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Abstract

Background: In November 2011, Malawi introduced the 13-valent pneumococcal conjugate vaccine (PCV13) into
the routine infant schedule. Four to 7 years after introduction (2015-2018), rolling prospective nasopharyngeal
carriage surveys were performed in the city of Blantyre. Carriage of Streptococcus pneumoniae vaccine serotypes (VT)
remained higher than reported in high-income countries, and impact was asymmetric across age groups.

Methods: A dynamic transmission model was fit to survey data using a Bayesian Markov-chain Monte Carlo approach,
to obtain insights into the determinants of post-PCV13 age-specific VT carriage.

Results: Accumulation of naturally acquired immunity with age and age-specific transmission potential were both key
to reproducing the observed data. VT carriage reduction peaked sequentially over time, earlier in younger and later in
older age groups. Estimated vaccine efficacy (protection against carriage) was 66.87% (95% Cl 50.49-82.26%), similar to
previous estimates. Ten-year projected vaccine impact (VT carriage reduction) among 0-9 years old was lower than
observed in other settings, at 76.23% (Cl 95% 68.02-81.96%), with sensitivity analyses demonstrating this to be mainly
driven by a high local force of infection.

Conclusions: There are both vaccine-related and host-related determinants of post-PCV13 pneumococcal VT
transmission in Blantyre with vaccine impact determined by an age-specific, local force of infection. These
findings are likely to be generalisable to other Sub-Saharan African countries in which PCV impact on carriage
(and therefore herd protection) has been lower than desired, and have implications for the interpretation of
post-PCV carriage studies and future vaccination programs.

Keywords: Pneumococcus, pcv13, Modelling, Malawi, Intervention

Background

Streptococcus pneumoniae (pneumococcus) is a bacterial
human pathogen commonly carried asymptomatically in
the nasopharynx, which in a minority of carriers can
cause severe disease such as pneumonia, meningitis or
bacteremia [1], posing a serious mortality risk, especially
for young children (<5 years of age), the elderly (>65
years of age) and the immunocompromised [2].
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Pneumococcal carriage is a necessary precursor of severe
disease [3] and transmission, such that reduction of
carriage through active control is an important, universal
public health goal.

Currently, pneumococcal conjugate vaccines (PCV) are
the best available tool to reduce carriage and disease both
within risk groups and the general population. These vac-
cines have consisted of either 7, 10 or 13 polysaccharides
conjugated to a carrier protein (PCV7, PCV10, PCV13, re-
spectively). All have been demonstrated to be highly pro-
tective against 7, 10 or 13 common pneumococcal
serotypes associated with carriage and disease (also termed
vaccine serotypes, VT). A frequently observed consequence
of PCV introduction is the increase in both carriage and
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disease of non-VT pneumococci (NVT), likely due to
increased niche availability and reduction of competition
between VT and NVT [4-9].

PCV routine vaccination has been a common control
strategy for over a decade in developed countries, with
past experience showing that both pre- and post-PCV
pneumococcal carriage can be highly variable within and
between countries [10-16]. PCV vaccines have only re-
cently been introduced in sub-Saharan African countries,
such as Kenya [17, 18], Malawi [19], The Gambia [20]
and South Africa [21]. In November 2011, Malawi intro-
duced the 13-valent pneumococcal conjugate vaccine
(PCV13) as part of the national extended program of im-
munisation with a 3 + 0 schedule (at 6, 10 and 14 weeks
of age). With high routine coverage (~ 90%) and a small
catch-up campaign of young children, PCV13 was ex-
pected to quickly reduce carriage as previously reported
in developed countries. However, recently published data
on nasopharyngeal carriage as measured in a cross-
sectional observational study in Blantyre (Southern
Malawi), 4 to 7 years after PCV13 introduction (2015-
2018), has shown that vaccine impact (VT carriage
reduction) has been slower than expected and hetero-
geneous across age groups [22]. Epidemiological math-
ematical models have previously been employed
successfully to improve our understanding of pneumo-
coccal dynamics [5, 9, 23-27], as well as having con-
tributed to explain, estimate and project PCV impact
[8, 11, 28]. The main advantage of models is their
cost-free potential to test hypotheses and gain a mech-
anistic, ecological and immunological understanding
of carriage and disease dynamics, estimating epidemio-
logical parameters which are difficult to otherwise quantify
from raw epidemiological data. For example, models have
successfully yielded estimates of VT and non-VT pneumo-
cocci transmission potentials [26, 29-31], pneumococcal
competition factors [8, 9, 23, 28, 32, 33] and measures of
vaccine-induced protection from carriage at the individual
level [11, 17, 28, 34, 35], none of which are readily observed
or quantified in cross-sectional observational studies.

In this study, we use a Bayesian Markov chain Monte
Carlo fitting approach and a dynamic model to investi-
gate the post-PCV13 pneumococcal VT carriage dynam-
ics in Blantyre, Malawi. We find that natural immunity
and age-specific transmission potentials are necessary to
reproduce observed VT carriage. When compared to nu-
merous reports in the literature from other regions, our
estimated vaccine efficacy (individual-level protection
from carriage) was close to expected values, but impact
(population-level reduction of VT carriage) was lower
both in the short and long term. We show that vaccine
impact was likely being offset by a high local force of in-
fection compared to other regions of the world. Our
study offers new insights into the lower than expected
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PCV13 impact in Malawi and more generally on the
heterogeneous nature of pre- and post-vaccination
pneumococcal VT carriage across age groups and re-
gions. These results can be translated to other sub-
Saharan African countries in which PCV impact and
herd protection has been lower than desired.

Methods

Prospective cross-sectional observational study

An observational study using stratified random sampling
was conducted to measure pneumococcal nasopharyngeal
carriage in Blantyre, Malawi [22]. Sampling was performed
twice a year, between June and August 2015 (survey 1),
October 2015 and April 2016 (survey 2), May and October
2016 (survey 3), November 2016 and April 2017 (survey
4), May and October 2017 (survey 5), November 2017 and
June 2018 (survey 6) and June and December 2018 (survey
7). In this study, we use the mid-point dates of the surveys
for model fitting and presentation of results. A total of
7148 individuals were screened with nasopharyngeal
swabs processed following WHO recommendations [36].
Isolates were serotyped by latex agglutination (ImmuLex™
7-10-13-valent Pneumotest; Statens Serum Institute,
Denmark). In this study, we use all the data from three
age groups: 499 vaccinated children 2 years old, 2565 vac-
cinated children 3-7years old and 1402 unvaccinated
children 3-10years old. For the first three surveys, data
on vaccinated 2years old individuals was not collected.
Observed VT carriage levels are presented in Fig. 1d and
Additional file 1: Table S7. Further details on collection,
processing and observations, as well as the dynamics of
non-VT have been previously described in detail [22].

Vaccine type transmission model

A deterministic, ordinary-differential equations (ODE)
model (Fig. 1a) was developed to fit VT carriage levels as
reported in the cross-sectional observational study in
Blantyre (Fig. 1d) [22]. Fitting was implemented using a
Bayesian Markov chain Monte Carlo (bMCMC) ap-
proach developed and used by us in other modelling
studies [37-39], including informative priors for dur-
ation of carriage (Fig. 1c) and uninformative uniform
priors for vaccine efficacy (individual-level protection
against carriage) and transmission potential. The bMCMC
searches the parameter space for combinations that result
in pre-vaccination VT carriage levels which, when affected
by the introduction of the vaccine, result in dynamics
similar to those observed in the post-vaccination era.
Thus, although the approach does not use pre-vaccination
VT carriage data, it can still estimate the most likely com-
bination of pre-vaccination carriage and vaccine effects
that leads to observed, post-vaccination dynamics. The
methodology is summarised in this section and further de-
tails can be found in Additional file 1, such as equations,
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is the specific coefficient for transmission within and between particular age groups. 8 and 8 are estimated when fitting the survey data. ¢ The
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literature review on priors and expected parameter values 7, 8-9, 10+ years old. Ageing was approximated by mov-

and complementary results. ing individuals along age groups with a rate (dage group)

equal to the inverse of the time spent at each age class.
Pneumococcal infection dynamics and human The seven age groups were further divided into vacci-
demographics nated (Sge groupr Clage group) and unvaccinated

As depicted in Fig. 1a, the population was divided into  (Sage groupr Cage group) susceptibles (S) and carriers (C).
seven non-overlapping age groups: 0 (<1), 1, 2, 3-5, 6—  The population size was assumed to be constant, with
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total deaths equal to births (details in Additional file 1).
Death rates were age-specific (¢age group) and relative to
a generalised total lifespan of 70 years.

Natural immunity

Pneumococcal colonisation increases both humoral
(anti-capsular serotype-specific and anti-protein non-
serotype-specific) and T cell (anti-protein) immunity
[40]. Acquisition of this immunity correlates with colon-
isation in children and increases with age as colonisation
decreases. In our model (Fig. 1a), all individuals were as-
sumed to be born susceptible but can acquire infection
(colonisation) at any age with a particular force of infec-
tion Agge groups becoming carriers (Cyge group) for an age-
specific period (1/Yage group)» and returning to the
susceptible state (Syge group) after clearance. Hence, the
development of complete (sterile) immunity to the
pneumococcus was not considered. We nonetheless
allowed for decreasing duration of carriage with age (1/
Yage group) @S a proxy for the development of pneumococ-
cal immunity with age. To quantify differences in age,
we used carriage duration data as reported by Hogberg
and colleagues [41] to define informative priors related
to the aggregated age groups: 0-2years (1/yo_»), 3-5
years (1/ys3_s), 6-8 years (1/ys_g) and 8+ years (1/yg,) as
represented in Fig. 1c¢ (Additional file 1: Table S1 for lit-
erature review).

Vaccination, efficacy and impact

For simplicity, routine vaccination was implemented at
birth with coverage (p) at 92.5% [22], and catch-up im-
plemented as a one-off transfer of a proportion of indi-
viduals from the unvaccinated susceptibles with 0 (< 1)
years of age (Sp) to the vaccinated susceptible class with
the same age (S") with coverage of 60% (at time of vac-
cine introduction) [22]. We assumed the vaccine to re-
duce the risk of infection (colonisation) of vaccinated
individuals by a proportion { (between 0 and 1, with ( =
1 equating to no risk). This reduction in risk was herein
defined and interpreted as the individual-level vaccine
efficacy against carriage (VE =100 x () and was mod-
elled directly on the force of infection (1) (Fig. 1la and
Additional file 1: Table S2 for literature review). We
measured vaccine impact across age groups as the post-
PCV13 percent reduction in population-level VT car-
riage compared to pre-vaccination levels.

Force of infection

We considered several transmission matrices (Additional file 1)
and compared the resulting model fits using leave-one-
out cross-validation (LOO) and the widely applicable
information criterion (WAIC) measures [42—44]. The
inhomogeneous transmission matrix presented in Fig. 1b
over-performed the others and was used for the results
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presented in the main text. Its structure is based on epi-
demiological studies conducted in American, European
and African populations reporting typical, strong, intrinsic
variation in frequency, efficiency and environmental risk
of transmission between age groups [10, 31, 45-50]. In
summary, the transmission matrix is generally populated
with a baseline coefficient 3, and a different coefficient 6
assigned to transmission occurring within and between
ages 05 years, and within 6—7 and 8-9 years of age inde-
pendently. Further literature support and results from the
second best-performing transmission matrix can be found
in Additional file 1.

Fitting to survey data

The model’s carriage outputs for vaccinated 2, vaccinated
3-5, unvaccinated 6-7 and unvaccinated 8-9 years of age
were fitted to observed levels in Blantyre’s 1-7 surveys
(Fig. 1d, values in Additional file 1: Table S7), approxi-
mately 4 to 7 years post PCV13 introduction (2015-2018).
A total of seven parameters were fitted: vaccine efficacy
against carriage ({, uninformative prior), coefficients of
transmission (B, 6, uninformative priors) and durations of
carriage in ages 0-2, 3-5, 6-7, 8+ years (1/yo_z 1/ys_s 1/
Ye—s» 1/ys., informative priors). The transmission model
was initialized at time ¢ = 0 with a proportion of 0.99 sus-
ceptibles and 0.01 infected, with numerical simulations
run until an equilibrium was reached. At equilibrium, vac-
cination was introduced and the first post-vaccine 15 years
recorded. Levels of carriage in the model were calculated
as the proportion of individuals within an age group that
are carriers (i.e. C/(S + C), expressions in Additional file 1).
The model was run with parameters scaled per year.
bMCMC chains were run for 5 million steps, with burn-in
of 20% (bMCMC details in see Additional file 1).

Results

We used our deterministic transmission model and
bMCMC approach to fit the observed post-vaccination
VT carriage data from Blantyre, Malawi (2015-2018).
Based on this fit, we could reconstruct age-specific car-
riage dynamics for the unobserved first 4 years (2011—
2015), and project VT carriage reduction into the future,
to identify the mechanistic nature of the slow PCV13
impact on the vaccinated age groups and strong herd-
effects in the older unvaccinated age groups.

Model fit and posteriors

VT carriage levels across age groups reported from the
surveys were closely reproduced by the mean and 95%
CI of the model using the bMCMC approach (Fig. 2a).
Our initial assumption of natural immunity accumulat-
ing with age was generally respected in the bMCMC so-
lution (Fig. 2b); i.e. the estimated posterior distributions
of the durations of carriage (1/Yage group) Were adjusted
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(a) Survey data versus model fit
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Fig. 2 Model fit and estimated posteriors. a Model fit to carriage data from the observational study for different age groups: vaccinated 2 years
old (red), vaccinated 3-5 years old (purple), unvaccinated 6-7 years old (green) and unvaccinated 8-9 years old (orange). The survey data is
represented by full circles, the model output by full squares (data in Fig. 1d, Additional file 1: Table S7). b Priors (lines) and estimated posterior
distributions (shaded) of duration of carriage per age group. ¢ Visual comparison of the estimated mean and 95% Cl of posterior of vaccine
efficacy against vaccine-type carriage (red) in the context of estimates from other studies (in legend, Additional file 1: Table S2). d The estimated
posterior distributions of the transmission coefficients 8 and 6 are shown in two dimensions (coloured area). The estimated actual distribution for
Bis in the x-axis and 6 in the y-axis (visualised in grey). Note that, for visualisation purposes, the axes are log;e-transformed and the grey
distributions’ height has no scale (height is not quantified). a-d Solutions presented are obtained from sampling 100,000 parameter values from
posteriors and simulating the dynamic model

by the bMCMC by approximately - 0.7, +0.64, +0.58 carriage reduction across age groups in the first 10 years
and - 1.73 days for the age groups 0-2, 3-5, 6-7 and 8+  post-vaccination (Fig. 3).

years of age, respectively. The posterior distribution of After the first year, VT carriage reduction was
vaccine efficacy (individual-level protection against car-  estimated to be 42.38% (95% CI 37.23-46.01%) for the O
riage) across ages was estimated to be 66.87% (95% CI (< 1) years old, followed by 29.25% (95% CI 26.4—31.4%)
50.49-82.26). While we used an uninformative prior for the 1year old, 17.45% (95% CI 16.47-18.36%) for the
(uniform, 0 to 1) in the bMCMC, this efficacy posterior 2 years old and 4.95% (95% CI 8.78-10.89%) for 3-5
was similar to others recently estimated with different years old (Fig. 3a). With time, as carriage generally
models and in multiple epidemiological settings (Fig. 2c).  dropped and vaccinated individuals aged, the older
We therefore argue that it serves as partial validation for ~ groups were estimated to benefit from increasingly simi-
our modelling framework. Finally, the solutions for the lar reductions in carriage compared to the initially vacci-
transmission coefficients 5 and 6 suggested that in order  nated group. Since during the first year only the 0 (<1)
to reproduce the Blantyre survey data, the risk of infec-  years of age were vaccinated, the short-term reductions
tion associated with contacts within and between youn-  in carriage of the other groups were due to indirect herd
ger age groups (0-5years old) would have to be higher effects alone.

than that of the general population (i.e. 8>>p). At the target point of 10years into the post-
vaccination era, impact was estimated to be similar
Vaccine impact across age groups across all age groups, with VT carriage reduced by 76.9%

Using parameter samples from the bMCMC estimated (CI 95% 68.93—-82.32%) for the 0 (< 1) years old, 75.72%
posteriors, we simulated vaccine impact in terms of VI (CI 95% 67.78-81.24%) for the 1year old, 75.51% (CI
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Fig. 3 Projections of post-vaccination vaccine-type carriage reduction. a Projected reduction in carriage relative to the pre-vaccination era for age
groups 0 years (magenta), 1year (blue), 2 years (yellow) and 3-5 years (purple) old. b Projected reduction in carriage relative to the pre-
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to 10 years. Dotted vertical lines mark survey dates. The x-axis origin marks PCV13 introduction

Projected reduction in carriage
(b) o for first 10 years post-vaccination
UNOBSERVED . OBSERVED : PROJECTED
(PREDICTED) (SURVEYS)

o | [ A

¢
© =~
8
E®
55 o
g8 @7
ST
20
Sa
T o
°° 9
.2
QT
8=
38
Q

o

[3Y)

= 0-5years
L = 6-9years
° 7 T T T T
2012 2014 2016 2018 2020
time in years

95% 67.55-81.05%) for the 2 years old and 75.86% (CI
95% 68.29-80.97%) for 3-5years old. We further pro-
jected vaccine impact on aggregated age groups 0-5 and
6-9 years of age, which showed equivalent reductions in
VT carriage (Fig. 3b), with the larger aggregated age
group 0-9years old having a total reduction of 76.23%
(CI 95% 68.02—81.96%) after 10 years.

We performed a literature review on observed reduc-
tion of VT carriage in time after the introduction of
PCV vaccines (Additional file 1: Table S5) in numerous
countries and concluded that both the observed carriage
levels during the surveys and during the model’s projec-
tion for the first 10 years were high when compared to
other countries. For instance, residual carriage of PCV13
types was 0.4% after 4 years of vaccination in England
[51], 9.1% after 2years of vaccination in Italy [52] and
7% after 3years of vaccination in Alaska, USA [16].
Similarly, for 0—5-year-old individuals, PCV10 in Kenya
[18] has reduced VT carriage by 73.92% in the first 5
years, while in Portugal [53], PCV7 has reduced VT car-
riage by 78.91% in the same age group and amount of
time (more examples can be found on Additional file 1:
Table S5).

Post-vaccination changes in force of infection

To try to understand responses to vaccination across age
groups, we further explored the post-PCV13 force of in-
fection (FOI) dynamics. The FOI is the overall rate by

which a certain age group of susceptible individuals is
infected, comprising the transmission rate (8 or 6)
weighted by the number of infectious individuals within
the same and other age groups. Although we modelled
six independent age groups under 10 years of age, only
three unique FOIs are defined in the transmission matrix
for individuals under 9 years of age (0-5, 6-7 and 8-9
years of age, Fig. 1b).

As determined by the posteriors of  and 8 (Fig. 2d),
the pre-vaccination absolute FOI of the 0-5, 6—7 and 8-
9 age groups was different at PCV13 introduction, and
with vaccine roll out the FOI of each age group de-
creased in time (Fig. 4a). We also examined the FOI de-
rivative with respect to time as a measure of speed of
FOI reduction (Fig. 4b) and found that the time period
of fastest FOI reduction for the 0-5years old was be-
tween vaccine introduction and 2015 (when no carriage
data was collected). This contrasted with the older age
groups (6—7 and 8-9), for which the period of fastest
FOI reduction was predicted to be just before or during
the first three surveys. Thus, although surveys 1 to 7
suggest a rather slow reduction of VT carriage for the
younger age groups during the observational study, this
seems to have been preceded by a period of high, short-
term impact on VT carriage for those age groups (seen
in the initial dynamics of Fig. 3a, b). Indeed, vaccine im-
pact (reduction in VT carriage) at the time of the first
survey was estimated to be 46.9% (95% CI 43.2-49.42)
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for the aggregated age group 0-5 years old. At the same
time, the fastest reduction in FOI for the older age
groups was predicted by the model to take place just
before and during the first surveys, the time period in
which survey data presents the largest reductions in VT
carriage for those age groups (Fig. 1d). Overall, projected
FOI dynamics suggest that PCV13 impact has been non-
linear in time within age groups, with predicted periods
of faster reductions in VT carriage being experienced by
different ages in a sequential manner, from younger to
older individuals.

Sensitivity of vaccine impact based on transmission
setting

The projected impacts of Figs. 3 and 4 were based on
the estimated transmission coefficients for Blantyre
(Figs. 1b and 2d). To contextualise this particular transmis-
sion setting, we searched the literature for pre-vaccination
VT carriage levels in other countries (Additional file 1:
Table S6). The reported age groups were highly variable,
and we therefore focused on the 0-5-year-old group for
which more data points were available from a range of
countries in North America, Africa, Europe and South-east
Asia (Fig. 5a). Reported VT carriage in this age group was
highly variable both between and within countries, with our
estimation for Blantyre being on the higher end (61.58%,
95% CI 50.0-70.9%).

We further searched the literature for post-vaccination
VT carriage levels in other countries and again focused
on the age group 0-5years old for which more data
points were available (Additional file 1: Table S5, points
with whiskers in Fig. 5b). The projected impact for Blan-
tyre according to our model (dashed line) was notably
lower than observed for other countries. A Malawi data
point reported in the context of the Karonga District
(Northern Malawi) had the closest impact to our projec-
tions in Blantyre (Southern Malawi), 4 to 5years after
PCV13 introduction [19].

Given that our posterior of vaccine efficacy (individual-
level protection against carriage, Fig. 2c) was close to esti-
mations from other regions of the world, we hypothesised
that both the higher pre- and post-PCV13 VT carriage
levels in Blantyre were likely due to a higher local force of
infection compared to other regions. To demonstrate this,
we simulated a range of alternative transmission settings
in Blantyre, by varying both the transmission coefficients
(8 and 6) between - 70 and + 120% of their estimated pos-
teriors (full exercise in Additional file 1: Figure S3). This
sensitivity exercise showed that lowering local transmis-
sion by approximately — 30% was sufficient for the model
to approximate short- and long-term vaccine impact ob-
served in several other countries (Fig. 5b). Other age
groups, for which far less data points were available, pre-
sented similar patterns (Additional file 1: Figure S4).
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Fig. 5 Estimated vaccine-type carriage and sensitivity of projections to baseline transmission in the context of other studies. a Estimated pre-
vaccination vaccine-type carriage (and 95% Cl) for the age group 0-5 years of age (red) in the context of carriage levels reported in other studies
(in legend, Additional file 1: Table S6). b The baseline transmission coefficient (B) is varied by considering the 70%, 60%, 50%, 40%, 30%, 20% and
10% lower and 10% and 20% higher transmission than the estimated for Blantyre (Malawi, Bualawi) When fitting the observational study (e.g. 10%
lower is 0.9*Byaiawi)- The impact projections for the age group 0-5 years old using the 3 estimated for Blantyre (Malawi) are presented by the
dashed line (as in Fig. 3b). For visual purposes only, the means are shown, obtained from simulations sampling 100,000 parameter values from
posteriors. The symbols and whiskers are measures of reported impact (carriage reduction) and 95% Cls for several published studies (in legend,
Additional file 1: Table S5). The grey arrows mark the year of PCV13 introduction and the years of the four surveys

Discussion

Using a dynamic model, we have reproduced observed
changes in pneumococcal VT carriage following the
introduction of PCV13 in Blantyre, Malawi. Similar to
other modelling frameworks, we have considered the ac-
cumulation of natural immunity with age and have also
allowed for heterogeneous transmission potentials within
and between age groups. Including these factors allowed
us to identify age-related characteristics of the local
force of infection as the main determinants of post-
PCV13 VT carriage dynamics in Blantyre.

A main motivation for developing our dynamic model
was to explain the high residual VT carriage levels
7 years post-PCV13 introduction [22]. Studies from
Kenya, The Gambia and South Africa have reported
similar trends, with VT carriage remaining higher than
in industrialised countries at similar post-vaccination
time points. Compared to studies from other geograph-
ical regions, pre- and post-vaccination VT carriage in
Blantyre was at the upper end of reported values across
many countries (Fig. 5 and Additional file 1: Tables S5
and S6). Given that our estimate of vaccine efficacy (in-
dividual-level protection against carriage) was similar to
reports from elsewhere (Fig. 2c, Additional file 1: Table
S2), we tested the hypothesis that the observed and pro-
jected lower vaccine impact was likely a result of a
higher force of infection in Blantyre compared to other

regions. This force of infection was found to be charac-
terised by different transmission potentials within and be-
tween age groups and particularly dominated by individuals
younger than 5 years. Reflecting a variety of approaches and
assumptions that can be found in other models [8, 11, 28],
our framework is not able to discern if this assortative rela-
tionship with age is due to age-specific contact type pat-
terns or susceptibility to colonisation. Nonetheless, our
results strongly argue for the need for further characterisa-
tion of local contact, risk and transmission-route profiles
(e.g. [45]), if we are to understand the myriad of reported
PCV impacts across different demographic, social and epi-
demiological settings.

There were also the observations of vaccine impact
(reduction in VT carriage) in unvaccinated age groups,
and a particularly slow impact in younger vaccinated age
groups during the surveys (Fig. 1d). The dynamic model
helped explain these age-related responses, by showing
that age groups have experienced periods of higher vac-
cine impact at different time points, sequentially, from
younger to older groups. A major implication is that re-
duction in VT carriage in vaccinated younger age groups
has been fastest between PCV13 introduction and 2015,
when no carriage data was collected in Blantyre (but
consistent with data collected in rural northern Malawi
[19]). Thus, similarly to the conclusions of another mod-
elling study [28], our results advocate for the essential
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role of dynamic models to understand post-PCV13 VT
carriage, by critically accounting for local non-linear ef-
fects of pneumococcal transmission and vaccination,
which may have significant implications for data
interpretation.

Critical for low- and middle-income countries, as well
as global initiatives such as Gavi [54], is that the impact
of PCVs on pneumococcal VT carriage needs to be fur-
ther improved if we are to maximise disease reduction.
For high-burden countries like Malawi, in which post-
PCV VT carriage data suggests that local epidemiological
factors may dictate lower vaccine impact on carriage than
elsewhere, region-specific improved vaccination schedules
[19, 22] and catch-up campaigns [28] could help speed-up
VT carriage reduction, improve herd protection and maxi-
mise cost-effectiveness. For this to be possible, we need to
better understand local transmission profiles across ages,
which are likely dictated by demographic and socio-
economic factors, and strongly determine short- and long-
term PCV impact.

In fact, participant socio-demographic data collected
during the surveys has highlighted a generalised poor set-
ting, with a large proportion of children (18 weeks to 7
years) living in houses with low infrastructure standards,
high crowding and low possessions indices, and relying on
shared communal water sources [22]. Although our mod-
elling approach did not take into account such factors ex-
plicitly, they are known to favour transmission of
infectious agents and could help explain our results of a
high, local force of infection in Blantyre. Apart from the
potential to tailor vaccine-related initiatives to local set-
tings, more classic initiatives related to improving life-
standards should also be taken into account when trying
to maximise PCV impact and cost-effectiveness.

Limitations

Data suggest that immune responses to PCV vaccines
wane over time [22, 34]. In a meta-analysis study, PCV7
efficacy was estimated at 62% (CI 95% 52-72%) at
4 months post-vaccination, decreasing to 57% (CI 95%
50-65%) at 6 months, but remaining 42% (CI 95% 19—
54%) at 5 years post-vaccination [34]. Models implicitly
parametrising for duration of vaccine-induced protection
(dVP) have typically followed a prior with minimum
mean duration of 6 years [8, 11, 28, 34], but in one study
dVP was estimated as 8.3 years (95% CI 5-20) [8]. Our
framework does not explicitly include dVP, and this
should be a line of future modelling research. Due to the
time ranges studied for Blantyre (data were collected up
to 7 years post-PCV13 introduction and projections
made only up to the first 10 years), we argue that our re-
sults should be robust and only weakly influenced by not
considering dVP. In light of the possibility that dVP is
shorter than previously reported [22], our projections of
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vaccine impact should be seen as a best-case scenario;
ie. real long-term vaccine impact in Blantyre would
likely be lower than projected by our model. Our frame-
work also does not include niche competition between
VT and non-VT pneumococci [11, 28, 34]. It is difficult
to assert the impact of such competition in our main re-
sults, but it is unlikely that our conclusions would be
significantly affected, since they are mostly based on fac-
tors which have not been reported to be associated with
type competition directly (e.g. age-specific transmission).
We demonstrated the importance of age-related hetero-
geneities in the transmission matrix but were unable to
disentangle the effects of contact type and frequency
versus susceptibility and transmissibility. This limitation
was by design as we avoided increasing model complex-
ity, but is a topic of future modelling research as we
gather carriage data covering longer time periods into
the post-PCV era. Finally, it is reasonable to assume that
the vaccine could impact duration of carriage (but see
[55]) as a consequence of changes in the accumulation
of immunity through reduced natural exposure. We have
not explored this in our current study since the explicit
inclusion of such mechanism would require the addition
of multiple parameters for which insufficient informa-
tion is currently unavailable.

Conclusion

In Blantyre, vaccine efficacy (individual-level protection
against carriage) across ages and time was estimated at
66.87% (95% CI 50.49-82.26%), similar to reports from
other countries. However, local transmission potential in
Blantyre is likely to be higher than in other countries
and also heterogeneous among age groups, with a par-
ticular contribution from vyounger children. While
PCV13 is achieving positive outcomes in Blantyre [19,
56], a local higher and age-dependent force of infection
is dictating a lower long-term vaccine impact (popula-
tion-level carriage reduction) than reported elsewhere.
Finally, the combination of age-related transmission
heterogeneities and routinely vaccinating infants has
led to non-linear responses in terms of vaccine impact
across ages and time, with general implications on
post-vaccination VT carriage data interpretation. To-
gether, these findings suggest that in regions with lower
than desired PCV impact on VT carriage, alternative
vaccine schedules and catch-up campaigns targeting
children < 5 years of age should be further evaluated.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512916-019-1450-2.

Additional file 1. Methodological details, literature support and
complimentary results.
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