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Abstract

A critical event in mammalian embryo development is construction of an inner cell mass sur-

rounded by a trophoectoderm (a shell of cells that later form extraembryonic structures). We

utilize multi-scale, stochastic modeling to investigate the design principles responsible for

robust establishment of these structures. This investigation makes three predictions, each

supported by our quantitative imaging. First, stochasticity in the expression of critical genes

promotes cell plasticity and has a critical role in accurately organizing the developing mouse

blastocyst. Second, asymmetry in the levels of noise variation (expression fluctuation) of

Cdx2 and Oct4 provides a means to gain the benefits of noise-mediated plasticity while

ameliorating the potentially detrimental effects of stochasticity. Finally, by controlling the tim-

ing and pace of cell fate specification, the embryo temporally modulates plasticity and cre-

ates a time window during which each cell can continually read its environment and adjusts

its fate. These results suggest noise has a crucial role in maintaining cellular plasticity and

organizing the blastocyst.

Author Summary

A critical event in mammalian embryo development is construction of a mass of embry-

onic stem cells surrounded by a distinct shell that later forms the placenta along with

other structures. Despite sustained investigation, multiple hypotheses for what is responsi-

ble for this organization persist and it remains unclear what is responsible for the robust

organization (remarkable ability for embryos to pattern correctly) of these structures.

Here, we utilize multi-scale, stochastic modeling along with fluorescence imaging to

investigate the factors that contribute to the incredible robustness of this organizational

process. Results point to two factors that contribute to this robustness: 1) the timing and

pace of cell fate specification and 2) stochastic gene regulatory effects. The former creates
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a window of time during which each cell can continually read their environment and

adjust their gene expressions (and consequently fate) in response to dynamic rearrange-

ments of cells arising from cell divisions and motions. The latter improves cell plasticity,

providing the capability for cells to adjust to changes in their local environment. Fluores-

cence imaging results demonstrate that the magnitude and structure of gene expression

variations match those predicted to promote organizational robustness.

Introduction

A central question of developmental biology is how a single cell gives rise to an organism of

exquisite complexity. In mammals, the fertilized egg begins this process by dividing multiple

times to form a morula, which then undergoes compaction to create the blastocyst. Each cell of

the early cleavage stage embryo is considered to be totipotent. After compaction, these cells

differentiate to become either the inner cell mass (ICM), which mainly gives rise to the future

embryo, or the trophectoderm (TE), which forms extra-embryonic structures. This lineage

divergence is the first differentiation event in mammalian development, and is also an

intensely studied process in mammalian reproductive biology [1, 2].

ICM and TE cell populations are distinguished by both their spatial position within an

embryo and gene expression differences. Structurally, the ICM is located in the interior of the

blastocyst and the TE forms an outer layer surrounding it. Investigations have revealed that

polarity of cells along with cleavage orientation of cell division affect development of this struc-

ture [3–6]. Molecularly, Pou5f1/Oct4 (abbreviated Oct4 hereafter), Nanog, and Sox2 transcrip-

tion factors (TFs) specify ICM cells, while Tead4 and Cdx2 TFs specify the TE [1, 7] (Fig 1A).

Interplay among these TFs is critical in specifying the ICM and TE cell fates [2, 5, 8, 9]. These

findings imply that a preimplantation mouse embryo interprets various types of information

and coordinates the cellular response to produce a normal blastocyst.

Although lineage biasing of blastomeres might start as early as the 4-cell stage [3, 4, 10–14],

the embryo is a dynamic entity and each cell at this stage maintains the ability to give rise to

both embryonic and extra embryonic tissues [15]. Removal of a blastomere(s) of the cleavage

stage embryo can accommodate the loss of cells and still generate normal embryos [16]. Addi-

tionally, the formation of chimeric mice can be accomplished by fusing cleavage stage embryos

[17, 18]. These manipulated embryos compensate for the changes in spatial rearrangement,

cell-cell interactions, and the number of cells, leading to generation of normal newborns [16,

19]. The extraordinary adaptability and robustness of the system begs the question of what

mechanism governs the earliest cell lineage decision-making process in mammals.

Time-lapse microscopy has been used to study lineage allocation in unmanipulated mouse

embryos [20–22]. Bischoff et al. [20] showed that 95% of cells maintained their position after

the 32-cell stage, and the identity of the remaining 5% of cells was unknown. Independently,

by carefully following the movement of each cell between 8-32-cell stages, Watanabe et al. [21]

found that an average of 1.5 cells per embryo move away from the surface of the embryo

toward inside during the segregation of ICM and TE cells [21]. These dynamic cell movements

suggest that a robust organizational mechanism must exist for both constructing the proper

embryonic architecture, and correcting organizational mistakes that arise over time from sto-

chastic motion and division of cells.

Three hypotheses have been proposed to explain the mechanism underlying the differentia-

tion of totipotent blastomeres cells into the ICM and TE lineages. The “prepattering hypothe-

sis” takes into account the lineage bias that cleavage patterns of blastomeres at the 2-cell
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embryo (equatorial vs mariginal) establish ICM or TE bias at the 4-cell stage [3, 4, 23, 24]. Con-

sistent with the model, Cdx2 mRNA was shown to be asymmetrically localized in the cytoplasm

by the 8-cell stage [5, 25]. In addition, differential localization of Oct4 can be achieved by the

8-cell stage, via differential nuclear export, which results in developmental heterogeneity [26].

While these findings provide some molecular evidence supporting the prepatterning hypothesis,

maternal expression of Oct4 and Cdx2 does not seem to be essential for early mouse develop-

ment [27–29]. The “cell polarity hypothesis”, which posits that polarity along with regulation of

the angle and type of cell division organizes the embryo, is supported by the observation that

externally localized cells show apical-basal polarity [30, 31] by the 8~16 cell stage. These cells can

divide either asymmetrically to produce both TE and ICM daughter cells [6, 30], or symmetri-

cally to generate daughter cells that both become TE. Consistent with this model, loss of the api-

cal complex component Par3 preferentially directs cells to contribute to the ICM lineage [32].

The third hypothesis, the “inside-outside” model, posits that ICM and TE cell fate depends

on the position of cells after the 16-cell stage. Experimentally, this was demonstrated by show-

ing that upon removal of TE cells by immunosurgery, ICM cells positioned on the outside of

the ICM acquired TE identity [33, 34]. The finding supports the notion that inside-outside

position is sufficient to determine TE and ICM identity, and that ICM cells constantly sense

surrounding positional information. Additionally, it was experimentally demonstrated that

cell-cell contact initiates a signaling cascade through the YAP / Hippo / Tead4 pathway that

influences Cdx2 expression [35–38]. This supports the notion that differences in cell-cell con-

tact between inside and outside cells leads to differential TF expression that influences cell fate.

Fig 1. Contact mediated control of Cdx2 transcription is insufficient for proper TE / ICM specification on its own. a) Images

showing the localization of Oct4 / Cdx2 at different embryonic stages. b) Schematic of transcriptional interactions. c) State space showing

the possible expression states as a function of k and the bias S. The red region represents Oct4 (ICM) and the blue represents Cdx2 (TE)

dominant states. In the overlap, the system is bistable, emitting both TE and ICM states. The two green dots indicate two cell fate states a

cell can transition. This correspond to an asterisk indicated in panel (e). d) Simulation snapshots showing the evolution of the embryo

subject to contact signaling. Coloring of cells indicates the dominant factor present (blue = Cdx2 and red = Oct4, matching panel b). Results

show a number of interior cells expressing TE factors. e) The minimum bias (Si) that guarantees a TE to ICM fate switch for different values

I and b, measured as the minimum value of the blue curve in panel c. Dark blue indicates that a change of bias alone cannot drive fate

correction. The black asterisk denotes parameters derived from published data [9] and used in subsequent analysis.

doi:10.1371/journal.pcbi.1005320.g001
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Despite the distinct differences between these hypothesized mechanisms, we note that they are

not mutually exclusive. Rather, all three are likely to contribute to some extent to maintaining

embryonic organization.

A number of modeling works have been carried out to determine the efficacy of different

hypotheses. Previous work [39] suggests that mechanical forces alone could give rise to the

morphologically distinct structure of interior and exterior cells (e.g. more rounded versus

elongated). This investigation, however, modeled only the physical structure of the embryo

and did not account for gene expression dynamics. The interactions between early embryonic

TFs associated with TE and ICM lineages have been studied independently of the spatial struc-

ture of the embryo [40, 41]. More recently, mechanics and gene regulation were combined in a

single model [42] to investigate embryonic organization, where it was first shown that the

polarity hypothesis may aid organization but is not sufficient to ensure robust patterning. This

model however did not incorporate quantitative gene expression data or consider stochastic

effects.

Here, we develop a more comprehensive computational modeling platform to investigate

this organizational process and test the potential influence of different processes such as cell-

cell contact based information, molecular pre-patterns, and stochastic effects. Given the likely

large number of contributing influences on organization, rather than attempt to account for

all aspects of blastocyst development with a single model, we have chosen instead to focus on a

specific question: what is responsible for the high level of organizational robustness observed

in the developing mammalian blastocyst. Toward this end, we develop a modeling platform

with which different hypotheses can be tested.

To simulate and describe the dynamical and stochastic nature of the developing embryo,

we develop a discrete, multiscale and stochastic model that incorporates motions, deforma-

tions, and divisions of individual cells as well as gene regulatory processes that are influenced

by cell positions and cell-cell interactions. While we do not model the fine grained details of

cell structure and mechanics (tight junction formation, cell morphology changes, and cell con-

tractility for example) here, this model accounts for cell-cell interactions, how those interac-

tions drive passive cell motions, and regulatory control over the type and orientation of cell

divisions. Therefore, it allows us to test various hypotheses about how these factors may influ-

ence embryonic organization. Using this model, we investigate the efficacy of different pro-

cesses related to the three aforementioned hypotheses at promoting organization. To inform

this model and test its predictions, we utilize quantitative immunofluorescence measurements

of Oct4 and Cdx2 (Fig 1A) to measure the relative expression levels and follow the cell lineage

of potential TE cells using Cdx2-eGFP transgenic mouse embryos.

Results of this investigation show the following. First, while pre-patterning and polarity-

based processes have a role in organization, it appears that the inside–outside based mecha-

nism is more likely to be responsible for the high level of robustness observed. Second, gene

expression noise at levels measured within developing embryos can enhance robustness of

organization by promoting cellular plasticity, allowing the embryo to correct organizational

mistakes induced by dynamic cellular motions. Third, asymmetries in those noise sources, pre-

dicted by modeling and confirmed with gene expression quantification, provide a mechanism

to promote this noise-mediated plasticity without stochasticity overwhelming the systems

dynamics. Lastly, mammalian cell fate specification is a gradual, rather than switch-like pro-

cess, which provides a critical time window for noise to fix inevitable specification errors.

Taken together, these results suggest that regulative processes that allow cells to dynamically

read their environment and react accordingly have critical roles in organization. Furthermore,

while typically noise is seen as a nuisance to robust organization [43–45], some forms of noise

can actually aid in correcting errors and establishing proper organization in the system.
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Results

To investigate the mechanism responsible for robust development of the TE / ICM, we con-

struct a spatial model of the evolution of a single cell to a multicellular blastocyst. To gather

quantitative imaging data of Oct4 and Cdx2 TFs, embryos were fixed, subjected to immuno-

staining, and subsequently compressed to ~1/3 of the embryonic diameter prior to imaging to

reduce the impact of fluorescence attenuation (without damaging nuclear morphology). To

model this process, we first consider a two-dimensional disc geometry, which both mimics

the experimental system and provides a simpler output. Later we relax this assumption and

model a spherical, three-dimensional embryo and verify that conclusions from 2D modeling

are qualitatively similar to those of 3D modeling. In both cases, the in silico embryo is modeled

as a collection of discrete cells, each of which can physically deform, move in response to local

interactions, undergo division, and change cell type (e.g. ICM / TE) based on time evolving

gene expression profiles. See the S1 Text for a description of this physical model, which is

implemented using the sub-cellular element method (SSEM) [46–49]. The models discussed in

the subsequent sections build upon this core physical model to incorporate different hypothe-

sized mechanisms for cell fate determination and control of organization.

A stochastic, multiscale model of early mammalian blastocyst development

The canonical Oct4 / Cdx2 transcriptional system (Fig 1B) illustrates how crosstalk between

these critical genes lead to cell fate specification [29, 50–55]. We investigate the hypothesis that

cell contact mediated positional information affects cell fate specification, potentially by aug-

menting the Oct4 / Cdx2 bistable network (see Fig 1B). This is based on the observation that

Hippo signaling is essential for the regulation of Cdx2 expression [38, 56] and that cell-cell

contact activates Hippo signaling, which phosphorylates Yap [57]. This, in turn, regulates

Tead4 nuclear localization [35–37], causing a reduction of Cdx2 transcription among inside

cells, thus promoting ICM development (Fig 1B). These observations along with others using

embryonic stem cell lines [58] are consistent with a regulatory model where the stable states of

a bistable gene regulatory system [59] represent TE and ICM lineages respectively [40, 41], and

cell-cell contact mediated positional information directs each cell to one or the other lineage.

The precise mechanism that mediates this contact based influence is still the subject of

debate, so we do not explicitly include intermediaries. Instead, for simplicity, we assume con-

tact influences Cdx2 transcription directly (Fig 1B). These dynamics are encoded in the follow-

ing non-dimensional stochastic system

dxi

dt
¼ k bþ Si þ

xn
i

0:5n þ xn
i

� �

1 � Ið Þ þ I
0:5n

0:5n þ yn
i

� �

� xi þ sCdx2xi � Z

dyi

dt
¼ k bþ

yn
i

0:5n þ yn
i

� �

1 � Ið Þ þ I
0:5n

0:5n þ xn
i

� �

� yi þ sOct4yi � Z

ð1Þ

Here, xi, yi represent the expression of Cdx2 and Oct4 respectively in cell i, the first term in

parentheses represents self amplification, the second term in parentheses encodes mutual inhi-

bition, and the final term is a stochastic term intended to mimic the intrinsic (i.e. multiplica-

tive) noise processes in gene regulation [60] with σ representing the strength of those noise

sources and η represents a normally distributed white noise term. When σ = 0, the expression

is regulated by a deterministic mechanism. In later sections we will consider the effect of asym-

metric noise amplitudes σCdx2 6¼ σOct4, but we begin with the simplifying assumption σCdx2 =

σOct4≕ σ. See Supplementary Materials (SM) for the fully parameterized system and the scal-

ings that yield this non-dimensional reduction.

Gene Expression Noise Enhances Robust Organization of the Early Mammalian Blastocyst

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005320 January 23, 2017 5 / 23



This genetic circuit has four important state parameters that modulate its behavior: 1) A

non-specific control parameter that determines the total rate of transcription in the system (k).

2) The strength of Cdx2 / Oct4 antagonism (I). 3) The strength of basal transcriptional rate of

individual genes (b). 4) A parameter encoding contact mediated asymmetries (Si, positive val-

ues indicate outer cell bias, negative indicates inner cell bias). Since this model has a complex

parameter space, we first constrain it to a reasonable region using available fluorescence data

from [9] and obtain an indicative parameter set that generates ICM and TE expression states

consistent with data (See Supporting Information for details). In order to ensure that the

model is not being constrained and tested by the “same” data, we choose here to use this pre-

existing data to initially constrain the model and subsequently perform new experiments to

test its predictions. These constraints are used as an initial guide and we later consider the sen-

sitivity of subsequent results to changes in these critical parameters (k, b, I, σ).

Contact mediated fate specification alone is insufficient to robustly form

trophectoderm and inner cell mass structures

It is well established that the mutually inhibitory dynamics between Cdx2 and Oct4 form a bis-

table system (as indicated by the overlap in Fig 1C) that generates two (or more) distinct cellu-

lar states (indicative of ICM or TE in this case). Furthermore, it is shown that by influencing

the transcription rate of Cdx2 (increasing or decreasing as proposed in this positional theory)

a cell can enter one or the other of those two states (Fig 1C). It is thus clear that the positional

mechanism can direct cells to the correct lineage by sensing the cellular environment (Fig 1D,

second embryo). Due to cell-cell contact, inner cells inhibit Cdx2 expression, thus promoting

Oct4 expression and vice versa for outer cells.

The mechano-chemical transduction of adjacent cell interactions is sufficient to initially

pattern the early embryo. However, dynamic whole embryo simulations (Fig 1D, S1 Movie)

indicate that unexpected cell motions and divisions, which inevitably occur during normal

blastocyst formation, cause intermingling of these cell types, thus destroying this architecture.

For simplicity, we initially consider a deterministic version of the regulatory network (thus no

stochasticity and setting σ = 0), and simulate the full two dimensional model. Results show 1) a

number of interior cells mis-expressing TE markers and 2) improper allocation of cells to the

ICM / TE lineages. Interestingly, mis-expression is confined to interior cells, with no exterior

cells expressing ICM factors (Fig 1D, final snapshot). This is consistent with the findings that

Cdx2 expressing cells frequently move from outside to inside [22]. In order to account for sim-

ulation stochasticity, we also performed 20 additional simulations (not presented), all showing

similar qualitative results.

To understand why mis-expression is confined to interior cells, we analyzed the regulatory

network (Eq 1 with σ = 0). Fig 1C, which indicates the influence of the contact mediated tran-

scriptional bias S on possible states, illustrates the effect of a cell transiting from the exterior to

the interior of the embryo (or vice versa). Here, the blue (resp. red) region shows the bias

ranges where Cdx2 (resp. Oct4) dominant states are possible. In the overlapping region, the

system is bistable and either TE or ICM like states are possible. Upon reducing the bias from

the expected outer cell bias to the inner cell bias, the system does not exit the bistable region

(note two green dots stay under the blue area). Thus, a change of Cdx2 expression is not

forced. On the other hand, in the reverse transition an Oct4-expressing ICM cell that relocates

to the exterior (which occurs very infrequently if at all in developing embryos) will exit the bis-

table region and only the Cdx2 dominated state is possible. This asymmetry in fate switching is

a result of contact mediated signaling affecting only Cdx2.
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Stronger biasing (decreasing Si) would force expression of ICM factors (and suppression of

TE factors). This however requires the differential expression of Oct4 / Cdx2 to be much larger

than experimentally observed [9]. We additionally determine the sensitivity of this result to

critical model parameters. We compute the critical bias that will drive a TE ➔ ICM transition

for a range of values of the remaining parameters (Fig 1E). Results indicate that in a substantial

portion of the parameter space (the blue region), no change of bias will force such a transition,

suggesting that an additional regulatory mechanism is involved.

To test the potential influence of polarity and the type and angle of division on organi-

zation, which have been proposed to positively influence organization, we incorporated

(Figure C in S1 Text) observations about cell division [20]. We first incorporated symmetric

versus asymmetric divisions into the model. All inner cells were assumed to divide symmetri-

cally to produce two ICM cells. Outer cells were assumed to polarize and divide either symmet-

rically with a division plane perpendicular to the embryo surface (to produce two TE daughter

cells), or asymmetrically with a plane of division parallel to the embryo surface (to produce a

TE cell on the outside and an ICM cell on the inside). Results indicate that this mechanism on

its own does not lead to accurate organization (Figure C in S1 Text, Model 2), consistent with

[42]. It has additionally been observed that the mode of division (symmetric versus asymmet-

ric) of a mother cell and its daughter cells are correlated [20], suggesting a potential compensa-

tory mechanism to ensure proper allocation to ICM and TE lineages. We incorporated this

compensatory mechanism along with Bischoff et al.’s data [20] for the frequency of different

modes of division at each cleavage stage. Results (Figure C in S1 Text, Model 3) show again

that this does not rescue proper organization. Therefore, in subsequent model simulations, we

do not prescribe cell division controls—division orientations are random, which is more indic-

ative of the less controlled nature of cell division observed in [61].

We next considered the effect of molecular pre-patterning on organization. It was recently

suggested that Sox21 heterogeneity [12] biases cell fate in the early embryo as early as the 4-cell

stage. Specifically, they find that the number of cells each 4-cell blastomere contributes to the

TE and ICM lineages is correlated with their initial Sox21 expression. While we do not specifi-

cally model Sox21 here, we do incorporate this fate biasing to investigate its potential role in

organization by assigning individual cells at the 2-cell stage a high or low Sox21 identifier and

incorporate data from [12] to bias the type of divisions and lineage allocation of those cells

through development. Results (Figure F in S1 Text) show that while this biasing can ensure the

proper number of cells is directed to ICM and TE lineages, it does not ensure those cells to be

properly organized.

The essential problem with these models is that while they can help initially organize the

embryo, they do not have the capacity to correct organizational errors that arise as a result of

cell motions, which are observed to occur ([20] and subsequent imaging). Tensile forces and

other mechanical factors [61], which are not taken into account here, can further constrain

motions and positioning of cells. However while these factors may reduce the occurrence of

mis-localized cells, they still would not provide any additional capacity to correct errors once

they arise.

Noise in gene expression promotes cell plasticity and improves

organization

How then is proper TE / ICM organization attained in the presence of these cellular motions?

Cell type dependent differences in adhesion can sort cells of different identities in a number

of settings; this is the so-called Differential Adhesion Hypothesis. However, we note 1) the

thermodynamically driven random motions required for this will likely be slow, 2) cell sorting
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alone cannot control the proper number of cells allocated to the two lineages, 3) evidence sup-

porting such a mechanism is lacking, and 4) cell motions are shown to be unidirectional with

outer cells moving to the inside of the embryo only [21]. We thus do not discuss this mecha-

nism further. Alternatively, it has been suggested that in some contexts, noise in gene expres-

sion processes can improve cell plasticity, allowing cells to continually read their environment

and adjust the fate accordingly [62–65]. We thus next ask what effect intra-cellular noise has

on this system.

We introduced stochasticity (σ>0) into the gene regulatory system and performed an identi-

cal simulation to that in Fig 1D (all other model specifics were held fixed and only σ changed).

Results (Fig 2A) indicate that the addition of stochasticity is sufficient to generate an accurately

patterned embryo. This simulation experiment was repeated with a more representative 3D

geometry (holding all aspects of gene regulation the same as in Fig 2A) with results (Fig 2E)

again indicating that this cell-contact based mechanism in combination with noisy gene regula-

tion is sufficient to accurately organize the embryo. Additional simulations with the same

model parameters that were performed to account for simulation stochasticity showed similar

results.

This suggests noise induced plasticity has the capacity to improve organization. We next

ask whether such effects may actually be present in the embryo. Since stochasticity cannot be

easily “perturbed” to assess its influence, we ask whether the amount of expression noise

within embryos is consistent with the amounts required to provide a benefit. First, to deter-

mine the influence of the amount of gene regulatory noise in the system, we performed the

same numerical experiment with the 3D model and varied the strength of stochasticity (σ). For

each noise level, 20 independent simulations were performed and the accuracy of organization

was assessed at different time points (Fig 2B). As with Fig 1D, we find that in all cases mis-

expression is almost exclusively limited to inner cells. Thus, to quantify the accuracy of blasto-

cyst organization, we determined the fraction of interior cells that were Oct4 dominant (e.g.

high in Oct4, low in Cdx2) at the blastocyst stage. Results indicate a clear positive effect of this

noise on the final organization (Fig 2B, S2 Movie), thus noise leads to a substantial reduction

in the number of mis-expressed cells. Additionally, it appears that there is an optimal noise

level σ = 0.3, above which no additional benefit is found. Indeed, above this level excessive

noise begins to drive erroneous transitions in the wrong direction and begins to overwhelm

the dynamics of the system.

Second, to consider the sensitivity of these results to parameter variations, we perform a

simulation study of Eq 1 with partially randomized parameters, for both the noise free and sto-

chastic systems (with σCdx2 = σOct4). The parameters b and I are taken to be the same for all

cells, independent of location and time. We grid these parameters and for each set, simulate

100 independent cells. Each is initialized at a TE state with a randomized combination of k and

Si >0 (constrained to parameters that give rise to distinct TE states). Subsequently, each cell is

re-assigned a randomized value of Si <0 (to mimic relocation from outside to inside), simu-

lated in time, and the fraction that correct to the interior lineage is recorded (Fig 2C and 2D).

Results show that noise substantially enlarges the region where the state correction occurs

robustly. Note that the stared parameter values represent those determined by constraining

the model with the published data by Dietrich et al. [9]. These values were constrained solely

by this prior data independent of this and all subsequent analysis of the model. Thus, noise

expands the effective operating regime to include the neighborhood of this parameter set.

We make a brief note about the use of expression data [9] to constrain the parameters in Eq

1. Fluorescence intensity ratios were used to measure the difference between Cdx2 and Oct4

expressing cell types. While a number of experimental factors such as antibody affinity can

potentially influence this estimate, we expect the actual expression differences to be larger than
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the assumed ranges. Increased expression differences would arise from increased strength of

antagonism (increased I), decreased basal transcription rates (decreased b), or both (see

Figure A in S1 Text). Either of these would shift cells to a state where noise becomes increas-

ingly necessary for proper function (Fig 2C and 2D). Thus, if the relative expression estimates

derived from data [9] are strongly influenced by experimental methods, we expect those esti-

mates to be conservative, thus leading to underestimation of the importance and need for sto-

chasticity in maintaining plasticity. Combined, these results support the hypothesis that gene

expression noise has a substantial positive influence on TE / ICM organization and adds signif-

icant robustness for the correct structural arrangement of mouse blastocysts.

We next ask if noise in Cdx2, Oct4, or both appear to be driving the cell fate transitions

required to correct mis-expressions and improve organization. Our 2D and 3D simulation

Fig 2. Gene expression noise improves contact mediated fate determination. a) Sample SSEM simulation,

identical to Fig 1D but with stochastic noise included (σ = 0.3). b) 3D embryo simulation results showing the fraction of

interior cells expressing the correct fate over time. Mean and standard deviation of an ensemble of 20 simulations at

each noise level are reported. c,d) Simulated correction efficiency with and without gene expression variation. For each

parameter set, relocation of 100 independent TE like cells to the interior is emulated, and the fraction that correct to the

Oct4+ state is recorded. Asterisks indicate parameters derived from published data [9], similar to Fig 1E. e) Sample 3D

simulation with σ = 0.3. f) Dependence of plasticity on noise asymmetry. One hundred independent cells are simulated

for different combinations of (σCdx2, σOct4). Each cell is initialized in a TE state, the bias Si is adjusted from 0.6➔ -0.2, and

the fraction of cells that transition to an ICM state by T = 48 is recorded. Unless otherwise stated, the base parameter

values for all simulations are the same as for Fig 1D.

doi:10.1371/journal.pcbi.1005320.g002
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studies thus far have indicated there is an inherent asymmetry in this system. Specifically, cell

fate errors are almost exclusively localized to the interior of the embryo, e.g. Cdx2 positive cells

are found in the inside. This is consistent with previous observations [20, 21] that cells translo-

cate from the exterior to interior of the embryo. Thus, noise must (almost) exclusively drive

transitions from the TE lineage to the ICM lineage. We consider the possibility that noise in

one factor may be more influential than noise in the other. To test this, we allowed noise levels

(σCdx2 and σOct4) in the gene regulatory system (Eq 1) to be different among factors. We fixed

all kinetic parameters at their base values and performed a simulation experiment similar to

Fig 2C and 2D. For an array of values of the two noise strengths, a cohort of in silico cells were

initialized in a TE like state, the bias (Si) was changed to reflect a position in the interior of the

embryo, and the fraction that change fate is recorded as a measure of the effectiveness at pro-

moting transitions (Fig 2F). Results show noise in Cdx2 is more effective at driving the TE ➔
ICM transition than noise in Oct4, which has almost no influence.

Combined, these results provide two predictions that we test next: 1) there is an optimal

band of noise levels (around σ~0.3) that are sufficiently large to provide a benefit, yet suffi-

ciently small to avoid overwhelming the system, and 2) higher Cdx2 variability combined with

reduced Oct4 variability would be optimal in the sense that sources of noise that are useful

reside in this range while sources of noise that are not of value are reduced.

Quantification of gene expression noise

To test these predictions, the levels of expression variability of Cdx2 and Oct4 TFs in mouse

embryos were quantified. Quantitative immunofluorescence staining of mouse embryos at dif-

ferent developmental stages was performed using Cdx2 and Oct4 antibodies (Fig 3). To elimi-

nate variability among experimental treatments, embryos at different stages were fixed, stained,

and co-imaged at the same time. For each embryo imaged, the nuclear expression of Cdx2 and

Oct4 was quantified for individual cells using a 3D segmentation pipeline (Fig 3A–3C). Inde-

pendent data sets were obtained from 34 embryos. The coefficient of variation (CV) of each of

these data sets was then determined, giving four intra-embryonic noise measurements of these

embryos. At the earliest stage (8–16 cells), gene expression changes have not yet begun and cells

cannot be classified as interior or exterior, thus for this stage we treated all cells within the

embryo as a single population rather than distinguishing between TE and ICM. These noise

quantifications (Fig 3E–3H) indicate that at 57–85 and 77–175 cell stages, the measured noise

levels are in the 20–40% range. Some of this variability is inevitably measurement noise and as

such this should be viewed as an upper bound for the intrinsic variability.

To compare these measured noise levels to those used in previous simulation studies (Fig

2), we numerically determine the relationship between noise amplitude (σ in the model) and

resulting level of gene expression heterogeneity (which is measured in Fig 3). One hundred

independent stochastic simulations were performed at each of a range of noise inputs (σ), the

CV of the resulting population was recorded at each, and the input / output relation (Fig 3D)

was used to determine this relationship. Interestingly, noise input and output variability are

roughly linearly related below σ = 0.3, the rough level inferred from data. Further, a dramatic

change in behavior occurs above roughly σ = 0.4, where noise was found to start to overwhelm

the system in simulation studies, causing random transitions between ICM and TE states (Fig

2B). These results suggest that not only may stochastic effects improve organization from a

theoretical perspective, but that levels of variability observed within embryos fall into the range

predicted to provide this benefit.

Noise quantification results (Fig 3F) additionally show the CV for Cdx2 (~35%) is signifi-

cantly larger than that of Oct4 (~25%). This asymmetry was confirmed by an independent
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experiment. Importantly, we note that Cdx2 and Oct4 noise asymmetry is not present at the

8–16 cell stage, but occurs at subsequent stages and is maintained even in 100+ cell embryos.

Several pieces of evidence suggest that the observed noise asymmetry is not an artifact. First, to

ensure these results are not an artifact of image attenuation at different focal depths, we mea-

sured variation in only TE cells located in the top layer of the embryo (Fig 3H). Second, we

reduced the nuclear mask size during segmentation, and found the same results, indicating

that this is not due to segmentation artifact (Figure I in S1 Text). Third, we considered differ-

ent methods of normalizing the fluorescence intensity data (by DNA content, cell volume, or

no normalization, Figure K in S1 Text), and found qualitatively the same results. Fourth, we

analyzed previously published qPCR data at the 32-cell stage [66] and a similar asymmetric

transcriptional noise variation was detected for Cdx2 and Oct4 (Figure J in S1 Text). Lastly, we

swapped secondary conjugates and saw the same results (Figure K in S1 Text). These results

suggest that the observed noise asymmetry did not arise from experimental artifacts. While we

focus on Cdx2 and Oct4 expression here, it was previously observed [9] that Nanog also exhib-

its significant levels of heterogeneity. This further suggests that the asymmetry we observe

between Cdx2 and Oct4 is not a general asymmetry between all TE / ICM associated factors

but rather may be specific to those two.

These results are consistent with the modeling prediction that noise in Cdx2 expression

would improve organization while noise in Oct4 expression would not. Taken together with

Fig 3. Quantifying intra-embryonic variability of Cdx2 and Oct4. a-c) Expression as a function of cell stage for 8–16 (16 embryos,

mean cell number = 10.3), 57–85 cell embryos (10 embryos, mean cell number = 76), and 77–155 (8 embryos, mean cell number = 115).

Each dot represents expression of a single cell and each color identifies cell from a single embryo (all red points are cell in the same

embryo for example). These results are comparable to those in the fourth figure of [9]. d) Variability of simulated populations for

different values of σ. For each, 100 cells are simulated and the CV is computed at T = 48. The output value (0.3) indicated is a rough

measurement from panels f,g. Representative ICM state parameters Si = -0.2, k = 0.7 are used. e-g) Variability of Oct4 / Cdx2 from the

cohort of embryos in panels a-c. The coefficient of variation (CV) for the ICM (red) and TE (blue) subpopulations of each embryo is

computed. Box plots indicate the variation of this noise measure across embryos. Stars indicate significance of the indicated at p = 0.01

(paired t-test). Prior to the ~16 cell stage, the ICM and TE have not formed, so noise is quantified treating all cells in the embryo as a

single population. h) Variation of expression among only TE cells at the top of embryos reported in panel g.

doi:10.1371/journal.pcbi.1005320.g003
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the predictions of the modeling results, we conclude that noise is in the appropriate range and

has the appropriate structure to help promote proper organization of the embryo.

Evidence of cell plasticity and importance of timing in fate decision

The results shown above indicate that noise-mediated cell plasticity has a role in correcting

expression errors that arise when cell divisions and motions cause intermingling of different

cell types. To determine if such intermingling occurs, we performed live imaging of Cdx2-

eGFP transgenic mouse embryos, in which a fusion protein construct was knocked into the

cdx2 locus [22]. The half-life of eGFP in this context is expected to mimic that of Cdx2. We

performed 6 independent time lapse imaging experiments starting with morula stage embryos,

of which a majority developed to normal blastocysts, as examined by external morphology

(96%, n = 54 out of 56, S4 Movie). Approximately 9% of Cdx2-eGFP positive cells initially

located at the outer layer of blastocysts (41 out of 437 cells, n = 24 embryos) relocate to the

ICM (Fig 4). This represents approximately 5% of embryonic cell populations that will mis-

express Cdx2 in the ICM. This is, in good agreement with observations made in [20, 21].

At present, we are unable to determine the cell fate of the Cdx2-eGFP positive cells relo-

cated into the ICM at the blastocyst stage. However, evidence suggests that the inner cells

expressing Cdx2-eGFP adopt the new ICM fate. First, during 12–18 hours of continuous live

imaging, none of Cdx2-eGFP expression detected in ICM moved back to the outer layer of

blastocyst (Fig 4E, and S3 Movie). Second, Cdx2-eGFP expression decreases once outside cells

move inside (S3 Movie and [22]), suggesting that these cells lose TE cell identify. Third, when

Watanabe et al. [21] examined the movements of individual cells, movement of inside cells to

outside was never observed. These findings are consistent with the view that the Cdx2-eGFP

positive cells inside remain inside and dynamically readjust their fate based on position.

A key requirement of a position-based mechanism is the presence of positional information

that the cell can sense and transduce the information. This raises two interesting issues. First,

how does the embryo cope with the initial ambiguity when fewer than 8 cells are present as all

blastomeres are exposed to the zona pellucida (i.e. there are no interior cells)? Second, how

does the embryo cope with the lack of E-cadherin expression prior to compaction [67], which

is suggested to be the first step in this cell contact mediated signaling cascade [36]? When E-

cadherin is inhibited (using E-cadherin blocking antibody ECCD1) in 8–16 cell compacted

embryos, further development ensues but ICM cells are either absent or significantly reduced

[36, 68]. Consistent with this observation, Yap localization is indistinguishable between inte-

rior and exterior cells of these embryos [36]. Thus, current evidence suggests that prior to

compaction, contact-mediated positional information is both ambiguous and cannot be

transduced.

The natural solution to the problem is that cells can defer fate specification until after com-

paction. To determine how Cdx2 and Oct4 gene expression changes with time, we performed

a pseudo-longitudinal analysis of Cdx2 / Oct4 expression. A cohort of embryos were fixed,

grouped together, and subjected to immuno-staining within the same reaction mixture. Cells

were visually classified as either interior or exterior and expression as a function of cell number

(a surrogate for time) was recorded (Fig 5A and 5B). Fig 5A shows both populations begin

with similar initial Cdx2 expression, which increases in both cell populations, but more

markedly in exterior cells (replication confirmed this trend, Figure H in S1 Text). The dynam-

ics of Oct4 expression are less clear (Fig 5B), however expression increases are larger, more

highly correlated, and more significant in the ICM than in TE cells (Fig 5C). We thus suggest

that 1) fate commitment is a gradual (takes multiple hours and days, consistent with [14])

rather than a quick, switch like process as it is often portrayed and 2) as time progresses,
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positional information becomes more robust in the sense that when more cells are present, the

distinction between “inside” and “outside” is more clear. Combined, these indicate that the

timing of commitment may aid organization by ensuring that commitment does not occur

prior to reliable information becoming available.

Presently, it is unclear what is responsible for either the delayed or gradual nature of com-

mitment. Based on the regulatory motif in Fig 1B, we raise one potential candidate. A gradual

increase in the non-specific (in the sense that it targets all cells and transcription factors

equally) rate of transcription (k in the Eq 1) would lead to gradual commitment (Fig 5D). At

low rates, the system is monostable (Fig 5D, black curve), while at higher rates bistability arises

Fig 4. Cdx2-eGFP expression in inner cells of embryos between late morula and early blastocysts. a) Percentage bar graph showing the

location of Cdx2-eGFP positive cells in blastocysts. b, c) Whisker box plots showing the total number of Cdx2-eGFP positive cells per embryo and the

number of Cdx2-eGFP positive cells found in the inner portion of embryos. d) a single slice representation of an early blastocyst embryo showing a

Cdx2-eGFP cell located inside (yellow circle). e) Top and bottom view time frames of 3D reconstruction of an embryo transitioning to an early blastocyst

stage. Yellow arrows indicate a cell that expresses eGFP transiently. m: minutes, BF: bright field.

doi:10.1371/journal.pcbi.1005320.g004
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(cells are bipotential) and the proposed Cdx2 transcriptional bias would direct cells to follow a

different paths (blue versus red in Fig 5D).

This is by no means the only potential candidate. It is however consistent with the fact that

gene expression divergence occurs through the preferential increase of one transcription factor

rather than decrease in the other (which would occur if for example inhibition changes over

time). Furthermore, an increase in k over time could result from the maternal to zygotic transi-

tion. While we have suggested transcription / translation control is responsible for this delay,

modulation of transcription factor degradation via proteasome activity (for example), would

provide a similar outcome as well.

Summary of the underlying mechanism and the influence of stochasticity

The distinctiveness of TE / ICM cells and the mixing of the two populations is schematically

depicted in Fig 6A. Shortly after compaction (~16 cell stage), all cells undergo the gradual pro-

cess of distinguishing themselves through changes in gene expression. This creates a window

of time in which noise has a critical positive effect on organization, namely by correcting mis-

expressions that arise as cells move and divide. We hypothesize that the stochastic effects stud-

ied here are intimately related to the structure of the so-called genetic landscape of the circuit

regulating cell fate [69, 70]. This view proposes that gene expression is a manifestation of min-

ima in an underlying energy landscape and mis-expressing cells are stuck in shallow, less

favorable minima (Fig 6B). Noise then drives state transitions by pushing that cell over a sad-

dle. From this point of view, our results indicate that the levels of stochasticity we quantified

(Fig 3F and 3G) in embryos may be both beneficial to organization and near some form of

optimum (i.e. both sufficiently high to improve organization but still sufficiently low to avoid

overwhelming the system). The asymmetries of cell fate corrections in simulation studies

along with the quantified asymmetry of expression variability further suggest that not all noise

is created equal. In particular noise in Cdx2 appears to be the primary driver of cell fate correc-

tion while noise in Oct4 provides no additional benefit.

In response to this idea it is natural to ask, if noise has the propensity to drive beneficial

transitions, why would it not undo those transitions? This is because state transitions are not

symmetric. While a system may have multiple stable attractor states, the relative stability of

those states need not be the same. In particular, Fig 6B depicts a scenario where the “incorrect”

Fig 5. Transcriptional suppression slows down fate decisions until sufficient spatial information is present. a,b) Intensity of

Cdx2 and Oct4 respectively versus “embryo age” as measured by cell number. Each data point represents the mean normalized

intensity of in ICM (red) or TE (blue) cells of a single embryo (24 embryos with mean cell number 20). c) Statistics for data in panels a,b.

Slopes of the best-fit regression line (m), correlation between cell number and expression (r), and significance of the correspondence

between intensity and cell number (p, paired t-test) are provided. d) Dependence of Cdx2 expression on k. Blue (Si = 0.6), red (Si =

-0.2), and black (Si = 0) curves represent indicate different (un)biased settings. In this bifurcation diagram, solid (dashed) lines indicate

stable (unstable) steady states. Remaining parameters are n = 4, I = 0.6, b = 0.7.

doi:10.1371/journal.pcbi.1005320.g005
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cell state is less stable (i.e. a shallower trough) than the “correct” cell state. In this scenario, the

noise required to drive a correct ➔ incorrect state transition is significantly larger than that

required to drive the reverse transition. Thus, once noise has driven a cell to the correct state

(i.e., more stable state), it would become locked (unless position again changed).

This analogy also presents an interesting interpretation of the gradual process of fate com-

mitment (Fig 5). In the landscape view, gradual commitment would correspond to a steady

divergence of the representative attracting states (depicted in Fig 6B). As cell fates become

more distinct, it becomes more difficult to stochastically drive transitions between them. Thus,

gradual commitment would endow the system with a temporally varying level of plasticity. A

consequence of this would be that in the earlier, more dynamic stages of development, cell

fates would be more fluid and the system could readily correct errors. In later stages (once

ICM / TE structures have largely formed), cell fates would become more distinct, with a com-

mensurate reduction in plasticity. In other words, the slow nature of this process would create

a time window where noise drives correction of inevitable specification errors.

Alternative mechanisms and model limitations

While contact mediated biasing of Cdx2 transcription, along with stochastic effects, would be

sufficient to ensure accurate organization of the early embryo, it is of course not the only

potential mechanism. Recent observations have shown that DNA binding properties of critical

transcription factors correlate with cell position [13]. While a full analysis of this hypothesis at

the DNA binding level will be left for future work, we briefly consider the possible effects of

this. In particular, Cdx2 has longer residence times in outer cells. This could positionally affect,

among other things, Cdx2 transcription (if Cdx2 auto-amplifies its own transcription) or deg-

radation rates of Cdx2 (if for example, DNA binding prevents post-translational modifications

Fig 6. Schematic of the gradual process of trophoectoderm (TE) and inner cell mass (ICM) formation.

a) Schematic of the distinctiveness of TE / ICM cells and the mixing of the two populations as time progresses.

b) Schematic of the hypothesized epigenetic landscape as a function of time. Prior to compaction, the system

is mono stable and all cells are equivalent up to stochastic fluctuations. After compaction, this state bifurcates

to two possible states, with the relative stability of the two determined by local cell-cell communication. Arrows

schematically indicate how different sources of noise could be (non)constructive by driving fluctuations in

different directions in the underlying landscape. At later stages, the ICM / TE gene expressions gradually

diverge leading to more distinct states that are more difficult to transition between.

doi:10.1371/journal.pcbi.1005320.g006
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leading to degradation). The former would lead to outer cells exhibiting larger Cdx2 transcrip-

tion, which is accounted for in the current model, and thus would have a similar effect. We

tested the latter possibility by assigning higher (resp. lower) degradation rates to inner (resp.

outer) cells. Results (Section 3.2 in S1 Text and Figure D in S1 Text) show that without any

contact mediated transcriptional biasing (S = 0 for all cells), positional dependent Cdx2 degra-

dation rates promote accurate organization. When this mechanism and the previously dis-

cussed cell-cell contact mediated biasing of Cdx2 transcription are both included in the model,

they combine to organize the embryo, indicating they do not interfere with each other and

could potentially act as parallel pathways to promote organization. A caveat of these results is

that in both cases, stochastic effects are still required to ensure organization.

An alternative hypothesis is that cell polarity influences Cdx2 transcription [71]. The basis of

this model is that Hippo signaling is suppressed by the apical domain in polarized outer cells

[38, 72]. In comparison, the model discussed above is based on observations that cell-cell con-

tact promotes Hippo signaling in interior cells. Functionally, both pathways would tend to pro-

mote Cdx2 transcription in outer cells and inhibit it in inner cells, both by modulating Hippo

signaling. While these two mechanisms are molecularly distinct, at the scale of the modeling

performed here, they would both enter into the model as a positional bias of Cdx2 transcription,

but with a different interpretation of the positional dependent parameter (S). Hence, they

would lead to the same predictions, namely that apical domain control over Cdx2 transcription

would provide the same capacity to correct specification errors and promote organization.

Mammalian blastocyst development has generated sustained interest for decades that has

only accelerated in recent years. Those investigations have yielded a wealth of observations

leading to numerous proposed models and molecular mechanisms promoting organization.

We emphasize that the model presented here does not account for all aspects of development

or match all observations about mammalian blastocyst development. As such, we do not

include the molecular details of transcription, translation, and protein stability and will not

make statements as to the influence of factors such as Nanog or Sox2. Fluid transport and

physical factors, such as cortical tension, filopodia dependent processes [73], or cell contractil-

ity [74], which can affect motions of cells, are not included in the current model. Here our goal

is not to suggest “the model” of development. Rather, our model is intended to shed light onto

the question, what contributes to the high level of robustness observed in early mammalian

development.

Discussion

An important challenge in developmental biology is to understand the design principles

responsible for spatio-temporal organization of the embryo. While a number of mechanisms

have been proposed to contribute to this process [3, 4, 20, 30, 31], a positional based regulative

model has received significant recent support. The central premise of this model is that cells

communicate directly through cell-cell contact via Hippo signaling to affect downstream

expression of the critical cell fate regulators Cdx2 and Oct4 [35–37]. Consequently, a cell’s

position determines its fate. This model is attractive because it has the potential to add a level

of robustness to previously proposed theories. Since positional information is a dynamic quan-

tity that can change in time, cells may continuously read their environment and adjust the fate

accordingly. Here, we combine modeling and quantitative image analysis to show that our

model can ensure the robust development of normal blastocysts, provided stochastic effects

are considered.

It is clear that in a perfect world, cell contact signaling is sufficient to direct organization.

However, the early embryo is in a dynamic environment with cells changing position [20, 21].
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While previous work suggests that cell polarity and regulation of the orientation of cell divi-

sions aids organization [20, 32], live imaging of Cdx2-eGFP transgenic mouse embryos (Fig 4)

and tracking of cell divisions [21] indicates that this alone is insufficient ensure all cells remain

in the appropriate location within the embryo. Thus, some mechanism to correct mis-localized

cell fates within an embryo and ensure the limited number of mammalian embryos undergo

successful preimplantation development is required. How does the embryo cope with these

out of place cells? Adhesion mediated sorting has been suggested in many settings to direct tis-

sue segregation [42]. The absence of movement of cells from the inside of the embryo to the

outside [21], however, argues against this since mis-expression is found primarily in the inte-

rior. Furthermore, it provides no way to balance the number of cells that commit to the ICM

and TE lineages. The regulative positional based mechanism provides a natural framework to

account for this, namely that cells simply change their fate upon relocation. While this is intui-

tively plausible, our modeling results (Fig 1C–1E) show that changes in local signaling infor-

mation (upon relocation), on their own, are insufficient to guarantee fate corrections in many

cases.

In silico modeling and quantitative imaging results here suggest that stochasticity in gene

expression processes is sufficient to improve plasticity and to ensure accurate formation of

TE / ICM structures. While we cannot directly probe the influence of stochasticity by selective

perturbation, our modeling predicts the magnitude of noise sources and provides an experi-

mentally supported hypothesis for what drives cell fate corrections. This raises an important

point that while historically, noise has been seen as a nuisance threatening organization [75,

76], more recent work has begun to recognize its potential benefits [44, 64, 65]. Results here

are in line with this theory. First, they indicate that the system may have found a way to opti-

mize the amount of gene expression noise present so as to provide the maximum benefit of

noise-mediated plasticity without overwhelming the systems dynamics with excess noise. Sec-

ond, noise quantification and simulation results suggest that the structural asymmetry in the

noise may further aid organization. Finally, the gradual nature of commitment could provide a

means for stochastic effects to influence organization during the early, more dynamic phase of

organization, while reducing the effects of stochasticity at later stages, once the TE / ICM struc-

tures have already formed. Intuitively, stochasticity has the role of preventing the embryo from

getting stuck in an undesirable meta-stable state. In particular, noise may introduce perturba-

tions, leading to switch of cell fate from an undesirable state, which is less stable, to a desirable

state that is usually more stable. Thus, while the regulative model is a plausible and even com-

pelling mechanism to organize the embryo, these results indicate that noise has a critical role

in helping this mechanism deal with the ambiguities and imperfections of positional informa-

tion that are central to it.

Given the ubiquitous presence of many of the elements of this system in other contexts, we

expect observations regarding the positive influence of noise on organization to have broader

biological implications. Bipotent gene expression circuits are used in a wide variety of biologi-

cal systems ranging from embryonic development [77], to hematopoietic [69, 70] stem cell

differentiation, to osteo-adipo progenitor dynamics [78]. For example, later in embryonic

development ICM cells are further organized into the epiblast (the future embryo) and parietal

endoderm (the future visceral endoderm). While local cell-cell communications (e.g. through

direct physical or biochemical signaling) or long-range patterning cues (e.g. morphogens) may

initiate desirable spatial organizations, we hypothesize that the stochastic nature of those pro-

cesses requires additional mechanisms to ensure precision. It will be important to determine

whether gene expression noise and their asymmetries are more generally incorporated into

various decision-making processes in development such as cell-cell boundary formation dur-

ing organogenesis and the emergence of tumors.
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Our findings do raise a number of important questions. First, what might throttle transcrip-

tion (or related processes) prior to compaction and is that control coincident with or directly

tied to the occurrence of compaction? While we have not identified a responsible regulator, we

expect it to act globally, affecting all cells commensurately. Second, how are noise levels con-

trolled or “tuned”? Numerous theories have been proposed for noise attenuation, but how

would it be “controlled” rather than simply “attenuated”? One hypothesis is that feedback

loops with other factors influence stochasticity. For example, among embryonic stem cells,

expression variability of genes are regulated through Nanog dependent feedbacks [79]. Lastly,

how are noise levels in different factors modulated differently? One possibility is to simply

modulate mRNA copy number, which influences variability [43]. Alternatively, transcription

factor / promoter binding dynamics may provide a mechanism to tune transcriptional burst-

ing frequency [80], leading to “tunable” variation. Regardless of the source of this control,

these results suggest noise promotes cellular plasticity and has an important positive influence

on blastocyst organization.

Materials and Methods

Ethics statement

Our Animal study was approved and carried out by following Institutional Animal Care and

Use committee (IACUC) guideless at the University of California, Irvine (protocol number

2008–2814). Females were euthanized with CO2 and cervical dislocation, accordingly to Uni-

versity Laboratory Animal Resources (ULAR) standards.

Simulation methods

See S1 Text for computational methods.

Embryo acquisition

Preimplantation stage mouse embryos were collected from 3-week old females (CD1, Charles

Rivers and Cdx2-eGFP, Jackson Laboratories). Embryos were obtained after super ovulation

with pregnant mare serum (PMSG) and human chorionic gonadotropin (hCG) at desired

embryonic day (E2.5, E3.5, and E4.5) by flushing oviducts and uterine horns with holding

media (DMEM containing Hepes). Cdx2-eGFP preimplantation mouse embryos were isolated

at e2.5 and set for culture in 25μl KSOMaa. Embryos were kept at 37˚C under 5% CO2 before

imaging.

Live imaging

Transgenic mouse embryos harboring Cdx2-eGFP [22] were imaged using Zeiss 780 confocal

microscope at 63x using a 1.4 NA objective. Z-stacks of 2μm slices were collected every 15

minutes with 488nm wavelength laser power (5%), 1024X1024 pixels. Embryos were imaged

in 25μl microdroplets of KSOMaa covered with mineral oil in a incubation chamber kept at

5% CO2 and 37˚C.

Immunofluorescence

Mouse embryos were rinsed in Acid Tyrode’s solution, (Sigma Aldrich) and fixed in 3.7% form-

aldehyde on ice for 30 minutes. Primary antibodies used were anti-Oct4 (1:250, Santa Cruz Bio-

technology) and anti-Cdx2 (1:200, BioGenex) and secondaries were Alexa555 and CruzFlur647

(see Table D in S1 Text). DNA was stained with Hoechst (2μg/ml, Sigma Aldrich). Embryos

were placed on a glass slide coated with a 1% agarose pad and compressed to a 3:1 aspect ratio.
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All confocal images were acquired using a 63x 1.4 NA objective, on an Axioobserver Z1 Zeiss

780 confocal microscope with Zen2009 software. Z-stack images were acquired at 0.3μm

intervals.

Image analysis

We used custom software to quantify average fluorescent intensity in individual nuclei. See

Supplementary Material for details. For live embryo imaging analysis and 3D reconstructions

Fiji-imageJ was used.

Supporting Information

S1 Text. This file contains all supplementary text describing computational methods and

image analysis. It further contains all supplementary tables and figures referenced herein.

(PDF)

S1 Movie. Model simulation. Movie depicting a 2D simulation of the developing blastocyst

without gene expression stochasticity.

(M4V)

S2 Movie. Model simulation. Movie depicting a 2D simulation of the developing blastocyst

with gene expression stochasticity.

(M4V)

S3 Movie. Live imaging of an early Cdx2-eGFP mouse blastocyst. A Cdx2-eGFP+ cell moves

from the outside to the inside of the embryo while decreasing the Cdx2 expression.

(AVI)

S4 Movie. Time lapse imaging of Cdx-eGFP mouse embryos. Transmission video of

Cdx2-eGFP embryos demonstrates normal developmental morphology under our imaging

and culturing conditions.

(AVI)
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