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Abstract: Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that falls under the
umbrella of dementia and is characterised by the presence of highly neurotoxic amyloid-beta (Aβ)
plaques and neurofibrillary tangles (NFTs) of tau protein within the brain. Historically, treatments
for AD have consisted of medications that can slow the progression of symptoms but not halt or
reverse them. The shortcomings of conventional drugs have led to a growing need for novel, effective
approaches to the treatment of AD. In recent years, immunotherapies have been at the forefront of
these efforts. Briefly, immunotherapies utilise the immune system of the patient to treat a condition,
with common immunotherapies for AD consisting of the use of monoclonal antibodies or vaccines.
Most of these treatments target the production and deposition of Aβ due to its neurotoxicity, but
treatments specifically targeting tau protein are being researched as well. These treatments have had
great variance in their efficacy and safety, leading to a constant need for the research and development
of new safe and effective treatments.
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1. Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder and the most
prevalent form of dementia, accounting for 60–80% of cases [1] and is a growing burden
on healthcare systems nationally and internationally. The Global Burden of Disease Study
estimated that 57.4 million people globally were living with dementia in 2019 and this is
predicted to reach 152.8 million people by 2050 [2]. Dementia is an umbrella syndrome
characterised primarily by progressive deterioration in multiple cognitive domains, causing
impairment in daily functioning across social, physical, and professional spheres [3,4]. The
elderly are those primarily affected by AD [5], though this is not necessarily a direct
outcome of ageing [6]. The neuropathology of AD is underpinned by the accumulation of
plaques, which are extracellular aggregates of amyloid-β (Aβ), and neurofibrillary tangles
(NFTs), which are intracellular aggregates of tau protein.

Currently, people diagnosed with AD are treated with acetylcholinesterase inhibitors
(rivastigmine, galantamine, donepezil) and an N-methyl-D-aspartate (NMDA) receptor
antagonist (memantine). Though these treatments are able to restrain the manifestations of
dementia for a period, they are incapable of completely halting either disease progression or
symptom manifestation [7], and are hampered further by a number of common side effects,
such as gastrointestinal irritation, dizziness, and headache [8]. Since AD is a convoluted
disease caused by multiple components, its aetiology and pathogenesis remain obscure,
and existing single-target, single-action drugs cannot radically delay its progression [9].
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More recently however, Aβ immunotherapy has gained attention as a promising
approach to modify the course of AD. Immunotherapies use synthetic peptides or mono-
clonal antibodies (mAbs) to decrease the Aβ load in the brain and slow the progression
of the disease, by inducing the immune system to break down and clear the aberrant
proteins [10]. In addition to these passive immunotherapies, the development of vaccines
against target proteins in AD may have beneficial outcomes against the disease. Herein, we
discuss the pathophysiology of AD and how it can be used to target effective immunother-
apies in an attempt to prevent and manage AD. We also evaluate the current progress in
immunotherapies/vaccines against AD, providing recommendations for future work.

2. Pathophysiology of Alzheimer’s Disease

Neuropathological examination of individuals living with AD identifies dense protein
aggregates comprising extracellular Aβ plaques and intracellular NFTs (Figure 1) [11]. Ex-
amination of these individuals also presents associated chronic inflammation in the affected
areas of the brain [8]. The tau found in the intracellular NFTs is a microtubule stabilising
protein that plays an important role in Aβ toxicity, with levels of the protein in the brain
correlating strongly with the cognitive decline seen in AD patients [12,13]. This is caused by
an irreversible phenomenon of neurodegeneration and apoptosis in the hippocampal and
entorhinal cortex regions, leading to difficulty with memory, loss of executive functioning,
apathy, and depression [8,14]. Adverse mechanisms such as impairment of brain metabolic
function [15], blood–brain barrier (BBB) disruption [16], increased oxidative stress, calcium
homeostatic disturbance, impairment of cellular autophagy, neuroinflammation, and neu-
ronal apoptosis commonly co-exist, contributing to the aetiology of the disease [8,17]. Due
to the neurovascular coupling, the normal bulk clearance of cerebrospinal fluid (CSF) and
interstitial fluid (ISF) becomes hindered [18].
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Figure 1. Pathophysiological differences between a healthy and an AD brain. Tissue degenera-
tion is highly prevalent. Neuronal degeneration to Aβ and NFTs is highlighted. Created with
BioRender.com.

2.1. BACE-1 and Aβ Generation

The amyloid hypothesis is the most extensively studied concept of AD, in which ab-
normal processing of Aβ and/or impairment of its systemic clearance may be responsible
for the progression of AD-related phenotypes (Figure 2) [19]. The characteristic Aβ plaques
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seen in AD originate from proteolysis of the amyloid precursor protein (APP) by sequen-
tial enzymatic action of beta-site amyloid APP-cleaving enzyme 1 (BACE-1) [20]. The
membrane-bound APP is first cleaved by BACE-1, generating soluble amyloid precursor
protein β (sAPPβ) and an integral fragment called C99 [21]. C99 is then cleaved again by
γ-secretase [6], generating amyloid precursor protein intracellular domain (AICD) and free
Aβ, an insoluble 36–43 amino acid peptide, which aggregate to form oligomers.
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Figure 2. Generation of Aβ from APP. APP is cleaved by BACE-1 to generate C99 and is then cleaved
again by γ-secretase to generate free A-beta. Created with BioRender.com.

These oligomers are thought to acts as ‘seeds’ which induce further Aβmis-folding
and aggregation [22], and importantly are neurotoxic, leading to the apoptosis of neurons
locally, and consequently the characteristic symptomatology of AD. The exact functions
of APP and APP-derived fragments are not fully understood [23], and BACE-1 knockout
animals appear physiologically healthy and do not express Aβ [24]. BACE-1 has also been
shown to have increased concentrations and rates of activity in AD brains and body fluids,
supporting the hypothesis that BACE-1 may play a significant role in AD [25]. Therefore,
BACE-1 is a prime drug target for slowing down Aβ production in early AD [26,27],
however, clinical trials have thus far had disappointing results, with a number of phase
II and III studies halted early for limited or no effect on symptoms and variable effects
on Aβ volume or deposition, with association with a reduction in brain tissue volume in
follow-up examinations [28–30].

2.2. Tau Protein

One of the hallmarks of AD is the presence of NFTs, and filamentous inclusions in
pyramidal neurons [31]. Tau proteins are responsible for several key functions within the
central nervous system (CNS), primarily being stability modulators of axonal microtubules.
Like Aβ oligomers, intermediate aggregates of abnormal tau molecules are cytotoxic and
impair cognition [6]. While these NFTs have long been associated with AD, whether they
are a pathogenic driver of the disease, or a result of Aβ or other underlying mechanisms, is
unclear. In early-stage AD mouse models, it was noted that site-specific phosphorylation
of tau inhibited Aβ toxicity via the neuronal p38 mitogen-activated protein kinase (MAPK)
p38γ, a key signalling molecule involved in cellular stress responses [32].
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2.3. APOE-ε4

The apolipoprotein E-epsilon 4 (APOE-ε4) genotype has been implicated as a risk fac-
tor for late-onset AD [33], with a synergistic role of APOE-ε4 and inflammation, alongside
vascular factors, as a possible pathway to the onset of AD [34]. The human APOE gene
has three key isoforms: APOE2, APOE3, and APOE4, with corresponding proteins [35,36].
Carrying and expressing the APOE4-coding allele is the chief genetic risk factor for AD,
with predictive values exceeding polygenic scores for cognitive ageing in elderly popu-
lations [35,37]. APOE4 status has also been linked to Parkinson disease-associated de-
mentia [38]. It has been suggested that the effect of APOE4 in the meningeal lymphatic
system could reveal a missing link in our understanding of the aetiology and pathology of
AD [33,35].

2.4. TREM2

Triggering receptor expressed on myeloid cells 2 (TREM2)—a marker of microglial
inflammatory reactions—is another important marker in the pathophysiology of AD [39].
Soluble TREM2 (sTREM2) is released upon microglial activation, leading to increased levels
of CSF sTREM2 seen in AD [40], and is involved in APOE4′s downstream activation of
microglia [35]. TREM2 also facilitates additional microglial activation and clustering around
Aβ and NFTs, increasing amyloid uptake, phagocytic activity, and plaque compaction in
the early stages of AD [41].

2.5. Other Contributing Factors

Other factors such as smoking, reduced physical activity, infection, and prior con-
ditions (e.g., diabetes and obesity) can also lead to developing AD [42,43], with likely
mechanisms involving abnormal cholesterol metabolism and chronic inflammation. A hu-
moral immune component has also been implicated in the pathology of AD [44]. It is now
widely accepted that circulating immune cells have a significant role in brain pathologies
and that their impact is dependent on their type, location, and activity [45].

3. Role of the Immune System in AD

The adaptive immune system is central to the pathogenesis and progression of AD,
with glial and T lymphocyte interactions a key driver of neuroinflammation (Figure 3)
and neuronal destruction. Microglia and astroglia, the brain-resident immune cells, are
powerful regulators of neuroinflammatory responses in AD [46,47]. Microglia are the
principal immune effector in the CNS, acting as both phagocytes and antigen-presenting
cells (APCs) and there has been some debate regarding their contribution to the clearance
of Aβ following their activation [48]. Recent advances in neuroinflammation research has
led to the discovery of several novel inflammatory pathways regulating many cerebral
pathologies, such as the 5-lipoxygenase (ALOX5) pathway [8].

The lymphatic system of the brain carries immune cells from the CSF, connecting
to the deep cervical lymph nodes, which enables peripheral T cells to respond to brain
antigens [49]. Both CD4+ T helper and CD8+ effector T lymphocytes aggregate in the brain
in AD, and play a role in the pathology and progression of the disease [50]. However,
in contrast to the peripheral mechanisms, the major APCs in AD are the microglial cells,
which show increases in genes and markers associated with T cell interaction [51]. There
also appears to be a loss of intrinsic immunosuppression associated with AD, with transient
depletion of Foxp3+ regulatory T cells affecting the choroid plexus and associated with sub-
sequent recruitment of immunoregulatory cells, such as monocyte-derived macrophages
and regulatory T cells, to cerebral sites of plaque pathology [52]. These effector and regula-
tory functions of lymphocytes are altered with ageing, and other immune manifestations
accompany the progression of AD [53]. The neurodegeneration and concurrent involve-
ment of the peripheral immune system in AD patients has been suggested to promote
leukocyte division and telomere shortening [54].
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as IL-1α, IL-6, and TNF-α. Created with BioRender.com.

This makes the diagnosis of novel therapeutic interventions of critical importance
in AD management moving into the future. For decades, therapies have been developed
that directly target Aβ production or aggregation, however, all have failed to slow disease
progression [12].

Cytokines in AD

While microglia and astrocytes play numerous roles within brain tissue, their involve-
ment in neuroinflammation through cytokine activity is a crucial aspect of AD that requires
significant management. As microglia are recruited and overactivated and astrocytes detect
cellular death, they release pro-inflammatory cytokines into the surrounding extracellu-
lar space which then have a range of actions. Tumor necrosis factor α (TNF-α) is highly
prolific, being the most studied cytokine involved in AD. In transgenic mouse models of
AD, elevated TNF-α levels were observed in brain tissues and correlated with levels of
cognitive decline in the mice. Furthermore, deletion of the tumor necrosis factor receptor
1 (TNFR1) gene in transgenic AD mice showed decreased Aβ generation, plaque burden,
BACE-1 expression, and cognitive deficits [55]. Evidence also suggests that TNF-α directly
interferes with microglial clearance of Aβ deposits [56]. Other cytokines also play a role in
neuroinflammation. Interleukin (IL) 1α plays a significant role in overexpression of APP, as
well as being highly expressed in an AD brain compared to a healthy brain [57] which can
create a loop of IL-1 secretion and APP synthesis. IL-6 is also an important molecule within
AD. While its direct impact is yet to be properly understood, it is established to be involved
in an upregulation of TNF-α and microglial activation [58]. Moreover, blocking IL-6 activity
can improve long-term memory and hippocampal function [59]. Lastly, inhibition of the
IL-12/IL-23 pathway may attenuate AD pathology and cognitive deficit. In a pathway
that is not yet understood, ablation of the p40 subunit within IL-12/23 was shown to
have reduced the amount of soluble Aβ and improved cognitive function in AD mouse
models [48,60].
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4. Immunotherapies for AD

Immunotherapies have become one of the most promising methods to reverse or
slow the progression of AD [61]. Several types of Aβ peptide immunotherapy for AD are
under investigation, through approaches such as active immunisation and mAbs directed
against Aβ peptide [62] and tau pathology [63–66]. Focus has been on the development of
multitarget AD immunotherapies, the optimisation of antibody titers and epitopes, pharma-
cogenetic/pharmacoepigenetic validation of the immunisation procedure, the prophylactic
treatment of genetically stratified patients at a pre-symptomatic stage, and the definition
of primary endpoints in prevention, based on objective/multifactorial biomarkers [64].
Matrix metalloproteinases’ involvement in CNS disorders, such as AD, has also made them
attractive therapeutic targets [67].

4.1. Antibody Therapies for AD

In clinical trials of patients with early AD, administration of anti-amyloid antibod-
ies reduced plaque volume, suggesting that passive immunotherapies may be promis-
ing disease-modifying interventions (Figure 4). Currently, the only approved disease-
modifying treatment of AD is the drug aducanumab, a mAb specific to Aβ and that shows
efficacy in the reduction in Aβ density within patients [68]. Single chain fragment variables
(scFvs), containing only the variable region of the heavy and light chains of antibodies, have
shown great potential for the treatment of AD [69]. Thirteen phase III trials using the mAbs
bapineuzumab [70], solanezumab [71], gantenerumab [72,73], and crenezumab [74] have
been conducted in recent years, however, all were discontinued due to a lack of efficacy
on improving cognitive function (Table 1). Another candidate, BAN2401, also known as
lecanemab, entered a phase III clinical trial in July 2020 and displays significant reduction
in Aβ aggregates and improvement in clinical symptoms [75,76]. A post-translationally
modified variant of the Aβ peptide which has a pyroglutamate at the N-terminus (pGlu3)
is an attractive antibody target, due to its neo-epitope character and its propensity to form
neurotoxic oligomeric aggregates [77]. PBD-C06 is an antibody targeting pGlu-Aβwhich
also circumvents inflammatory issues (complement inactivation) and immunogenicity (de-
immunisation) and has great potential to clear the most toxic Aβ aggregates and improve
cognition in AD patients at effective doses, while also avoiding inhibition of inflammatory
responses in vitro [77].

Table 1. Clinical trial information for mAb treatments against AD and their findings. Treat-
ments may have influenced Aβ deposition, but none reach the primary endpoint of ameliorating
cognitive decline.

Ref. Compound Phase Target Type Participants Findings

[68] Aducanumab Ib Aβ mAb 197 Reduced Aβ, did not improve cognition.
[70,78] Bapineuzumab III Aβ mAb 1121, 1331 Did not improve cognition, did not reduce Aβ deposition.

[71] Solanezumab III Aβ mAb 2052 Did not improve cognition, Levels of Aβ40 decreased,
Aβ42 did not change.

[73] Gantenerumab III Aβ mAb 799 Study halted due to no effect on cognition or
Aβ deposition.

[74] Crenezumab II Aβ mAb 448 No effect on cognition, elevated CSF levels of Aβwere
associated with treatment.

[76] Lecanemab II Aβ mAb 854
Treatment showed a reduction in Aβ and a reduction in

cognitive decline over an 18-month period, missing
12-month primary endpoints.
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4.2. Active Vaccinations against AD

There are a number of targets currently being evaluated for use in an active vaccine
therapy for AD (Figure 4). About 140 (85%) immunisation procedures against Aβ deposi-
tion and 25 (15%) against tau have been reported, but no Food and Drug Administration
approval of any AD vaccine has been achieved [64]. An Aβ42 trimer DNA vaccine may
provide a path forward in finding viable options for AD prevention or a means of delaying
disease progression. The DNA vaccine, AV-1959D, targeting the N-terminal epitope of
the Aβ peptide, is immunogenic in mice, rabbits, and non-human primates, as well as
being effective in mouse models of AD (Table 2). Repeated dose safety assessment did not
find any adverse short- or long-term effects of the vaccine in mice. Mice treated with the
vaccine demonstrated elevated anti-Aβ antibodies over time [79]. Early immunisation with
a conjugated Aβ3–10-keyhole limpet hemocyanin vaccine can greatly reduce tau phospho-
rylation, however, these immunotherapies are not clinically effective when administered
too late [61].

Table 2. Research information for several active vaccine treatments against AD and their findings.
All demonstrate potential in the form of immune responses being generated but must be monitored
carefully to prevent adverse events from occurring.

Ref. Compound Phase Target Type Participants Findings

[79] AV-1959D Pre-clinical Aβ DNA Vaccine 60

No short- or long-term toxicities
demonstrated. The vaccine elicited an

immune response in the form of
antibody production specific to Aβ42

[78] Y-5a15 Pre-clinical Aβ Vaccine N/A
Treatment elicited significant levels of

Aβ antibodies, reduced levels of Aβ, and
improved cognitive function in mice.
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Table 2. Cont.

Ref. Compound Phase Target Type Participants Findings

[10,80] AN1792 IIa Aβ Vaccine 375

Reduced Aβ load in the brain,
terminated due to development of

adverse events resulting from
the treatment.

[79,81–83] Protollin Pre-clinical Aβ Vaccine N/A

Significant reduction in Aβ in mice,
cognitive function improved following

treatment. Adjuvant was not observed in
brain tissue.

Vaccination targeting only the tau protein has shown benefits in some mouse studies
but human studies are limited [65]. To prevent the accumulation of plaques, novel and safer
plant-based vaccine strategies have been suggested [84]. In 2002, the first active AD vaccine
(AN1792) developed by ELAN in Ireland and Wyeth in the USA went through a phase IIa
clinical trial but was suspended due to the development of meningoencephalitis in ~6% of
the individuals [10,80]. The exact mechanism of this was unknown and determined to have
no clear relation to serum anti-Aβ42 antibody titers but may have been an autoimmune
response rising from T cell interactions [85,86]. Other groups have evaluated the effect of
combining systemic immunomodulators and influenza vaccines as a means of increasing
immune action against plaques. As such, programmed cell death protein 1 (PD-1) check-
point blockade—inhibition of T cell apoptosis by preventing binding to PD-1, known to
modify AD [87]—in conjunction with the influenza vaccine, is hypothesised to have a dual
immunostimulatory effect that could provide clinical benefit. The combination treatment
was effective in attenuating cognitive deficit and Aβ pathology build-up in APP/PS1 mice
through recruitment of monocyte-derived macrophages to the CNS [88]. More recently, a
vaccine developed by modifying yeast cells to express Aβ1-15 on their cell wall, named
Y-5A15, was shown to improve cognitive function, and decrease plaque formation and
neuronal damage in animal models [78].

In November of 2021, a phase I clinical trial of the vaccine Protollin was reported [89].
Protollin is a combination of Neisseria meningitidis outer membrane proteins complexed
with Shigella flexneri 2a lipopolysaccharide. This combination works by activating Toll-like
receptors (TLRs) 2 and 4 within the nasal cavity. The immune response then moves to the
cervical lymph nodes where CD4+ T cells can be activated and migrate to the CNS [81]. The
vaccine is delivered intranasally and displays efficacy in the removal of Aβ in transgenic
mouse models of AD [87,88].

4.3. The Limitations and Challenges of Immunotherapies

While immunotherapies demonstrate a promising route towards the treatment of
AD, there are problems and complications that can arise. As described with the vaccine
AN1792, the development of adverse events or reactions to the treatment is a major concern.
Over-reactivity is a possibility when administering an immunotherapy and can result in
more harm than good for the patient. In the case of AD, an over-reactive immune response
could lead to further neurodegeneration via several pathways. Similarly to microglial
and astrocyte signalling, excess inflammatory cytokine production could lead to further
neuroinflammation that could exacerbate the disease state [90]. Furthermore, autoreactive
T cell responses have the potential to develop and are a crucial safety consideration that
must be monitored for.

Other concerns relating to efficacy of immunotherapies must also be considered. Part
of the appeal of immunotherapies is that they rely on the patient’s immune system as the
treatment for the condition. However, patients in advanced stage dementia are typically
older individuals and present with weaker immune systems, either age-related or being
immunocompromised due to comorbidities. As a result, there are several avenues by
which an immunotherapy may fail. For example, decreased activity and availability of
naïve CD4+ and CD8+ T cells [91], the increased likelihood of CD5+ B cells producing
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auto-antibodies [92], as well as the impaired production of naïve B cells within bone
marrow [93]. Furthermore, age-related immunosenescence may contribute to a tolerance of
the immunotherapy and it may be unable to elicit immunogenicity [94,95].

4.4. Analysis of Immunotherapeutic Efficacy

When conducting an immunotherapeutic trial, analysis of treatment efficacy is critical
for the further development of that treatment. As a result, the use of concurrent biomarker
analysis is recommended. Common biomarker analysis of AD looks for changes of CSF
Aβ42/40, phosphorylated tau (P-tau) and total tau (T-tau) [96] and neurogranin, a cerebral
post-synaptic protein involved in long-term potentiation, whose elevation in the CSF
appears specific to AD [97].

4.5. Cerebral Amyloid Angiopathy and Amyloid-Related Imaging Abnormalities

Cerebral amyloid angiopathy (CAA) and amyloid-related imaging abnormalities
(ARIAs) are conditions that present great challenges for immunotherapies, particularly with
mAb treatments. CAA is the deposition of Aβwithin cerebral vascular tissue and is heavily
implicated in intracerebral haemorrhages and ARIA complications and is common among
AD patients [98]. In clinical trials, aducanumab and lecanemab exhibited strong ARIA
complications, which may have been related to CAA. The treatments resulted in ARIA–
vasogenic oedema (ARIA-E), which was more common in participants that were APOE-ε4
positive [68,76], further demonstrating the gene’s implication in AD [37]. Furthermore, a
common trend within mAb trials is the demonstration of dose-dependency for the removal
of Aβ. Both aducanumab and lecanemab demonstrated the greatest reduction in Aβ
within the 10 mg/kg dose groups. Unfortunately, the presentation of ARIA complications
has a negative impact on the appeal of the treatment. Another mAb—crenezumab—
demonstrated fewer ARIA complications. In the trial, one participant receiving a 15 mg/kg
dose every four weeks (n = 247) exhibited asymptomatic ARIA-E, and one participant in
the same cohort exhibited asymptomatic ARIA–cerebral macrohaemorrhage (ARIA-H) [74].
While the treatment was tolerated better, presented lower safety implications, and reduced
Aβ density, the primary focus of the study—cognition—was not met.

5. Conclusions

Although Aβ is the most extensively studied pathological hallmark of AD pathophys-
iology, many recent therapeutic approaches directing against this peptide have often failed
in clinical trials, and thus, more attention is shifting toward tau pathology and neuroinflam-
mation as therapeutic targets. Immunotherapy focusing on reducing the Aβ burden is a
promising treatment strategy for AD [78]. This might be attributed to deficient pathogenic
targets, inappropriate models, defective immunotherapeutic procedures, and inadequate
clinical trial design. Two important factors that may have been under-estimated in AD
pre-clinical research are the relevance of current AD mouse models and the immunological
differences between mice and humans. The exact contribution of the different reactive
microglia subtypes to AD is currently unclear and the subject of intense research. Many fac-
tors need to be considered—including sex, age, species, molecular diversity, health status,
communication with the periphery—to fully decipher the role of microglia in AD. This is
undoubtedly challenging but also a very exciting field of research, which holds the promise
of defining innovative therapeutic strategies and subsequently reducing the socio-economic
burden of this devastating disease [99]. Effective vaccines which halt or slow AD might be
an effective and convenient approach to avoid enormous treatment-related expense [62]. A
key consideration in vaccination against AD is the timing of treatment. Given that there
is an age-related decline in immune function, vaccines may be more likely to prevent AD
instead of providing treatment. Early vaccination, which prevents plaque build-up before
symptoms have shown, may be more effective, while also providing a rationale for the
current failure of AB immunotherapies in trials, as these are always tested in patients with
symptomatic disease.
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A vaccine against AD is technically feasible; however, important methodological
aspects should be changed for clinical success, including (i) the development of multitar-
get AD immunotherapies; (ii) the optimisation of antibody titers and epitopes; (iii) the
pharmacogenetic/pharmacoepigenetic validation of the immunisation procedure; (iv) the
prophylactic treatment of genetically stratified patients at a pre-symptomatic stage; and
(v) the definition of primary endpoints in prevention, based on objective/multifactorial
biomarkers. Even with exquisite protocols, an individual, uni-target vaccine would be
potentially useful in at most 20–30% of defined cases, according to the genetic, epigenetic,
and pharmacogenetic background of AD patients [64]. Compared to passive immunothera-
pies, vaccines have several disadvantages. They depend on some degree of consistency of
immune response in each individual, but people are heterogeneous. The characteristics
of antibodies induced by vaccines are limited by the human immune system and cannot,
for example, include artificial modifications for which therapeutic mAbs might be given to
optimise their effectiveness. However, passive therapies are costly, and short term, while
vaccines produce antibodies internally at much lower cost, so vaccination might be the
most promising approach to reducing the global burden of dementia [100].
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