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A B S T R A C T   

Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by memory 
loss, cognitive disorder, language dysfunction, and mental disability. The main neuropathological 
changes in AD mainly include amyloid plaque deposition, neurofibrillary tangles, synapse loss, 
and neuron reduction. However, the current anti-AD drugs do not demonstrate a favorable effect 
in altering the pathological course of AD. Moreover, long-term use of these drugs is usually 
accompanied with various side effects. Ginsenosides are the major active constituents of ginseng 
and have protective effects on AD through various mechanisms in both in vivo and in vitro studies. 
In this review, we focused on discussing the therapeutic potential effects and the mechanisms of 
pharmacological activities of ginsenosides in AD, to provide new insight for further research and 
clinical application of ginsenosides in the future. Recent studies on the pharmacological effects 
and mechanisms of ginsenosides were retrieved from Chinese National Knowledge Infrastructure, 
National Science and Technology Library, Wanfang Data, Elsevier, ScienceDirect, PubMed, 
SpringerLink, and the Web of Science database up to April 2023 using relevant keywords. 
Network pharmacology and bioinformatics analysis were used to predict the therapeutic effects 
and mechanisms of ginsenosides against AD. Ginsenosides presented a wide range of therapeutic 
and biological activities, including alleviating Aβ deposition, decreasing tau hyper-
phosphorylation, regulating the cholinergic system, resisting oxidative stress, modulating Ca2+

homeostasis, as well as anti-inflammation and anti-apoptosis in neurons, respectively. For further 
developing the therapeutic potential as well as clinical applications, the network pharmacology 
approach was combined with a summary of published studies.   

1. Introduction 

Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by memory loss, cognitive disorder, language 
dysfunction, and mental disability [1,2]. The main neuropathological changes in AD mainly include amyloid plaque deposition, 
neurofibrillary tangles, synapse loss, and neuron reduction. The pathogenesis of AD has been attributed to intracellular neurofibrillary 
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Table 1 
Chemical structural formula of ginsenoside. 
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tangles in cortical areas of the brain caused by extracellular aggregates of amyloid β (Aβ) plaques and abnormally phosphorylated tau 
protein [3]. The epidemiological studies showed that the prevalence of AD has increased recently with an estimated morbidity of 50 
million by 2020 and expected to reach 150 million by 2050 worldwide [4–6]. Although numbers of anti-AD drugs have been developed 
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in the last decades, including anti-Aβ monoclonal antibodies, Aβ aggregation inhibitors, acetylcholinesterase (AChE) inhibitors, and 
N-methyl-D-aspartate (NMDA) receptor inhibitors, and these drugs can alleviate AD symptoms; however, none of them demonstrated a 
favorable effect in alleviating the pathological course of AD [6]. Moreover, long-term use of these drugs is often accompanied with 
various side effects, including nausea, vomiting, diarrhea, allergic reactions, loss of appetite, etc. [7–9]. 

Recent studies have shown that herbal medicines and their active compounds can improve memory and cognitive function in AD 
patients with few adverse effects [10,11]. The Panax genus belongs to the Araliaceae family, which consists of at least nine species, 
including Panax ginseng, Panax quinquefolium, Panax notoginseng, and Panax japonicus. Panax genus has been considered one of the 
most important herbal medicines for thousands of years in China and east Asian, and its use as a nutritional supplement is rapidly 
increasing in North America and Europe. The bioactive components of Panax genus include saponins (ginsenosides), flavonoids, 
polysaccharides, volatile oils, polyenes, fatty acids, and polyacetylenic alcohols [12–14]. Among them, the major active constituents of 
Panax are ginsenosides, of which more than 40 have been identified so far [15]. Based on the carbon skeletons of the aglycones 
structure, ginsenosides were classified into protopanaxadiols (such as Rb1, Rb2, Rc, Rd, Rg3 and Rh2) and protopanaxatriols (such as 
Re, Rf, Rg1, Rg2 and Rh1). The steamed ginseng also has a unique saponin profile, such as Rg5, which is likely the result of heat 
transformation and deglycosylation [16](Table .1). 

Ginsenosides have been proven to be beneficial in the prevention and treatment of AD and other nervous system diseases [14,17, 
18]. Accumulating studies have suggested that ginsenosides have a protective effect on AD through various mechanisms both in vivo 
and in vitro [18,19]. In this review, we focus on discussing the therapeutic potential effects and the mechanisms of pharmacological 
activities of ginsenosides in AD, to provide new insight for further research and clinical application of ginsenosides in the future. 

The following databases were consulted this review: Chinese National Knowledge Infrastructure, National Science and Technology 
Library, Wanfang Data, Elsevier, ScienceDirect, PubMed, SpringerLink, and the Web of Science database. More than 200 publications 
were consulted from the databases above from inception to April 2023. To retrieve the literatures, the following words or phrases were 
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used alone or in various combinations in the titles and/or abstracts: “Ginseng”, “Ginsenosides”, “Renshen”, “Alzheimer”, “Alzheimer’s 
disease”, “Anti-Alzheimer”, “Mechanism”, “Pharmacology” and “Neuroprotective effect”, “Panax ginseng”, “Neuroprotective effect”, 
and “Pharmacological mechanisms”, total 98 articles within two decades were used in this review. 

2. Pharmacological mechanisms about anti-AD effects of ginsenosides 

2.1. Ginsenosides inhibit Aβ deposition 

The accumulation of Aβ is a pivotal contributor to the pathogenesis of AD [20]. Two main pathways involved in amyloid precursor 
protein (APP) metabolization, nonamyloidogenic and amyloidogenic. APP is cleaved by α-secretase via the nonamyloidogenic 
pathway, producing transmembrane fragment C83 and N-terminal fragment sAPPα. C83 is subsequently hydrolyzed by γ-secretase to 
generate the non-toxic fragment P3 and APP intracellular domain (AICD). In the amyloidogenic pathway, APP is cut by β-secretase to 
generate transmembrane fragment C99 and N-terminal fragment sAPPβ. C99 is then cleaved by γ-secretase to produce neurotoxic Aβ 
polypeptide fragments and AICD [21]. Aβ polypeptide fragments, as non-fibrillar oligomers, aggregate to amyloid fibrils in the cerebral 
cortex, inducing neurotoxicity and contributing to AD. Therefore, inhibiting β-secretase pathway and activating the nonamyloidogenic 
pathway are the potential targets for AD treatment. 

A molecular docking study showed that ginsenosides Rb1, Rb2, F1, Rh1, Rh2 and compound K (CK) have high binding affinities for 
the beta-site amyloid precursor protein, which cleave the enzyme beta-secretase-1 (BACE1) and exhibits potential BACE1 inhibitory 
activity [22]. In APP/PS1 mice, 10 mg/kg intraperitoneal (i.p.) injection of ginsenoside Rg1 increased the expression of brain-derived 
neurotrophic factor (BDNF), a synaptic plasticity regulator in the central nervous system that improves memory and cognitive 
functions, and its receptor tyrosine kinase B (TrkB) in turn lowers the synthesis of Aβ1-42, improves synaptic plasticity and decreases 
neurofibrillary tangles [23,24]. In streptozotocin (STZ)-induced memory impaired rats, intracerebroventricular (i.c.v.) injection of 
Rg5 (5, 10, 20 mg/kg) alleviated Aβ deposition by enhancing the expressions of insulin-like growth factors 1 (IGF-1) and BDNF in the 
hippocampus and cerebral cortex [16]. Ginsenoside Rd (10 mg/kg for 2 moths) improved cognitive and memory function in ovari-
ectomy (OVX) rats. In the same study, ginsenoside Rd increased the expression of α-secretase and the synthesis of soluble APPα (sAPPα) 
via the nonamyloidogenic pathway, which ameliorates the activity of amyloidogenic pathway and consequently decrease the Aβ level 
in neuronal cells from HT-22 mouse hippocampus [25]. Ginsenoside Rd was also found to activate the mitogen-activated protein 
kinase/phosphoinositide-3 kinase (MAPK/PI3K) pathway mediated by estrogen receptor (ER), increase the production of sAPPα 
through the nonamyloidogenic pathway, decrease extracellular Aβ level, and subsequently alleviate the impairment of cognitive and 
memory in ovariectomy rats [25]. In mouse neuroma cell N2a/APP695, ginsenoside Re (100 μM) inhibited the activity of BACE1 by 
activating peroxisome proliferator-activated receptor-γ (PPARγ) and reduced the generation of Aβ1-40 and Aβ1-42 [26]. In tg2576 AD 
model mice, ginsenoside Rh2 (10 mg/kg i.p. injection for 8 weeks) increased sAPPα levels and CTFα/β ratio, decreased Aβ1-40 and 
Aβ1-42 concentrations, and inhibited APP endocytosis by lowering levels of cholesterol and lipid raft, which resulted in a reduced 
number of senile plaques in brain tissue and improved cognitive functions [27]. 

2.2. Ginsenosides inhibit tau phosphorylation 

Tau protein, a microtubule-associated protein expressed in neurons, plays an important role in AD pathogenesis [28]. Tau is 
switched from non-toxic to toxic when triggered by the upstream protein Aβ, and toxic tau protein in turn increases Aβ toxicity via a 
feedback loop [29,30]. The neurodegeneration in AD patients is positively associated with Aβ and tau protein [31–33]. The activation 
of p38 mitogen-activated protein kinase (p38 MAPKs) promotes tau phosphorylation, which impairs the ability of neurons and glial 
cells to eliminate Tau and Aβ aggregates [34]. P38 phosphorates tau and promotes the release of inflammatory cytokines in astrocytes 
and microglia, resulting in chronic neuroinflammation and neurodegeneration [35]. In Aβ1-40-induced SK-N-SH neuroblastoma cells, 
ginsenoside Rg1 (50, 100 and 150 μM) mitigated Aβ neurotoxicity to SK-N-SH neuroblastoma, decreased IL-1β release, and inhibited 
tau phosphorylation via inhibiting the activation of p38 MAPK [36]. 

Cyclin-dependent kinase 5 (CDK5) is a proline-directed serine/threonine kinase and can induce nerve cell death and neuro-
degeneration by altering mitochondrial morphology or transmembrane potential [37]. CDK5 becomes hyperactive when neurons are 
exposed to pathogenic stimuli, leading to aberrant hyperphosphorylation of CDK5 substrates, such as APP, tau, and neurofilament, and 
neurodegenerative disorders [38]. When intracellular Ca2+ levels rise, calpain cleaves CDK5 activators p35 and p39 into p25 and p29, 
and the binding of CDK5 and p25 causes aberrant hyperphosphorylation of several CDK5 substrates [38–41]. Additionally, the 
increased Aβ level leads to hyperphosphorylation of tau by increasing the expression of p25 [42]. Inhibiting CDK5 decreases tau 
hyperphosphorylation and neurofibrillary tangles, thereby delaying the process of neurodegeneration [43]. Ginsenoside Rb1 (40 μM) 
down-regulated p25 expression and lowered CDK5 activity via the Ca2+/calpain/CDK5 signaling pathway in Aβ25-35-induced rat 
primary cortical neurons, efficiently maintaining intracellular Ca2+ homeostasis, inhibiting calpain activation and minimizing tau 
hyperphosphorylation [44]. 

Glycogen synthase kinase 3 (GSK-3) is another proline-directed serine/threonine kinase, its isoform, GSK-3β promotes Aβ for-
mation and tau hyperphosphorylation through modulating the Wnt (Wingless/Integrated) and PI3K/AKT signaling pathways [45]. In 
Aβ1-40-injected SD rats APP transgenic mice, pretreated with ginsenoside Rd (30 mg/kg i.p. injection) not only reduced the expression 
of GSK-3β, but increased the activity of protein phosphatase 2A (PP2A), a key phosphatase involved in tau dephosphorylation [46]. In 
the aluminum-induced tau hyperphosphorylation ICR mice model, ginsenoside Rb1 (20 mg/kg orally administration) reduced the 
phosphorylation of GSK-3β and the level of PP2A by activating the PI3K/AKT pathway [47]. 
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2.3. Ginsenosides reduce neuroinflammation 

Neuroinflammation is an active immune response in the central nervous system mediated by astrocytes and microglia. Microglia 
act as macrophages that secrete cytokines and chemokines in response to stimuli phagocytosis and subsequently regulate the inter-
nalization and degradation of Aβ [48]. In Aβ1-42-induced rat primary microglial cells, ginsenoside Rg3 (25 μg/mL) increased 
microglial phagocytosis of Aβ by up-regulating the expression of macrophage scavenger receptor type A (MSR-A) that promoted Aβ 
uptake, internalization, and digestion [49]. 

Toll-like receptor 4 (TLR4) is a transmembrane protein that belongs to the toll-like receptor family and activates the innate immune 
system. Excessive activation of TLR4 triggers the generation of various inflammatory factors such as nuclear factor-κB (NF-κB), 
interferon beta (IFN-β) and tumor necrosis factor alpha (TNF-α) [50]. TLR4 is the primary receptor that specifically recognizes 
lipopolysaccharide (LPS). The combination of TLR4 and LPS activates NF-κB and mitogen-activated protein kinase (MAPK) signaling 
pathways by regulating myeloid differentiation primary response protein 88 (Myd88), which increases pro-inflammatory factors 
secretion and triggers the infiltration of inflammatory cells into the brain [51,52]. In the Aβ 25-35-induced NG108-15 murine 
neuroglial cells, ginsenoside Rg1 (2, 4, 8, 16 and 32 μg/mL) reduced neuroinflammation by decreasing the level of NF-κB, TLR3 and 
TLR4, and lowering the production of TNF-α, IFN-β in cell supernatant [53]. In the APP/Tg mouse model, ginsenoside Rd (10 mg/kg i. 
p. injection for 6 months) decreased the expression of pro-inflammatory factors IL-1β, IL-6, and TNF-α, increased the expression of 
anti-inflammatory factor IL-10, and consequentially improved learning and memory function [54]. 

NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome contains NLRP3 core protein, apoptosis-associated speck-like 
protein (ASC) and pro-caspase-1, which are essential components of the innate immune system [55]. A decrease in Aβ deposition was 
observed in cases of insufficient NLRP3 expression mice [56]. Stimulating microglia cells to release IL-1 and inducing inflammatory 
response via activating the NLRP3 inflammasome contributes to Aβ clearance [57]. Therefore, decreasing NLRP3 inflammasome 
activation would be an effective therapeutic approach for reducing inflammatory injury in brain nerves [58]. Ginsenoside Rg3 (20 
mM) was demonstrated to lower Nitric oxide (NO) generation and inhibiting the activation of NLRP3 inflammasome in murine 
macrophage Raw 264.7 cells by regulating the expression of inducible nitric oxide synthase (iNOS) [59]. CK (10 mg/kg orally 
administration for 10 weeks) inhibited the activation of NLRP3 inflammasome, declined the expression of cleaved caspase-1, and 
mature IL-1β in the hippocampus of diabetic model mice, improving memory and cognitive dysfunction of diabetic model mice [60]. 

2.4. Ginsenosides regulate the cholinergic nervous system 

The cholinergic metabolism was closely associated with AD, indicated by decreased activity of Choline acetyl transferase (ChaT) 
and presynaptic cholinergic transmitter in the brain of AD patients [61,62]. Acetylcholine (Ach) is an important central neuro-
transmitter in neuromuscular junctions and associated with learning and memory behavior. Acetylcholinesterase (AChE) has a strong 
hydrolytic activity, which blocks signal transmission by hydrolyzing Ach. The disorder of synthesis, storage, and release of Ach in-
creases AChE accumulation and combination of AChE with Presenilin-1 (PS1), which result in cognitive impairment [63,64]. 

Ginsenoside Rb1 (5 mg/kg i.p. injection for 4 days) was proved to enhance ACh release in the hippocampus of SD rats after 
anticholinergic drug treatment, and choline absorption was boosted by promoting ACh metabolism in the central nervous system, thus 
alleviating the memory loss induced by anticholinergic medication [65]. Rg5 (5, 10, 20 mg/kg i.c.v. injection for 28 days) was found to 
improve cognitive dysfunction in streptozotocin-induced memory impaired rats by reducing AChE activity [16]. In mouse neuro-
blastoma N2a cells, ginsenosides Rd and Re (5 μg/mL for 48 h) increased the expression of ChAT by up-regulating micro-
tubule-associated protein (MAP2), nerve growth factor receptors p75, p21 and tropomyosin receptor kinase A (Trka)，which resulted 
in an increase in the level of ACh and vesicular acetylcholine transporters for cholinergic neurotransmission [66]. In a high-fat diet 
induced C57BL/6 mouse model, ginsenoside Re (5, 10, 20 mg/kg orally administration for 4 weeks) increased ACh concentration in 
brain tissue by blocking the c-Jun NH2-terminal kinase (JNK) pathway, and decreased AChE activity, showing a beneficial effect in 
cholinergic neurons and mouse cognitive function [67]. 

2.5. Ginsenosides resist oxidative stress 

Oxidative stress (OS) is one of the main causes of neurodegenerative disorders [68–70]. Aβ-40 and Aβ-42 induced Ca2⁺ signaling in 
astrocytes drives the oxidation process of decreased coenzyme II NADPH, resulting in excessive ROS and neurotoxicity [71]. On the 
other hand, excessive Aβ deposition aggravates OS and increases ROS production, which impairs permeability of the cell membrane, 
disrupts intracellular Ca2+ homeostasis, and causes the loss of mitochondrial function and neuronal cell death [72–75]. 

In Aβ25-35-induced PC12 cells and primary cultured cortical neurons, ginsenosides Rb1 (1 mM for 24 h) and Rg1 (20 μM for 24 h) 
not only reduced excessive ROS and lipid peroxidation, but also lowered lactate dehydrogenase release, malondialdehyde (MDA) 
production, and superoxide dismutase (SOD) activity, subsequently enhancing cell survival [76,77]. Ginsenoside Rg2 (0.2 mmol/L for 
24 h) demonstrated a neuroprotective effect in glutamate-induced PC12 cells by lowering excessive MDA and NO generation as well as 
intracellular free Ca2+ ions [78]. In D-galactosamine-induced rats, Rg3 (20 mg/kg/day i.p. injection for 60 days) increased the level of 
SOD and decreased the level of MDA, indicating that Rg3 alleviated the oxidative stress of AD rats by scavenging ROS. Rg3 improved 
the mitochondrial dysfunction of AD rats by regulating the abnormal energy metabolism and recovering the turbulent mitochondrial 
electron transport chain [79]. In Aβ-induced SH-SY5Y cells, Re (25 μM for 24 h) attenuated Aβ-induced ROS production and inhibited 
Aβ-triggered mitochondrial apoptosis by elevating the Bcl-2/Bax ratio, reducing the release of cytochrome c, and decreasing the 
caspase-3/9 ratio. Besides, Re activated Nrf2 (Nuclear factor erythroid 2–related factor 2), a regulator of cellular resistance to oxidants, 

S. He et al.                                                                                                                                                                                                              



Heliyon 10 (2024) e26642

7

Fig. 1. Network pharmacology revealed the targets characteristics of ginsenosides. (A) Venn diagram of targets in nine ginsenosides for AD. (B) The 
protein–protein interaction (PPI) network based on targets of nine ginsenosides for AD. (C) Nine ginsenosides-targets-AD network. 
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indicated a beneficial effect on anti-oxidative and neuroprotection [80]. 

2.6. Ginsenosides regulate Ca2⁺ homeostasis 

Metal ion homeostasis is critical for sustaining the function of the central nervous system. Cellular Ca2+ homeostasis regulates 
neural growth, differentiation, and synaptic plasticity, which are crucial for action potential and memory function. N-methyl-D- 
aspartate (NMDA) receptor locates in excitatory synapses and plays an important role in learning and memory. Aβ triggers NMDA- 
mediated Ca2+ influx and excitotoxicity in neurons, resulting in mitochondrial dysfunction, disruption of synaptic neurotransmis-
sion and cognitive impairment [81]. 

Ginsenoside Rg3 (10 μM for 2 days) regulates Ca2+ homeostasis by inhibiting NMDA receptors and shows a neuroprotective effect 
in rat primary hippocampal neurons [82]. In rat brain slices exposed to Aβ 25–35, ginsenoside Rg1 (20 μmol/L for 6 h) decreased 
hippocampal neuronal Ca2+ channel currents recorded by a whole-cell patch clamp by inhibiting the expression of mitogen-activated 
protein kinase (MAPK), thereby decreasing the neurotoxicity of Aβ induced by Ca2+ over influx [83]. What’s more, ginsenoside Rg1 (1, 
5 and 10 mg/kg orally administration for 8 weeks) improved diabetes-associated cognitive dysfunction by ameliorating neuronal Ca2+

overload and reducing Aβ generation in type 2 diabetic mice [84]. 

2.7. Ginsenosides inhibit cell apoptosis 

Caspase-3 is a member of the caspase family and plays an essential role in cell apoptosis [85]. Caspase-3 immunoreactivity was 
increased remarkably in neurons and astrocytes of AD patients, as well as in neurofibrillary tangles and senile plaques [86]. Aβ 
accumulation was shown to activate caspase-3, trigger neuronal cell apoptosis, and increase neurofibrillary tangles, which are con-
tributors to neuronal cell death and Aβ plaque formation in AD brain [87]. 

Ginsenoside Rg1 (12.5, 25, and 50 μmol/L for 24 h) was showed to attenuate isoflurane-induced caspase-3 activation in H4 human 
neuroglioma cells that express full-length APP (H4-APP cells) via inhibiting mitochondrial dysfunction, demonstrating a favor effect in 
neurotoxicity induced by APP [88]. In Aβ25-35 induced PC12 cells, ginsenoside Rg2 (20 mg/mL for 24 h) increased the level of B cell 
lymphoma protein 2 (Bcl-2) and down-regulated the level of Bcl-2 associated X protein (Bax) through the PI3K/AKT signaling 
pathway, thus inhibiting the activity of caspase-3 and decreasing the cells apoptosis [89]. Ginsenoside Rb1 (12.5, 25, and 50 mg/kg i.p. 
injection for 14 days) was proven to enhance cognitive and memory functions in Aβ1-40-induced rats by decreasing cleaved caspase-3 
expression and increasing Bcl-2 expression in the hippocampus [90]. 

3. Network pharmacology of ginsenosides 

Network pharmacology were used to explore the mechanisms of ginsenosides in AD. Combining traditional Chinese medicine 
(TCM) and network pharmacology should reveal the relationship between drugs, genes, and diseases. In this study, we identified and 
analyzed the core targets of the nine ginsenosides (Rb1, Rd, Re, Rg1, Rg2, Rg3, Rg5, Rh2 and CK) by using network pharmacology 
methods and found that their main pharmacological actions are anti-AD and neuroprotective effects. 

The target genes of nine ginsenosides were searched by the pharmacologic database and analysis platform of TCM System (TCMSP, 
https://tcmspw.com/tcmsp.php/). GeneCards human genome database and OMIM database (https://omim.org/) were used to 
identify the target genes of AD (Fig. 1A). Subsequently, a protein-protein interaction (PPI) network was produced for all target genes 
using STRING (https://cn.string-db.org/), and the PPI network cores were screened by Cytoscape software (Fig. 1B and C). 

As shown in the core of the PPI network, AKT1, EGFR, VEGFA, MTOR HSP90AA1 and STAT3 possessed high scores. AKT serine/ 
threonine kinase 1 (AKT1)-mediated signaling is crucial for the normal development and function of the nervous system. ROS- 
mediated oxidative modification of AKT1 contributes to synaptic dysfunction in AD, which is necessary for synaptic plasticity and 
maintenance [91]. Mammalian target of rapamycin (mTOR) signaling is critical to long lasting forms of synaptic plasticity, which is 
important to neurodegeneration [92]. Promoting AKT1-mTOR signaling at synapses could be a potential therapeutic strategy for AD. 
Vascular endothelial growth factors (VEGFs) are important in the growth and maintenance of both vascular and neural cells. VEGFA 
appears to protect against cognitive impairment in AD pathology, whose levels are reduced in both serum and CSF among AD cases 
[93]. Epidermal Growth Factor receptor (EGFR) regulates the morphology and function of astrocytes. Overexpressed EGFR is found in 
AD astrocytes [94]. Blocking EGFR activation in astrocytes could be beneficial for the treatment of neuroinflammation, such as AD. 
Heat shock protein 90 kDa alpha family class A member 1 (HSP90AA1) is decreased in AD and is negatively correlated with the ac-
tivities of β-secretases [95]. Signal transducer and activator of transcription 3 (STAT3) is a transcriptional factor that involved in 
regulation of synaptic plasticity and cognition [96]. Abnormal activation of STAT3 in the hippocampus of AD mouse model can induce 
astrogliosis, which could be an important therapeutic target in AD [97]. 

4. Conclusion and perspectives 

AD is a chronic neurodegenerative disorder, and a main cause of mortality and disability in the aging population. There are no ideal 
treatments for patients with AD to date, even though a lot of new drugs have been developed and applied in clinical practice recently. 
In this article, we reviewed studies on the neuroprotective effects of ginsenosides in different pathogenic processes of AD and have 
shown that ginsenosides, the main active component of ginseng, have a broad spectrum of pharmacological effects on the different AD 
pathogenic processes, including alleviation of Aβ deposition, tau hyperphosphorylation, neuroinflammation and neuron cell apoptosis, 
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regulation of the cholinergic system, resistance to oxidative stress, and modulation of Ca2+ homeostasis (Table 2 and Fig. 2). 
Ginsenosides Rb1 and Rg1 are considered the main ginsenosides of ginseng, which exhibit neuroprotective properties in anti- 

oxidative stress and anti-apoptosis [88,90]. Rb1 and Rg1 were also found to protect against Aβ-induced neurotoxicity and decrease 
the level of Aβ deposition [76,77]. Nevertheless, there are somewhat differences between the ginsenoside Rb1 and Rg1: ginsenoside 
Rb1 is prone to inhibit tau phosphorylation and reinforce the cholinergic systems, while ginsenoside Rg1 decreases neuronal Ca2+

influx and reduces neuroinflammatory responses [36,44]. 
The specific mechanism of ginsenosides in the treatment of AD has been unable to be clearly elucidated so far. Recent research on 

AD with ginsenosides is basically based on in vitro and in vivo studies. There was a clinical study to investigate the effect of total 
ginsenosides extracted from ginseng, which showed that treatment with ginsenosides complex for 12 weeks significantly improved the 
Mini-Mental State Examination (MMSE) and Alzheimer’s Disease Assessment Scale (ADAS) [98]. However, the clinical significance of 
this study was limited by its small sample size and open-label study design. Therefore, it is necessary to conduct clinical trials with a 
scientific design method to validate the effects of ginsenosides in the future. 

Network pharmacology results revealed multiple potential therapeutic targets of ginsenosides in AD such as AKT1, mTOR, EGFR 
and STAT3. Previous studies already demonstrated that ginsenosides act on these targets and exert beneficial effects in various dis-
eases. For instance, with regards to AKT and mTOR, one study showed that ginsenoside RK1 significantly alleviated radiation-induced 
intestinal epithelial cell apoptosis by suppressing the PI3K/AKT/mTOR pathway in the irradiated rats model [99]. In terms of targeting 

Table 2 
Neuroprotective mechanisms of ginsenosides in AD treatments.  

Ginsenoside Subject Dose Duration Targets Actions Reference 

Rg1 MaleAPP/PS1 mice i.p. injection (10 mg/kg) 30 days BDNF, TrkB, BACE1, Aβ Aβ deposition [23,24] 
SK-N-SH neuroblastoma 
cells 

50, 100 and 150 μM 30 min IL-1β, tau, p38 MAPK tau 
phosphorylation 

[36] 

NG108-15 mouse glial 
cells 

2, 4, 8, 16 and 32 μg/mL 24 h TLR3, TLR4, TNF-α, IFN-β Neuroinflammation [53] 

PC-12 cells 20 μM 24 h ROS, MDA, LDH, SOD Anti-oxidation [77] 
T2DM mice orally administration (1, 5 and 

10 mg/kg) 
8 weeks Ca2+, IP3, DAG, Aβ Ca2+, IP3, DAG, Aβ [84] 

SD rats 20 μmol/L 6 h Ca2⁺, MAPK Ca2⁺ homeostasis [83] 
H4-APP cells 12.5, 25, and 50 μmol/L 24 h Caspase-3 Anti-apoptosis [88] 

Rg2 PC12 cells 0.2 mmol/L 24 h MDA, NO Anti-oxidation [78] 
PC12 cells 20 mg/mL 24 h Caspase-3, Bcl2, BAX Anti-apoptosis [89] 

Rg3 Rat primary microglial 
cells 

25 μg/mL 8 h Aβ, MSR-A Neuroinflammation [49] 

D-Gal induced rat i.p. injection (20 mg/kg/day) 60 days SOD, MDA Anti-oxidation [79] 
Murine macrophage 
cells 

20 mM 16 h NO, iNOS, NLRP3 Neuroinflammation [59] 

primary hippocampal 
neurons 

10 μM 2 days Ca2⁺, NMDAR Ca2⁺ homeostasis [82] 

Rg5 STZ-induced rats i.c.v. injection (5, 10 and 20 
mg/kg) 

28 days IGF-1, BDNF, Aβ Aβ deposition [16] 

STZ-induced rats i.c.v. injection (5, 10 and 20 
mg/kg) 

28 days AChE Anticholinergic [16] 

Rb1 Rat primary cortical 
neurons 

40 μM 24 h p25, CDK5 tau 
phosphorylation 

[44] 

Male SD rats i.p. injection (5 mg/kg) 4 days ACh Anticholinergic [65] 
Female ICR mice orally administation (20 mg/ 

kg/day) 
4 months GSK-3β, PP2A tau 

phosphorylation 
[47] 

PC-12 cells 1 mM 24 h ROS, MDA, LDH, SOD Anti-oxidation [76] 
SD-rats i.p. injection (12.5, 25, and 50 

mg/kg) 
14 days Caspase-3, Bcl2 Anti-apoptosis [90] 

Rd OVX rats i.p. injection (10 mg/kg) 2 months α-secretase, sAPPα, Aβ, MAPK/ 
PI3K, ER 

Aβ deposition [25] 

APP/Tg mouse i.p. injection (10 mg/kg) 6 months IL-1β, IL-6, TNF-α, NF-κB, IL-10 Neuroinflammation [54] 
Male SD rats 
APP transgenic mice 

i.p. injection (30 mg/kg) 
i.p. injection (30 mg/kg) 

7 days 
6 months 

GSK-3β, PP2A tau 
phosphorylation 

[46] 

N2a cells 5 μg/mL 48 h ChAT, MAP2, p75, p21, Trka, 
VAChT, ACh 

Anticholinergic [66] 

Re N2a/APP695 cells 100 μM 24 h BACE1, PPARγ, Aβ Aβ deposition [26] 
N2a cells 5 μg/mL 48 h ChAT, MAP2, p75, p21, Trka, 

VAChT, ACh 
Anticholinergic [66] 

C57BL/6 mouse orally administration (5, 10, 
20 mg/kg) 

4 weeks ACh, AChE, JNK Anticholinergic [67]  

SH-SY5Y cells 25 uM 24 h Cytochrome c, caspase 3/9, Bal 
2/BAX, Nrf2 

Anti-oxidation [80] 

Rh2 Tg2576 mice i.p. injection (10 mg/kg) 8 weeks sAPPα, CTFα/β, APP, Aβ Aβ deposition [27] 
CK db/db mice orally administration (10 mg/ 

kg) 
10 weeks NLRP3, caspase-1, IL-1β Neuroinflammation [60]  
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EGFR, ginsenoside Re and Rf inhibited the production of pro-inflammatory factors and the expression of important cytokines in 
periodontitis by inducing the expression of heme oxygenase 1 via EGFR signaling pathway in human periodontal ligament cells [100]. 
And ginsenoside Rg1 demonstrated an anti-fatigue effect by impacting the metabolism of taurine and mannose 6-phosphate through 
downregulating EGFR expression in chronic fatigue syndrome rat model [101]. As for targeting STAT3, protopanaxadiol could inhibit 
the phosphorylation of STAT3 and its translocation from the cytosol to the nucleus in hepatocellular carcinoma cell lines [102]. 
Ginsenoside F2 could suppress the Y705 phosphorylation of STAT3, decrease its nuclear translocation and inhibit the growth of human 
hepatocellular carcinoma Hep G2 cells [103]. Additionally, in human pancreatic cancer cell lines BxPC-3 and AsPC-1, ginsenoside Rg3 
enhanced the efficacy of erlotinib to inhibit the proliferation of pancreatic cancer cells via induction of apoptosis and downregulation 
of the EGFR/PI3K/AKT pathway [104]. Therefore, future research should focus on the PPI networks of AKT1, EGFR, VEGFA, MTOR, 
HSP90AA1 and STAT3 to obtain more comprehensive understanding of ginsenosides in AD. 

Ginsenosides can be transformed into smaller deglycosylated through bioconversion methods by intestinal bacteria. But oral 
administration always accompanied with low bioavailability which may be due to the poor solubility of deglycosylated metabolites of 
ginsenosides [105–107]. Different ginsenosides displayed various bioavailability in human when administrating orally. Previous 
pharmacokinetic study found that ginsenoside Rb1, Rb2, Rc, and Rd were identified in human plasma after oral administration, 
whereas ginsenosides Re, Rh1, and Rg1 could not be found after repeated oral administration [108]. Another study showed that 
ginsenoside Rg1, Re, Rb1, and Rd had high bioavailability in rats. The inconsistence results from previous studies may be due to the 
different techniques (steaming, drying, and extracting) used in processing ginseng. Currently, limited pharmacokinetic studies also 
restrict the development of drug containing ginsenosides. Besides, the existence of the blood-brain barrier (BBB) is another limitation 
for ginsenosides in AD treatment. However, the encapsulation and nanoparticle technology showed a considerable effect in vivo, which 
can be developed extensively in future clinical research [109,110]. 

In this review, we summarized and discussed the mechanisms of ginsenosides by using database and network pharmacology tools to 
build target-disease networks and to analyze the PPI core network and pathways. Further investigations on the interaction mechanism 
of ginsenosides in AD using molecular biological techniques such as proteomics, genomics, metabonomics, and bioinformatics analysis 
are needed to provide more therapeutic evidence of ginsenosides. 
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Fig. 2. Protective mechanisms of ginsenosides in AD. Ginsenosides presented a wide range of therapeutic and biological activities, including 
alleviating Aβ deposition, decreasing tau hyperphosphorylation, regulating the cholinergic system, resisting oxidative stress, modulating Ca2+

homeostasis, as well as anti-inflammation and anti-apoptosis in neurons, respectively. 
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