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Aberrant glycosylation is a key feature of malignant transformation. Hypersialylation, the
enhanced expression of sialic acid-terminated glycoconjugates on the cell surface, has
been linked to immune evasion and metastatic spread, eventually by interaction with
sialoglycan-binding lectins, including Siglecs and selectins. The biosynthesis of tumor-
associated sialoglycans involves sialyltransferases, which are differentially expressed in
cancer cells. In this review article, we provide an overview of the twenty human
sialyltransferases and their roles in cancer biology and immunity. A better
understanding of the individual contribution of select sialyltransferases to the tumor
sialome may lead to more personalized strategies for the treatment of cancer.
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INTRODUCTION

Cancer remains one of the leading cause of death worldwide (1). During their development, cancer
cells undergo important genetic and structural modifications (2). A well-known feature of
malignant transformation is aberrant glycosylation (3, 4). Altered tumor glycosylation was
initially described in the mid-twentieth century (5–7), and has since been studied in-depth with
regard to its role in tumor progression. Tumor-specific glycosylation has been linked to many
processes involved in oncogenesis, such as tumor growth and progression, invasion, metastasis,
angiogenesis, chemoresistance and tumor immunity (3, 4, 8–12).

Commonly found glycosylation changes in cancer cells include hypersialylation, incomplete
synthesis, truncation of O- and N-glycans, altered branching, and even xenoglycosylation (3, 13).
Hypersialylation, referring to the increased density of sialic acid-containing glycans (sialoglycans), is
one of the most common features of altered tumor glycosylation (3). Overexpressed sialoglycans
include sialylated derivatives of Lewis antigens (sialyl-Lewis X [sLeX]), sialyl-Lewis A [sLeA]),
which as ligands of selectins are long known to promote tumor metastasis (3, 14). Accumulating
evidence suggests that distinct sialoglycans act as glycoimmune checkpoints that suppress anti-
tumor immune reactivity by engagement of immunoregulatory Siglec receptors on myeloid and
lymphoid immune cells (12, 15–17). Indeed, ligands of Siglecs are broadly expressed on primary
human cancer cells and cell lines of different origin (18).

In humans, twenty different sialyltransferases (SiaTs) are involved in the biosynthesis of glycans
and each exhibits distinct characteristics and preferences such as for substrates and glycosidic
linkages. The expression levels of individual SiaTs varies significantly between different types of
org December 2021 | Volume 12 | Article 7998611

https://www.frontiersin.org/articles/10.3389/fimmu.2021.799861/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.799861/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.799861/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:stephan.vongunten@pki.unibe.ch
https://doi.org/10.3389/fimmu.2021.799861
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.799861
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.799861&domain=pdf&date_stamp=2021-12-17


Hugonnet et al. Sialyltransferases in Cancer
tumors (19), but also within tumors of the same origin (20).
While the overexpression of certain sialyltransferases in cancer is
associated with tumor hypersialylation and adverse outcome,
such positive correlation is not found for all sialyltransferases
and may also depend on the type of tumor (see below). Given the
significance of distinct sialylation patterns for cancer biology and
immunity, in this review article we provide an overview on
expression and roles of individual sialyltransferases in cancer.
SIALIC ACIDS AND SIALYLTRANSFERASES

Sialic acids (neuraminic acids) are nine-carbon (C1-9)
monosaccharides most commonly found at a terminal position
on the outer end of glycoconjugates on many glycoproteins and
glycolipids synthesized by living cells (21). Their prominent
position on the cell surface glycans of mammalian cells keeps
them at the forefront of cellular processes in health, but also in
cancer biology and immunity (22–25).

The most prevalent sialic acids in mammals comprise N-
acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid
(Neu5Gc) monosaccharides (Figure 1A). 2-keto-3-deoxy-D-
glycero-D-galacto-nononic acid (Kdn) sialic acids are more
widespread in lower vertebrates (26) (Figure 1B). When one
or more hydroxyl groups of Neu5Ac, Neu5Gc or deaminated
neuraminic acid (Kdn) are substituted with acetyl, methyl or
sulfate residues, more than 50 derivatives with a high diversity
are formed (21, 27). As opposed to most mammals, humans do
not naturally express Neu5Gc due to the deletion of the CMAH
(Cytidine monophospho-N-acetylneuraminic acid hydroxylase)
gene, which is responsible for the conversion of Neu5Ac into
Neu5Gc (28) (Figure 1A). It is thought that the deletion of this
gene could have provided selective advantages during human
evolution and eventually played a role in brain development and
running endurance in humans (29, 30). Remarkably, Neu5Gc is
often expressed in glycoconjugates of human tumors (13, 31, 32).
Due to altered metabolic pathways tumor cells are able to
Frontiers in Immunology | www.frontiersin.org 2
incorporate non-human Neu5Gc (3, 13, 33, 34), which humans
can retrieve from foods such as red meat (35, 36).

The sialic acid metabolism involves enzymes that catalyze the
biosynthesis and transfer of sialic acid to a glycoconjugate, as well
as the removal and degradation of sialic acid (37) (Figure 2).
Sialic acid biosynthesis starts with UDP-GlcNAc (uridine
diphosphate N-acetylglucosamine) produced via the
hexosamine pathway, which is converted to ManNAC-6-P (N-
Acetyl-mannosamine 6-phosphate) by UDP-GlcNAc 2-
epimerase/ManNAc-6 (GNE) in a two-step process (38). Then,
Neu5Ac synthase (NANS) generates 9-phosphorylated forms of
sialic acid (Neu5Ac-9-P), which is then dephosphorylated by
Neu5Ac-P-phosphatase (NANP) to generate free sialic acid
(Neu5Ac) in the cytoplasm (39). Next, cytosolic Neu5Ac enters
the nucleus and is activated by coupling cytidine monophosphate
(CMP) via the action of cytosine 5’-monophosphate N-
acetylneuraminic acid synthetase (CMAS) to produce CMP-
Neu5Ac (40). CMP-Neu5Ac is used by sialyltransferases in the
Golgi apparatus for sialylation of glycoconjugates. Finally,
sialylated glycoproteins and glycolipids are exported to the cell
membrane or secreted.

On the other hand, sialic acid can also be released by
neuraminidase (also called sialidase) from sialylated
glycoconjugates (40). There are 4 mammalian neuraminidases
with different cellular localizations: the lysosomal neuraminidase
NEU1 (41), the cytosolic neuraminidase NEU2 (42), the plasma
membrane-associated neuraminidase NEU3 (43) and the
lysosomal or mitochondrial membrane-associated neuraminidase
NEU4 (44). The released sialic acids can be reutilized in the
biosynthesis pathway (40). Hypersialylation, as occurring in
malignancy, is closely associated to an imbalance between sialic
acid biosynthesis and desialylation (45).

Human SiaTs comprise a set of 20 glycosyltransferases which
all use cytidine monophosphate N-acetylneuraminic acid (CMP-
Neu5Ac) as an activated sugar donor for the transfer of sialic
acids to the terminal glycosyl group of glycoproteins and
glycolipids as acceptor molecules (46). SiaTs catalyze the
A

B

FIGURE 1 | Sialic acids. Sialic acids are nine-carbon monosaccharides. (A) The two main mammalian sialic acids N-acetyl neuraminic acid (Neu5Ac) and N-
glycolylneuraminic acid (Neu5Gc) are shown. Neu5Gc is derived from Neu5Ac and differs by one oxygen atom in the N-glycolyl group, which is added by the enzyme
cytidine monophosphate N-acetylneuraminic acid hydroxylase (CMAH) in the cytosol. Humans have an inactivating mutation of the CMAH gene and therefore they
lack this enzymatic activity. (B) Kdn (2-keto-3-deoxy-D-glycero-D-galacto-nononic acid), which is more common among lower vertebrates and bacteria (see text).
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formation of different glycosidic linkages, a2,3-, a2,6-, or a2,8-
linkage, and also vary in their acceptor specificities. Accordingly,
SiaTs can be grouped into four different families: ST3Gal,
ST6Gal, ST6GalNAc, and the ST8Sia (Figure 3). Even though
SiaTs share the same sugar donors, they present specific substrate
specificity, although with some degree of redundancies. Indeed,
enzymatic analysis conducted in vitro with recombinant
enzymes revealed that one linkage can be synthesized by
multiple enzymes (47, 48). SiaTs share conserved sialylmotifs,
including ‘L’- (for long), ‘S’- (for short), ‘III’ (for being third
position in sequence), and ‘VS’- (for very small) motifs (49). The
L-motif is thought to mediate the binding of the donor substrate,
the III- and VS-motifs bind the acceptor substrate, and the S-
sialylmotif contributes to both binding of donor and acceptor
substrates (49). A disulfide bond between the L- and S-motifs
bring all sialylmotifs closer together to facilitate interactions with
substrates (49).

SiaTs have been shown to be primarily restricted to medial-
and trans-cisternae of the Golgi apparatus, with some being
present in the trans-Golgi network (50), but some SiaTs are also
expressed as post-Golgi and secreted enzymes (51, 52), and SiaT
activity was also reported to occur at the cell surface of monocyte-
derived dendritic cells (53). Their expression pattern among
Frontiers in Immunology | www.frontiersin.org 3
tissues is diverse, but some SiaTs are preferentially expressed at
distinct sites. For specific protein expression of SiaTs the Human
Protein Atlas (54) can be consulted (proteinatlas.org).

Increased activity or expression of SiaTs leads to the
hypersialylation of cell surfaces which is one of the most
common glycosylation changes that occurs in tumors; it entails
the enhanced express ion of s ia l ic ac id-terminated
glycoconjugates (3). Many studies show elevated levels of SiaTs
in the plasma of cancer patients (55–58). The relative diversity
and complexity of sialylation patterns in tumors represents a
promising area of research, knowing that each SiaT is involved in
the synthesis of various structures, therefore, broadly impacting
cancer development in various ways, which will be discussed in
the following sections.
ST3Gal FAMILY

Six b-galactoside a2,3-sialyltransferases belong to the ST3Gal
family in humans and these enzymes transfer sialic acid residue
in an a2,3-linkage to terminal galactose (Gal) residues present on
glycolipids or glycoproteins (59, 60). Members of this family are
involved in the synthesis of gangliosides (ST3Gal2 and 5), and
FIGURE 2 | Sialic acid metabolism in humans. CMP-Neu5Ac mostly occurs in the cytoplasm except of the CMP-sialic acid synthase (CMAS)-mediated reaction
which takes place in the nucleus. UDP-GlcNAc-2 epimerase (GNE) synthesizes N-acetylmannosamine (ManNAc) in two steps. Then, Neu5Ac synthase (NANS)
generates ManNAc-9-P, which is then dephosphorylated by Neu5Ac-P-phosphatase (NANP) to generate free sialic acid in the cytoplasm. The free sialic acid can
enter the nucleus to be linked to CMP (cytidine-5’-monophosphate). The CMP-Neu5Ac is transferred to the Golgi apparatus via SLC35A1 transporter (solute carrier
family 35 member A1), where it is used as a substrate for sialylation by different sialyltransferases (SiaT). Sialylated glycoconjugates are then exported to the cellular
membrane or secreted. They can also be broken down by various neuraminidases (NEU1-4) present in different cellular localizations. The released sialic acid can
reenter the biosynthesis pathway. Illustration by Aldona von Gunten.
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the tumor-associated sialyl-T (ST) (ST3Gal1) and sialyl-Lewis
(ST3Gal3, 4, and 6) antigens (Figure 4).

ST3Gal1
ST3Gal1 is known as the major human SiaT to synthesize sialyl-
T (ST) antigen from the T antigen Galb1-3GalNAc. While the T
and ST antigens are found on normal O-glycans such as in
hematopoietic cells (4), ST3Gal1 overexpression is found in
different types of malignancies (61–65), and has been linked to
poor prognosis (65, 66). MUC1-ST, a glycoform of the mucin
MUC1 carrying the ST antigen found in breast cancer patient
serum (67), through Siglec-9 engagement, triggers the
differentiation of a unique tumor-associated macrophage
(TAM) subtype that has been associated with poor prognosis
in breast cancer (68). Recently, Rodriguez et al. identified
ST3Gal1 as a main contributor to the synthesis of Siglec-7
ligands in pancreatic cancer cells, which by engagement of the
sialic acid-Siglec axis may shift TAM differentiation towards a
more suppressive phenotype (69). Overexpression of ST3Gal1
has been shown to promote tumor cell migration and metastasis
(65, 70–72), which may involve epidermal growth factor receptor
(EGFR) signaling (72), or receptor tyrosine kinase AXL
dimerization/activation (71). Moreover, ST3Gal1 seems to also
play a role in TGF-b1-induced epithelial-mesenchymal
transition (EMT) in ovarian cancer cells (70). ST3Gal1 is also
enrolled in promoting resistance to anti-cancer effects of agents,
Frontiers in Immunology | www.frontiersin.org 4
such as of adriamycin directed against chronic myeloid leukemia
(CML) cell lines (73), paclitaxel against ovarian cancer cells (70),
and tamoxifen and/or vandetanib against breast cancer cells (66).
The exact mechanisms of ST3Gal1-mediated resistance to
chemotherapeutic drugs remain to be deciphered.

ST3Gal2
In vivo genetic experiments showed that ST3Gal2 is a key
enzyme mediating a2,3 sialylation of gangliosides in the brain
of mice, in particular of GD1a and GT1b, eventually with
support of ST3Gal3 (74). ST3GAL2 mRNA expression was
found to be associated with advanced stage and poor clinical
outcome in cancer (75, 76). Increased mRNA expression of
ST3GAL2, as well as ST3GAL5 and ST8SIA1, was also observed
in breast cancer stem cells which is eventually linked to increased
expression of gangliosides in these cells (77). ST3Gal2 is a rate-
limiting enzyme for SSEA-4 (sialyl-glycolipid stage-specific
embryonic antigen 4) synthesis (78), which was shown to be
limited in normal tissues but highly expressed in glioblastoma
cells (79) and has been associated with epithelial-mesenchymal
transition (EMT) (76), loss of cell-cell interactions and
adaptation of a migratory phenotype (80). Furthermore, a
positive correlation between SSEA4 and chemoresistance was
reported (76). Notably, gangliosides are differentially recognized
by the immunoregulatory receptors Siglec-7 and -9 receptors
(81, 82).
A

B

FIGURE 3 | Members of the four families of sialyltransferases catalyze different glycosidic linkages. (A) The four families of sialyltransferases as categorized
according to restricted glycosidic linkage and acceptor specificity. Indicated are the transfer of activated CMP-Neu5Ac onto Gal, GalNAc or Neu5Ac moieties of
carbohydrate chains (-R), such as on glycoproteins or glycolipids. (B) Examples of glycosidic a2,3, a2,6, and a2–8 -linkages involving the hydroxyl group at carbon
atom 2 of Neu5Ac sialic acid with galactose (left, middle) or another sialic acid (right). CMP, cytidine monophosphate; Neu5Ac, N-acetylneuraminic acid; Gal,
galactose; GalNAc, N-acetylgalactosamine.
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ST3Gal3
ST3Gal3 is involved in the synthesis of sLeA (also known as
carbohydrate antigen 19-9 [CA19-9]) and sLeX, which are
expressed in different types of cancer (83–87), and have been
linked to cancer progression and poor prognosis (88), eventually
by selectin-mediated invasion and metastasis of tumor cells
(14, 89). Indeed, the expression of ST3GAL3 in breast cancer
was found to be associated with poor prognosis (90). ST3Gal3
has also been associated with paclitaxel and cisplatin resistance in
ovarian cancer cells (91, 92).
Frontiers in Immunology | www.frontiersin.org 5
ST3Gal4
ST3Gal4 is involved in the biosynthesis of the tumor-associated
antigen sLeX (89, 93). ST3GAL4 expression correlates with
enhanced metastatic potential and poor prognosis in some
types of cancer, including pancreatic and gastric cancer (94,
95), which may involve selectin-dependent adhesion through
sLeX (87). Recently, ST3Gal4 was found to be responsible for the
generation of ligands for the immunoregulatory receptor Siglec-9
in pancreatic cancer cell lines (69), and Siglec-7 and -9 ligand in
HEK293 cells (96), indicating its potential role in the generation
FIGURE 4 | Human sialyltransferases. The twenty human sialyltransferases listed according to their homology (60). Select generated oligosaccharides, preferred
substrates and glycan specificities of individual sialyltransferases are shown.
December 2021 | Volume 12 | Article 799861
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of glyco-immune checkpoints. However, overexpression of
ST3GAL4 appears not to be a universal feature of malignancy
as downregulation of the enzyme or specific variants has been
found for instance in premalignant and malignant cervical
tissues (97) and renal cell carcinoma (98). Tissue-specific
transcriptional regulation involving alternative splicing and
promoter utilization has been described for alpha2,3-
sialyltransferases (99), and may explain the differential
expression in various types of malignancies.

ST3Gal5/GM3 Synthase
ST3Gal5 initiates the biosynthesis of many downstream
gangliosides (100), and is also known by the name “GM3
synthase”. GM3, the simplest ganglioside, is involved in
various processes such as transmembrane signaling through
the regulation of growth receptor activities and in integrin-
mediated cell adhesion and motility (101, 102). Furthermore,
GM3 has been shown to be recognized by inhibitory Siglec-9
(103). However, ST3Gal5 also mediates the synthesis of GM4
(104). In a breast cancer model, GM3 synthase knockout mice
exhibited enhanced tumor growth and angiogenesis (105). In
bladder cancer, the downregulation of ST3Gal5 was associated
with reduced patient survival (106). Such experimental evidence
suggests a beneficial role of GM3 synthase and certain products,
such as distinct a-, b- and c-series gangliosides eventually, in at
least some tumors. However, given that GM3 synthase acts at an
early stage of ganglioside biosynthesis, it remains unclear which
ganglioside products and derivatives are effective in such
experimental models and differences may exist among different
types of tumors.

ST3Gal6
Like ST3Gal3 and ST3Gal4, ST3Gal6 mediates the sialylation of
LeX antigen (83). The resulting sLeX antigen interacts with
selectins, such as during the initial tethering before
extravasation of cells (107). Indeed, ST3Gal6 was shown to
have a crucial role in the generation of selectin ligands in mice
(108). High expression of ST3Gal6 in multiple myeloma (MM)
patients is associated with poor prognosis (109). Knockdown of
ST3GAL6 resulted in a reduced surface expression of a-2,3-
linked sialic acid and sLeX on MM cell lines and also reduced the
homing and engraftment of malignant cells to the bone marrow
niche in vivo (109). Furthermore, mice injected with ST3GAL6
knockdown MM cells demonstrated a decreased tumor burden
and prolonged survival. Higher expression of Lewis antigens in
neuroblastoma MYCN-amplified cell lines and patient samples
could be a consequence of the overexpression of SiaTs, including
ST3Gal3/4/6, compared to MYCN-non-amplified counterparts
(110). Furthermore, high-grade glioma cell lines exhibit higher
expression of terminal sLeX and of the SiaTs ST3Gal3/4/6
compared to low-grade glioma cells (111). ST3Gal6 is also
upregulated in human hepatocellular carcinoma (HCC) tissues,
and correlates with cell proliferation, migration and invasion
ability in HCC cell lines (112). Similar observations were made in
urinary bladder cancer with a positive correlation between
increased ST3GAL6 expression and tumor stage, grade as well
as poor outcome (113).
Frontiers in Immunology | www.frontiersin.org 6
ST6Gal FAMILY

ST6Gals preferentially link sialic acids in an a2-6 linkage to
galactose residues of Galb1-4GlcNAc-R on N-glycans (59, 60).
This family contains two enzymes ST6Gal1 and ST6Gal2, and is
thus the smallest SiaT family.

ST6Gal1
ST6Gal1 is the main sialyltransferase contributing to the addition
of a-2,6-linked sialic acid to Galb4GlcNAc chains, usually
present in N-linked chains (59). ST6Gal1 is frequently
overexpressed in many solid tumors, such as pancreatic,
gastric, cervical, ovarian, brain and colorectal cancers and
cancer cell lines (114–120). Indeed, this enzyme has been
extensively investigated in regard to cancer research [for a
review see (121)]. High expression of ST6GAL1 in cancer
correlates with worse tumor grade (90, 122), advanced stage of
disease (120), and poor prognosis (119, 120, 122). While a
greater number of experimental studies support an oncogenic
role of ST6Gal1 (discussed below), few reports propose an
inverse role of this enzyme based on evidence from select in
vitro and in vivo experimental models (123–125). Interestingly,
while ST6Gal1 mRNA expression was found to be increased in
papillary non-invasive bladder tumors, expression of this enzyme
was found to be decreased in muscle-invasive bladder cancer due
to epigenetic inactivation of ST6GAL1 by promoter
methylation (126).

Interestingly, ST6Gal1 was shown to protect tumor cells from
hypoxic stress, eventually by enhancing the expression of
hypoxia-inducible factor-1a (HIF-1a) (127). ST6Gal1 activity
has been shown to promote EMT in cell lines of different
histological origin (128–130), eventually involving E-cadherin
transcription and turnover, as well as PI3K/Akt signaling (128).
Silencing of ST6Gal1 in prostate cancer cell lines resulted in
decreased expression of components of the PI3K/Akt and b-
catenin signaling pathways, resulting in reduced proliferation,
migration and invasion (122). Furthermore, ST6Gal1 expression
is associated with nonmalignant stem and progenitor cells, but
also with stemness in cancer and may drive cancer stem cell
(CSC)-like characteristics (131–136). Furthermore, high
expression of ST6GAL1 in CSCs could eventually promote
chemo-resistance (137). Indeed, ST6Gal1 has been linked to
resistance to a number of agents including gemcitabine (138),
cisplatin (139), trastuzumab (140, 141) or gefitinib (142), latter of
which appears to involve sialylation and activation of
EGFR (142).

Several investigators observed that a2-6 sialylation by
ST6Gal1 activity may protect cells from cell death, and
eventually block homeostatic epithelial cell apoptosis in cancer
(133). ST6Gal1-mediated sialylation prevents apoptosis induced
by tumor necrosis factor receptor 1 (TNFR1) (143), eventually by
restraining the receptor on the cell surface (144). Similarily, a2-6
sialylation of the death receptor FAS by ST6Gal1 prevents
receptor activation by blocking its internalization and the
subsequent formation of death-inducing signaling complex and
activation of apoptotic caspase-dependent signaling pathways
(145). Furthermore, sialylation of b1 integrins by ST6Gal1
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conferred protection against galectin-3-induced apoptosis in a
cancer cell line (146).

Recently, using gene engineered HEK293 cells, ST6Gal1 was
found to be partially responsible for the generation of ligands for
the immunoregulatory receptor Siglec-7 (96), indicating its
potential role in the generation of glyco-immune checkpoints.

ST6Gal2
ST6GAL2 is predominantly expressed in the adult brain and fetal
tissues, and to a lesser extent in the thyroid gland, small intestine,
colon, and testis (147, 148). While relatively few studies have
investigated the expression and role of ST6GAL2 in tumors,
overexpression of this enzyme was found in select types of
cancer, including breast cancer (149) and follicular thyroid
carcinoma (FTC) (150). In breast cancer ST6GAL2 expression
associated with poor prognosis for patients (149). Moreover,
silencing of ST6GAL2 in breast cancer cells resulted in reduced
xenograft tumor growth in vivo (149). Furthermore, this study
revealed that ST6GAL2 silenced cell lines exhibited reduced
adhesion and invasion properties in vitro, with downregulation
of several focal adhesion molecules (ICAM-1, VCAM-1) and
metastasis pathways proteins (MMP2, CXCR4). Similarly,
silencing of ST6GAL2 in FTC reduced tumor growth in an in
vivo model (150). Findings from this study suggest that the
overexpression of ST6GAL2 leads to the suppression of the
Hippo signaling pathway, a tumor suppressor pathway that
regulates cellular differentiation and proliferation by inhibiting
YAP and TAZ transcription co-activators (151–153).
ST6GalNAc FAMILY

The six SiaTs of the ST6GalNAc family catalyze the glycosidic
linkage of sialic acids to N-galactosamine (GalNAc) residues
found on O-glycosylated proteins or glycolipids in an a2-
6 linkage.
ST6GalNAc1
ST6GalNAc1 catalyzes the generation of sialyl-Tn (sTn) antigen
from Tn antigen (154). sTn is a well-known tumor-associated
carbohydrate antigen (TACA) overexpressed in multiple cancers
(155–157), and has been linked to poor prognosis (158–160).
Expression of the biosynthetic enzyme ST6GalNAc1 has also
been directly associated with poor prognosis (161). Indeed,
overexpression of ST6GalNAc1 in gastric, breast, prostate and
ovarian cancer cell lines and tissues has shown to induce the
expression of the sTn antigen (155, 157, 161–166). The
expression of ST6GALNAC1 can also be induced by cytokines,
such as IL-13 and CCL17 secreted by M2 macrophages co-
cultured with colon cancer cells, which may result in higher
expression of sTn antigen including on MUC1 (167).

Downregulation of ST6GALNAC1 via hyper-methylation and
loss of heterozygosity (LOH) was observed in esophageal
carcinoma in tylosis, an inherited epithelial disorder (168).
Interestingly, in prostate cancer a splice variant of ST6GalNAc1
is induced by androgens, which consists of a shorter isoform that
Frontiers in Immunology | www.frontiersin.org 7
exhibits sialyltransferase activity yet with slightly different
properties (157).

In experimental models, overexpression of ST6GalNac1
reduced cell-cell aggregation and increased extracellular matrix
(ECM) adhesion, migration and invasion in vitro (163, 166), and
promoted tumor growth and metastasis in vivo (163, 164) (165).
Furthermore, ST6GalNAc1 activity might foster cancer cell
stemness, as expression of CSC markers and tumor sphere
formation capability were increased in ST6GalNAc1
overexpressing colorectal or ovarian cancer cell lines (161,
164). Stemness through the generation of sTn seems to involve
Akt pathway signaling (161, 164), eventually in cooperation with
Galectin-3 (161).

The immunoreceptor Siglec-15 was shown to recognize sTn
antigen (169, 170), and to depend on ST6GalNac1-mediated
biosynthesis (170). Engagement of Siglec-15 by binding to
tumor-associated sTn antigen resulted in enhanced TGF-b
secretion from monocytes/macrophages following DAP12-Syk
signaling (171). Notably, a recent study showed that
macrophage-associated Siglec-15 suppressed T cell responses in
vitro and in vivo, eventually establishing a mechanism for
immune evasion in the TME (172).

ST6GalNAc2
ST6GalNac2 synthesizes sialyl-6-T antigen from T antigen, and
to a lesser extent it sialylates the Tn antigen (154, 166). High
transcriptional expression of ST6GALNAC2 correlated with poor
prognosis in colorectal cancer (173), and was found to be
associated with higher histological tumor grade, lymph node
metastasis, and advanced clinical stage in FTC (174).
ST6GalNAc2 has been proposed to enhance invasive properties
of cancer cell lines via PI3K/Akt pathway signaling (174, 175).
However, the role of ST6GalNac2 in cancer appears not to be
unequivocally detrimental as Murugaesu and colleagues
identified ST6GalNAc2 as a novel metastasis suppressor in
mouse and human breast cancer models (176). Indeed, high
levels of ST6GALNAC2 expression correlated with increased
survival in patients with breast cancer (176). The authors showed
that silencing of ST6GALNAC2 modified the cell surface O-
glycome resulting in an increase in unmodified T antigen/core 1
antigen and a reduction in the disialyl core 1 antigen. Such
altered glycosylation facilitated the binding of the soluble lectin
galectin-3 and resulted in increased tumor cell aggregation,
pulmonary tumor cell retention and metastatic burden in vitro
or in vivo.

ST6GalNAc3
ST6GalNAc3 uses a2,3-sialylated ganglioside GM1b as a
substrate to synthesize the ganglioside GD1a. In healthy
individuals, this enzyme is highly expressed in brain and
kidney (177). Aberrant promoter hypermethylation of
ST6GALNAC3 was found in prostate cancer tissue samples
(178), but it remains to be shown whether transcriptional
silencing of this gene influences the development or
progression of prostate cancer. However, ST6GalNAc3 seems
to promote the proliferation of A549 non-small cell lung cancer
cells through enhanced expression of transferrin receptor protein
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1 (TFR1) (179), which is important for cell proliferation and
survival (180).

ST6GalNAc4
ST6GalNAc4 mediates the synthesis of disialyl-T antigen from
sialyl-T antigen (O-glycan), and also generates the disialyl-
lactotetraosyl-ceramide GD1a from sialyl-lactotetraosyl-
ceramide GM1b (gangliosides) yet to a lesser degree than
ST6GalNAc3 (181, 182). Upregulation of ST6GalNAc4 and
downregulation of the core 2 N-acetylglucosaminyltransferase
C2GnT2 (Gcnt3) were shown to be key in conferring tumor cell
glycosylation changes that contribute to metastatic activity in a
primary lung cancer model, eventually by preserving
presentation of the T-antigen and adherence to galectin 3
(183). In another study, higher expression of ST6GALNAC4
was observed in FTC tissues compared to transitional tissues
and silencing of this enzyme led to decreased invasive ability in
vitro and in vivo (184).

ST6GalNAc5/GD1a Synthase
ST6GalNAc5 transfers a sialic acid residue onto GM1b to form
GD1a (185) and this enzyme is also referred to as GD1a synthase
(186). Indeed, transfection of the human ST6GalNAc5 cDNA into
a breast cancer cell line resulted in the expression of GD1a (187).
A study investigating germline single-nucleotide polymorphisms
indicates that specific SNPs of ST6GALNAC5 determine
susceptibility for colorectal brain metastasis and overall survival
(188). Silencing of ST6GALNAC5 in breast cancer cells led to
decreased metastasis in a murine model in vivo, and in an in vitro
model using human umbilical vein endothelial cells (HUVEC)
silenced cells exhibited reduced blood brain barrier (BBB)
transmigration activity (189). As opposed, a more recent study
showed that ST6GalNac5 overexpression in breast cancer cells
leads to a decreased adhesion and no change in transmigration
compared to controls in a human BBB model using CD34+
hematopoietic stem cell derived endothelial cells co-cultivated
with brain pericytes (190),. The authors of this study suggested
that differences in the used BBB models may account for these
divergent observations.

ST6GalNAc6
ST6GalNAc6 catalyzes the synthesis of a-series gangliosides,
including GD1a, GT1aa and GQ1ba (191), globo-series
glycosphingolipids (GSL) (192, 193), and disialyl LeA (194,
195). In humans, ST6GalNAc6 is widely expressed in different
organs (193). In human colon cancer ST6GalNAc6 is
downregulated compared to nonmalignant epithelium, which
is paralleled by a decrease in disialyl LeA expression and a
concomitant increase in sialyl LeA (195). Such downregulation
of ST6GalNAc6 occurs already in early-stage colon cancer and
has been associated with epigenetic silencing (196). The related
glycan change from disialyl LeA to sialyl LeA may increase E-
selectin binding activity during metastasis and support
inflammation-driven carcinogenesis by reduced binding to
immunoregulatory Siglec-7 (195) . mRNA levels of
ST6GalNAc6 have also been found to be reduced in human
kidney tumor lesions as compared to healthy tissue from the
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same patient (193). However, ST6GalNAc6 may also enhance
the metastatic capability of tumor cells, as silencing of
ST6GalNAc6 in a renal cell carcinoma (RCC) cell line,
expressing lower levels of DSGb5, exhibited decreased
migration, but not proliferation, in vitro (192). Siglec-7 binds
to the RCC cell line ACHN in a DSGb5-dependent fashion and
silencing of ST6GalNAc6 led to reduced surface binding of a
Siglec-Fc chimera protein in these cells (197). These
ST6GalNAc6 knockdown cells were more susceptible to
cytotoxicity mediated by sialidase-treated NK cells in vitro,
suggesting that this sialyltransferase has the potential to
generate glyco-immune checkpoints at least in some types
of tumors.
ST8Sia FAMILY

The ST8Sia family catalyzes the transfer of sialic acid to another
sialic acid in an a2,8-linkage (60). Oligosialic acid chains display a
chain of 2-7 sialic acids, whereas polysialic acid (polySia) chain
exhibit a chain of eight or more polysialic acids (198). ST8Sia2 and
4 are also called polysialyltransferases as they participate in
extending linear chains of polysialic acids (60). ST8Sia3 also
participate in polysialylation, but with less efficacy than ST8Sia2
and 4 (199). ST8Sia1 (GD3 synthase), ST8Sia3, ST8Sia5 and
ST8Sia6 are involved in the synthesis of sialylated glycolipids (60).
ST8Sia1/GD3 Synthase
ST8Sia1 is also known as GD3 synthase (GD3S), as it catalyzes the
transfer of a sialic acid residue onto GM3 to give raise to the b-
series ganglioside GD3, which can eventually be further processed
for the biosynthesis of other b-/c-series gangliosides (59). GD3S
expression positively correlates with increasing grades of
astrocytomas and is highly expressed in glioblastoma (200). In
metastatic melanoma high ST8Sia1 expression is associated with
detrimental outcome and higher expression in metastatic lesions,
particularly in the brain (201). Recent studies analyzing data from
The Cancer Genome Atlas (TCGA) showed an association of high
ST8Sia1 expression levels in breast cancer with poor patient
survival (202–204), which is eventually linked to epigenetic
hypomethylation of the ST8SIA1 gene (204). As opposed, in
another study higher expression of ST8Sia1 mRNA in estrogen
receptor (ER) positive breast cancer patients has been associated
with higher disease free survival, while no significant difference
was found in ER negative patients (205). However, a growing body
of evidence supports the notion that ST8Sia1 is associated with
tumor growth and progression. In a murine model of glioma,
ST8Sia1-deficient mice exhibited attenuated glioma progression,
lower-grade pathology and prolonged lifespan (206).
Furthermore, in a breast cancer xenograft model silencing of
ST8Sia1 led to reduced tumor growth and triptolide-mediated
downregulation of ST8Sia1 inhibited tumor growth and
prolonged survival (207). ST8Sia1 overexpression has been
shown to bypass the need of serum for cell growth and to
enhance migratory properties of breast cancer and glioma cell
lines (208, 209). Inhibition of ST8Sia1 function by shRNA or
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triptolide affected the initiation and maintenance of EMT and
ST8Sia1 expression correlated with activation of the c-Met
signaling pathway enhancing stemness and metastatic properties
(203). The implication of ST8Sia1 in stemness with c-Met
signaling downstream of this enzyme was also found in
experimental models of glioblastoma (200). ST8Sia1 activity has
also been linked to oncogenic signaling through Wnt/b-catenin or
Akt, Erk, and Src kinases (206, 210), which eventually may confer
chemoresistance (210). GD3 has been identified as a ligand for
Siglec-7 (81, 82), and ST8Sia1-transfected P815 cells with high
surface expression of GD3 exhibited resistance to NK cell-
mediated cytotoxicity due to Siglec-7-dependent inhibition (211).

ST8Sia2/STX
The polysialyltransferase ST8Sia2, also known as sialyltransferase
X (STX) is involved in the synthesis of linear polymers of sialic
acid, so-called polysialic acid (polySia) chains (212). Polysialic
acids are a form of post-translational modifications on different
proteins, including the neural cell adhesion molecule (NCAM).
Besides expression in healthy neuronal tissues, ST8Sia2 is
expressed in neuronal and non-neuronal tumors and expression
levels eventually correlate with advanced stage of disease, poor
prognosis and risk of relapse (213–215). In an in vivo model,
ST8Sia2-transfected glioma cells with high expression of polySia
exhibited increased tumor invasion within the brain of recipient
mice (216). Overexpression of ST8SIA2 appears to also enhance
invasiveness and metastatic capabilities of small cell lung cancer
cells in vitro (217). Cytidine monophosphate (CMP) was reported
to competitively inhibit ST8Sia2 and treatment with CMP led to
reduced migration of ST8Sia2-expressing but not non-expressing
cell lines in 2Dmigration assays (218). ST8Sia2 was upregulated in
a subset of primary human carcinoma-associated fibroblasts
(CAFs), and ST8SIA2 silencing in co-cultured CAFs resulted in
decreased lung tumor cells invasion in a 3D model (215).

ST8Sia3
ST8Sia3 is highly expressed in brain and testis and mediates the
sialylation of a diversity of glycolipids (GM3, GD3 and a2,3-
sialylparagloboside) and select glycoproteins, including striatal
glycoproteins (199, 219, 220). ST8Sia3 can also transfer polySia
to NCAM, but with a lower efficacy than ST8Sia2 and ST8Sia4
(199). ST8Sia3 was shown to promote survival, proliferation,
clonogenicity, and migration of glioblastoma cells based on
ST8SIA3 knockdown experiments in vitro (221). Moreover, in
the same study it was observed that mice xenografted
intracranially with human glioblastoma cell line silenced for
ST8Sia3 showed a better overall survival and tumors obtained
from these mice demonstrated a lower Ki67 proliferation index.

ST8Sia4/PST
ST8Sia4, also known as polysialyltransferase (PST), synthesizes
slightly longer polySia chains compared to ST8Sia2, eventually
conferring different molecular properties (222). Both
polysialyltransferases are thought to contribute to the
polysialylation of NCAM in mammalian cells (223). ST8Sia4
was also reported to be overexpressed in human RCC and breast
cancer tissues and to promote cancer progression (224, 225).
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In these studies, silencing of ST8Sia4 by short-hairpin RNA
(shRNA) or specific microRNA (miRNA) reduced cancer cell
proliferation and invasion in vitro, and decreased tumor growth
in vivo. High levels of ST8Sia4 expression was observed in
chemoresistant leukemic cells (226–228), which may
functionally contribute to chemoresistance, eventually by
processes involving PI3K/AKT signaling (226, 227). However,
in FTC patient tissues, ST8SIA4 was observed to be
downregulated compared to normal thyroid tissue, and
ST8Sia4 expression in cell lines inversely correlated with
proliferation, migration and invasion in vitro or tumor growth
in vivo (229). Specific miRNAs targeting ST8SIA4 were reported
to promote proliferation and invasion capabilities of FTC and
oral squamous carcinoma cells (229, 230), and to foster
epithelial-to-mesenchymal transition (230).

ST8Sia5
ST8Sia5 exhibits transferase activity of sialic acid moieties onto
several gangliosides to synthesize GT3, GD1c, GT1a and GQ1b,
respectively (231, 232). Decreased expression of ST8SIA5 from
TCGA dataset was linked to a poor survival in patients suffering
from colon cancer, and decreased ST8SIA5 transcript was also
observed in a murine model of colitis-associated cancer (233).
The reduced expression of ST8Sia5 was linked to gene regulation
by forkhead box O3 (FOXO3), the functional deficiency of which
may faci l i tate inflammation-mediated colon cancer
growth (233).

ST8Sia6
ST8Sia6 generates disialic acid structures, eventually by transfer
of a sialic acid moiety onto a NeuAca2,3 (6)Gal disaccharide on
acceptor substrates, which include glycolipids, but preferentially
O-linked glycoproteins (234). Some investigators suggest that
ST8SIA6 Antisense RNA 1 (ST8SIA6-AS1) is associated with
poor prognosis and enhances the proliferative and metastatic
potential of cancer cells (235–240). Furthermore, ST8Sia6 may
increase the chemosensitivity of tumor cells at least to certain
drugs (226). However, ST8SIA6 expression was found to be
upregulated in several types of cancer and to be associated
with a poor prognosis (241). Engineered murine colon and
melanoma cancer cell lines expressing ST8Sia6 grew faster and
led to a decreased survival in vivo and depending on host Siglec-E
(241). Also depending on Siglec-E, ST8SIA6 expression induced
an antitumor immune responses characterized by macrophage
polarization toward M2 and upregulation of arginase, which
required Siglec-E (241). Notably, 2,8-disialic acid structures were
shown to be ligands of murine Siglec-E (242), as well as human
Siglec-7 and -9 (81, 241), and may thus act as glyco-immune
checkpoints in human cancer.
SIALIC ACID-BINDING PROTEINS IN
CANCER

Sialyltransferases are involved in the biosynthesis of tumor-
associated sialoglycans, which via recognition by sialic acid-
binding proteins, influence tumor progression and the immune
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response of the host. Siglecs and selectins are among the most
intensively studied sialic acid-binding lectins, and their
implication in cancer will be briefly discussed in this section.

Siglecs
Sialic acid-binding immunoglobulin-type lectins (Siglecs), are a
family of I-type lectins that belong to the immunoglobulin
superfamily. Siglecs are cell-surface receptors predominantly
expressed on leukocytes in a cell-specific and differentiation-
dependent manner (243). On the basis of evolutionary
conservation and sequence similarity, they are divided into two
subsets: the first comprises sialoadhesin (also known as Siglec-1
and CD169), CD22 (also known as Siglec-2), myelin-associated
glycoprotein (MAG; also known as Siglec-4) and Siglec-15 (244),
and are quite distantly related (∼25-30% sequence identity)
(245). The other group comprises CD33-related Siglecs (Siglec-
3 (CD33), Siglec-5, Siglec-6, Siglec-7, Siglec-8, Siglec-9, Siglec-10,
Siglec-11, Siglec-14, and Siglec-16), which have ∼50-99%
identity and have evolutionary rapidly evolved due to exon
shuffling, exon loss, gene conversion and gene duplication
(244, 245). Structurally, Siglecs consist of an amino-terminal
V-set domain that confers binding specificity for select
sialoglycan ligands, which differ across individual family
members (246), and between species (245). The V-set domain
is followed by a differing number of immunoglobulin-like
domains, a transmembrane domain, and the carboxy-terminal
cytoplasmic tail that contains inhibitory, or for fewer members
activating, signaling motifs (247). It has been proposed that
Siglec ligands might serve as self-associated molecular patterns
(SAMPs) to avoid autoreactivity of immune cells (248).

Ligands for Siglecs are broadly expressed in different types of
human tumors and in a diversity of common cancer cell lines
(18). The expression of Siglec-7 and -9 ligands protected tumor
cells from NK cell-mediated cytotoxicity in vitro, and in a Siglec
humanized in vivo model (18). In a complementary approach, it
was shown that tumor cells decorated with synthetic
glycopolymers inhibited NK cell cytotoxicity by engagement of
Siglec-7 (249). The body of evidence for Siglec-mediated
immune checkpoints in cancer is rapidly growing and indicates
that the sialic acid-Siglec axis is relevant for the control of both
myeloid and lymphoid immune cells within the tumor
microenvironment (12, 16, 17). Interestingly, Siglecs have been
shown to be up-regulated on subsets of tumor-infiltrating and
circulating cytotoxic T cells in cancer patients (20, 250), in
particular on functionally potent effector memory and EMRA
T cells (20). While a variety of Siglec-based therapeutic strategies
for cancer immunotherapy are currently under investigation (17,
251), a better understanding of the identity and expression not
only of tumor-associated sialoside ligands, but also of underlying
carrier molecule (252, 253), in specific tumors and patients, may
allow for more tailored treatment strategies.

Selectins
Selectins are a family of three calcium-dependent (C-type) lectins
comprising E-selectin, L-selectin, and P-selectin, named after
their expression on endothelial cells, leukocytes and platelets. In
contrast to L-selectin that is constitutively expressed on
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leukocytes and E-selectin in postcapillary venules of the skin
and bone marrow (17), however, E- and P-selectin expression on
endothelial cells or platelets are mainly induced following
cellular activation (254). The main physiological function of all
selectins is to mediate the rolling and adhesion of leukocyte
during leukocyte recruitment to sites of inflammation or to
lymphoid tissues (254). The carbohydrate-recognition domain
(CDR) of all selectins has modest affinity to sLeX and its isomer
sLeA (254), which are among the best described ligands for
selectins (17). The synthesis of these tetrasaccharides occurs due
to the integrated action of a2,3-sialyltransferases with a1,3-
fucosyltransferases, b1,4-galactosyltranferases, and N-acetyl-b-
glucosaminyltransferases (255). As discussed above, ST3Gal3,
ST3Gal4 and ST3Gal6 are involved in the synthesis of sLeX,
while sLeA is predominantly generated by ST3Gal3.

sLeA and sLeX are known tumor markers and functionally
implicated in the malignant behavior of cancer cells (88).
Glycosylated proteins carrying sLeX/A moieties, such as PSGL-
1, CD24, CD44, ESL-1, and death receptor-3 represent major
selectin ligands on cancer cells (14). The overexpression of
selectin ligands has been linked to cancer progression and poor
prognosis in some cancers (14, 88, 256). In vivo studies using
selectin knockout or selectin ligand deficient mice highlighted
the importance of selectins in metastasis (3). Selectins seems to
contribute to metastasis through heterotypic interactions
between tumor cells, leukocytes and endothelial cells (14, 256).
These interactions may also foster tumor embolus formation
with local activation of endothelial cells and increased
transendothelial migration of both tumor cells and leukocytes
(3). Recruited leukocytes might further enhance vascular
permeability and cancer cell extravasation, and also shape the
tumor microenvironment (14). While earlier studies on selectin-
targeted therapies focused on cardiovascular disease, positive
outcomes from clinical trials have raised the interest in strategies
targeting selectin receptor-ligand interactions in cancer.
CONCLUSION

In the last decade we have witnessed a significant body of
discoveries that highlight the importance of sialic acids in cancer
biology and immuno-oncology. As biosynthetic enzymes for
sialosides, human SiaTs have long been linked to cancer
hypersialylation. However, the twenty SiaTs exhibit different
characteristics and their roles in cancer are manyfold and
complex, and remain to be fully explored. The expression of
SiaTs, sialosides and sialic acid interaction partners (e.g. Siglecs),
can vary between different types of tumors, between primary tumor
and metastatic lesion, and even between patients (19). Furthermore,
controversial observations on the role of a select SiaT may be due to
its involvement in the synthesis of multiple glycans, eventually
generating various ligands for different glycan-binding proteins.
Moreover, limitations of methodological approaches need to be
considered, such as missing environmental context for in vitro cell
cultures or species differences for in vivo studies. Functional
redundancy may exist between SiaTs, and while specific small-
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molecule SiaT inhibitors that bind and block select SiaTs may hold
promise for therapeutic and diagnostic use [for recent reviews see
(257–259)], combination strategies might be needed in a given
context. However, the observation that SiaTs are responsible for the
generation of glyco-immune checkpoints has reinvigorated
ambitions of researchers to explore the role of individual SiaTs in
cancer, which may pave the way for novel immune normalization
(260), and more personalized, cancer immunotherapies.
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