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Purpose: Following automated variant calling, manual review of
aligned read sequences is required to identify a high-quality list of
somatic variants. Despite widespread use in analyzing sequence
data, methods to standardize manual review have not been
described, resulting in high inter- and intralab variability.

Methods: This manual review standard operating procedure
(SOP) consists of methods to annotate variants with four different
calls and 19 tags. The calls indicate a reviewer’s confidence in each
variant and the tags indicate commonly observed sequencing
patterns and artifacts that inform the manual review call. Four
individuals were asked to classify variants prior to, and after,
reading the SOP and accuracy was assessed by comparing reviewer
calls with orthogonal validation sequencing.

Results: After reading the SOP, average accuracy in somatic
variant identification increased by 16.7% (p value= 0.0298) and
average interreviewer agreement increased by 12.7% (p value <
0.001). Manual review conducted after reading the SOP did not
significantly increase reviewer time.

Conclusion: This SOP supports and enhances manual somatic
variant detection by improving reviewer accuracy while reducing
the interreviewer variability for variant calling and annotation.
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INTRODUCTION
Large genome centers, such as the McDonnell Genome
Institute, use a wide variety of sequencing workflows.
Typically, extracted nucleic acid is subjected to fragmentation;
size selection; KAPA (Wilmington, MA), Swift (Ann Arbor,
MI), IDT (San Jose, CA), or Illumina (San Diego, CA) library
preparation protocols (end-repair, tailing, ligation, amplifica-
tion, etc.); NimbleGen (Basel, Switzerland) or IDT custom/
exome capture; and subsequent sequencing via Illumina
HiSeq 2500/4000 or Novaseq 6000. The sequencing workflow
typically follows methods described by Griffith et al.1

Subsequently, the bioinformatics pipeline requires alignment
to the reference genome (GRCh37/38) via Burrows–Wheeler
Aligner (BWA)2 or BWA-MEM and postprocessing of

aligned sequencing reads. Postprocessing requires deduplica-
tion of reads via Picard3 and automated somatic variant
calling using the intersection or union of Mutect,4 SomaticS-
niper,5 Strelka,6 VarScan2,7 or others. A multicaller approach
is used to identify a preliminary list of high-quality somatic
variants from aligned sequence data.8–10 The bioinformatics
pipeline can be implemented using the Genome Modeling
System.11

Automated pipelines can identify and filter many false
variant calls that result from sequencing errors, misalignment
of reads, and other factors; however, additional refinement of
somatic variants is often required to eliminate variant caller
inaccuracies. This additional refinement is critical because
inaccurate identification of variants can lead to poor patient
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management and missed therapeutic opportunities, as out-
lined in the Association for Molecular Pathology (AMP)
guidelines for interpretation and annotation of somatic
variation.12,13 Therefore, manual inspection of somatic
variants identified by automated variant callers (i.e., manual
review) is an important aspect of the sequencing analysis
pipeline and is currently the standard for variant refinement.
Manual review allows individuals to incorporate information
not considered by automated variant callers. For example, a
trained eye can discern misclassifications attributable to
overlapping errors at the ends of sequence reads, preferential
amplification of smaller fragments, or poor alignment in areas
of low complexity. Due to computational limitations, auto-
mated methods for variant refinement are in early stages of
development and manual review remains integral to variant
identification workflows.16

Despite extensive use of manual review in clinical diagnostic
and molecular pathology settings,17–19 somatic variant
refinement strategies are often unstated or only briefly
mentioned in studies that report postprocessing of automated
variant calls20–25 Lack of formalized procedures for the
sequencing pipeline, and specifically for somatic refinement,
permits high levels of inter- and intralab variability and can
hinder reproducibility of results.26 Thus, development of a
procedure to standardize and systematize somatic variant
refinement would improve the overall quality of sequencing
analysis pipelines.
Here we present a standard operating procedure (SOP) for

manual review of paired tumor/normal samples to help
standardize somatic variant refinement. We first detail

instructions for downloading and using the publicly available
Integrative Genomics Viewer (IGV)14,15 and IGVNavigator
(IGVNav) software to properly visualize somatic variants
during manual review. We also show that adoption of a
standardized method for somatic variant refinement through
this manual review SOP improves the accuracy of somatic
variant calls and reduces overall interreviewer variability.

MATERIALS AND METHODS
Setting up manual review using IGV
The Integrative Genomics Viewer (IGV) is a high-
performance genomic data visualization tool. This SOP
reviews IGV (v2.4.8) components that can be used to conduct
manual review of variants identified by automated somatic
variant callers. While we have chosen IGV to develop our
SOP, many of the following concepts are applicable to other
genomic viewers.27–29 The IGV desktop application is
available for all major operating systems.
The IGV interface is composed of three main panels: (1)

Genome Ruler, (2) Data Tracks, and (3) Genome Features
(Fig. 1). The Genome Ruler provides navigation features to
center a genomic locus of interest. A dropdown menu
provides reference genome selection, the variant coordinates
show the current field of view, the zoom buttons expand/
contract the field of view, and other buttons provide
additional display and navigation control. Within the Data
Tracks section, each horizontal track represents one experi-
ment, sample, or annotation. In Fig. 1, a normal BAM track
and a tumor BAM track are loaded. For BAM files, each data
track consists of a coverage track and individual read
alignments. Reads ideally represent a single originating
molecule that was sequenced and aligned to a reference. In
default settings, sequenced bases that disagree with the
aligned reference sequence are highlighted. The Genome
Features section provides reference information that can be
used to supplement manual review. The reference DNA and
protein sequence tracks are loaded by default. Optionally
loaded tracks from the IGV server will typically appear in the
Genome Features section.
IGV supports a variety of input files for sequence data

visualization. The File dropdown menu details the various
supported input files. Indexed BAMs can be efficiently
accessed from a local file system. Alternatively, the Load
from URL option permits direct URL input from a web
service. The Load from Server option downloads tracks from
supported data sets (e.g., the Cancer Genome Atlas, Ensembl,
etc.).

Setting up manual review using IGVNav
IGVNav software (a Python applet/plugin for IGV),
announced here, is available for download under an open
access license (GNU) from GitHub (https://github.com/
griffithlab/igvnav). When initiated, the user is prompted to
open an input file for manual review. The input file is a tab
delimited, 0- or 1-based BED-like file with the following
columns: chromosome, start coordinate, stop coordinate,
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Fig. 1 Example of the Integrative Genomics Viewer (IGV) interface
with associated features relevant to manual review. The IGV interface
is divided into three parts. The Genome Ruler details information about the
genome assembly being visualized (Reference Genome), the coordinates
currently being visualized (Variant Coordinates), and other navigation/dis-
play controls (e.g., Popup Text Behavior, Zoom In and Out, etc.). In this
example, a portion of human chromosome 1 (build 37) is shown. The
central section of IGV displays Data Tracks. In this case, short read DNA
alignment data (e.g., BAM files) are shown for normal and tumor samples
and are colored by read strand. Mismatches with the reference genome are
highlighted by base: adenine (green), cytosine (blue), guanine (orange), and
thymine (red). Coverage tracks summarize the total read depth at each base
position. The Genome Features section shows the reference sequence itself,
the amino acids for the three possible reading frames, and the gene
associated with this locus (PTCHD2 in this example). The default gene track
available with IGV is shown (RefSeq). Many other data formats and sources
can be loaded as data tracks or genome features.
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reference allele, variant allele, call, tags, and notes. For
variants that have not yet been manually reviewed, the call,
tags, and notes columns should be blank (Fig. 2b). IGVNav
features are shown in Fig. 2a. The navigation bar permits
movement through the input variant list. The “S” button sorts
alignments by base so that variants appear at the tops of data
tracks. Below the navigation bar is the current variant being
visualized and the total number of variants in the input file.
Editing this section and selecting the Go button will navigate
to a specific variant of interest. The three horizontal bars
display coordinate information for the current variant. The
first bar details the chromosome, start, and stop position; the
second bar shows the reference allele; and the third bar shows
the variant allele. The Call section allows the manual reviewer
to select one of the following: somatic (S) (Fig. S1), germline
(G) (Fig. S2), ambiguous (A) (Fig. S3), or fail (F) (Fig. S4).
The Tags section allows manual reviewers to annotate
variants with commonly observed sequencing patterns. Tags
can be used for any call (S, G, A, or F); however, they are
especially important for ambiguous and fail calls to indicate
the call rationale. Descriptions of calls and tags can be found
in Table 1. The IGVNav interface also contains a Notes
section, which allows for free text. At any point during a
manual review session, the calls, tags, and notes can be saved
to the original input file using the Save button (Fig. 2c).

Step-by-step guide: setting up IGV and IGVNav for manual
review
Manual review setup involves six discrete steps (Fig. 3a).
First, an IGV session should be opened and the appropriate

reference genome should be selected/loaded. The reference
genome species and build must match those used for
alignment. Second, the IGV session should be populated
with data tracks. When tumor DNA, normal DNA, and
other DNA or RNA read alignments are available, they can
all be loaded within a single IGV session. Step 3, optionally,
allows for population of additional tracks that can assist in
manual review. Step 4, also optional, recommends that
tracks be colored by reads (right click on data track → Color
alignments by → read strand) and the centered locus is
visualized (View → Preferences → Alignments → Show center
line). After initial setup of IGV, step 5 requires opening
IGVNav and step 6 requires loading the manual review
input file.

Step-by-step guide: performing manual review
After initial setup, seven additional steps must be followed to
properly review each variant (Fig. 3b). First, the variant must
be located by either using the navigation bar in IGVNav or by
manually inserting coordinates into the IGV Genome Ruler.
Variant-supporting reads can be visualized at the top of each
data track by clicking the “S” button in IGVNav, or by using
IGV options (right click on data track → Sort alignments by →
base).
Step 2 evaluates the quantity of variant support. Selecting

the locus of interest within the coverage track will ascertain
strand direction, total coverage, and variant allele frequencies
(VAFs). Strand direction might indicate a Directional (D)
artifact (Fig. S5). Total coverage might indicate No Count
Normal (NCN) (Fig. S6), Low Count Normal (LCN) (Fig. S7),
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Fig. 2 Example of the Integrative Genomics Viewer Navigator (IGVNav) interface, associated features, and input/output files. a IGVNav is a
simple plugin for IGV that provides a separate application window for recording results of manual review. The 1-Base? button can be selected for 1-base
input files (default is 0-base). The “S” button will sort the read sequences in the data tracks so that mismatches appear at the top. The navigation bar
displays variant information and allows for movement between variants. The Call, Tags, and Notes sections allow manual reviewers to annotate variants
(Table 1), which is reflected in the output file. The Save button is used to update the output file. b An IGVNav input file consists of a header line and data for
the first five columns (chromosome [chr], start coordinate [start], stop coordinate [stop], reference allele [ref], and variant allele [var]). Each line represents a
variant that will be individually visualized using IGV. c During manual review, the input file is updated by clicking on the Save button. This will print the call,
tags, and notes associated with individual variants to the original input file.
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or Low Count Tumor (LCT) (Fig. S8). VAFs might indicate
Multiple Variants (MV) (Fig. S9) or Low Variant Frequency
(LVF) (Fig. S10).

Step 3 evaluates the quality of variant support. Directly
visualizing reads identifies Multiple Mismatches (MM)
(Fig. S11) or High Discrepancy Regions (HDR) (Fig. S12).
Reads that are translucent or transparent indicate Low
Mapping (LM) quality (Fig. S13). Mapping quality informa-
tion can be viewed by clicking on the read in question and
viewing the Mapping section (e.g., Mapping= Primary
@MAPQ 0). Base quality can also be evaluated in this popup
in the Base section (e.g., Base=A @ QV 41). Similar to

Table 1 List and description of Integrative Genomics Viewer
Navigator (IGVNav) calls and tags used to annotate variants
in order of appearance on the IGVNav interface with
associated supplementary figure number.

Call Name Call Description Figure

Somatic S Variant has sufficient support in the tumor

with absence of obvious sequencing

artifacts

S1

Germline G Variant that has sufficient support in the

normal sample beyond what is considered

attributable to tumor contamination of

the normal

S2

Ambiguous A Variant does not meet acceptable criteria

for any other label

S3

Fail F Variant with low variant support and/or

reads that indicate sequencing artifacts

S4

Tag Name Tag Description Figure

Adjacent Indel AI Variant is attributable to

misalignment caused by a

nearby insertion or deletion

S16

Ambiguous Other AO Variant is surrounded by

inconclusive genomic

features that cannot be

explained by other tags

S22

Directional D Variant is only (or mostly)

found on reads in the same

direction (positive or

negative)

S5

Dinucleotide repeat DN Variant is adjacent to a

region in the reference

genome that has two

alternating nucleotides (e.g.,

TGTGTG…)

S20

End of reads E Variant is only seen close to

the end (within 30 base pairs)

of variant-supporting reads

S18

High Discrepancy

Region

HDR Variant is supported by reads

that have other recurrent

mismatches across the track

and in multiple tracks

S12

Low Count Normal LCN Variant has inadequate

coverage in the normal track,

thus preventing effective

comparison with the tumor

track

S7

Low Count Tumor LCT Variant has inadequate

coverage in the tumor track,

thus preventing effective

comparison with the normal

track

S8

Low Mapping quality LM Variant is mostly supported

by reads that have low

mapping quality

S13

Low Variant Frequency LVF S10

Table 1 continued

Tag Name Tag Description Figure

Variant has low variant allele

frequency (VAF) samples

Multiple Mismatches MM Variant is supported by reads

that have other mismatched

base pairs

S11

Mononucleotide repeat MN Variant is adjacent to a

region in the reference

genome that has a single-

nucleotide repeat (e.g.,

AAAAAA…)

S19

Multiple Variants MV Variant locus has read

support for three or more

alleles

S9

No Count Normal NCN Variant has no coverage in

the normal track, thus

preventing effective

comparison with the tumor

track

S6

Short Inserts SI Variant is found mostly on

small nucleic acid fragments

whereby sequencing from

each end results in

overlapping reads

S15

Short Inserts Only SIO Variant is exclusively found

on small nucleic acid

fragments such that

sequencing from each end

results in overlapping reads

S15

Same Start End SSE Variant is only observed in

reads that start and stop at

the same positions

S17

Tumor in Normal TN Variant has read support in

the normal track

S14

Tandem Repeat TR Variant is adjacent to a

region in the reference

genome that has three or

more alternating nucleotides

(e.g., GTGGTGGTG…)

S21
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mapping quality, base quality is reflected by the transparency
of the letter. The final part of step 3 is to ensure lack of variant
support in normal track(s), (i.e., Tumor in Normal [TN]
[Fig. S14]).
Step 4 requires identifying sequencing artifacts. First, toggle

between View as pairs (right click each data track →View as
pairs) to visualize Short Inserts (SI/SIO) (Fig. S15). Then use
the zoom in (“+”) and zoom out (“–”) buttons on the

Genome Ruler to identify Adjacent Indels (AI) (Fig. S16),
High Discrepancy Regions (HDR) (Fig. S12), exclusive
support from reads with Same Start/Ends (SSE) (Fig. S17),
and support only at the Ends of reads (E) (Fig. S18). Finally,
evaluating the reference sequence elucidates low complexity
regions such as Mononucleotide repeats (MN) (Fig. S19),
Dinucleotide repeats (DN) (Fig. S20), and Tandem Repeats
(TR) (Fig. S21). If reviewer concerns cannot be described with

Step 1: Open an IGV Session
a) Select a reference genome

Step 3: Load Additional Tracks
a) If needed, load the SNPs Track in the Genome Features section: 

GRCH37: “File” > “Load from Server…” > “Annotations” > “Variations and Repeats” > “dbSNP 1.4.7”
GRCH38: “File” > “Load from Server…” > “Annotations” > “All Snps 1.4.2” 

Step 4: Setup IGV Features
a) To color tracks by reads: Right click each loaded track > “Color Alignments by” > “read strands”
b) To view the center line select: “View” > “Preferences” > “Alignments” > “Show center line”

Step 5: Open an IGVNav Session

Step 6: Load a Variant File 

Step 1: Visualize Variant to be Manually Reviewed
a) Visualize the variant of interest using the navigation bar in IGVNav or IGV

- Subsequent variants can be visualized by clicking the next button in IGVNav
b) Ensure that variant coordinates in IGV match coordinates in IGVNav
c) Sort reads by base using the “S” button in IGVNav
d) Ensure that tracks show read support that is consistent with the variant call 

Step 2: Determine the Quantity of Variant Support
a) Click on the coverage track at the locus of interest to visualize total coverage, variant allele 
     frequency, and non-variant allele frequency
b) Consider support provided by all available tracks (e.g., primary tumor DNA, relapse DNA, tumor   
     RNA, etc.)

Step 3: Determine the Quality of Variant Support
a) Look for multiple mismatches and high discrepancy regions
b) Look for translucent or transparent reads/bases
c) Click on questionable reads to further assess mapping quality and base quality
d) Evaluate normal track(s) for tumor contamination

Step 4: Check for Sequencing Artifacts

b) Zoom out using the IGV interface to visualize high discrepancy regions and adjacent indels, etc.
c) Check the reference sequence for regions of low complexity (e.g., tandem repeats)

Step 5: Select a Call in IGVNav
a) Using information on variant quality and quantity, select a Call  on the IGVNav interface

Step 6: Select Tag(s) in IGVNav
a) For each variant, especially for variants labeled as ambiguous or fail, annotate the variant using 
    tag(s) on the IGVNav interface

Step 7: Write Additional Notes for the Variant
a) If needed, the IGVNav provides a Notes section to add free text about the variant in question      

Step 2: Load Tracks (BAM files)
If you have a file accessible via URL select: “File” > “Load from URL...” > input URL

If you have a locally accessible file select: “File” > “Load from File...” > input file
 

a) Variant file is a BED or BED-like file with 5 columns: chr, start, stop, ref, var, call, tags, and notes 

- If this is the first variant, IGVNav will navigate to the first variant coordinates

a) Toggle “View as pairs” to visualize short inserts

a

b

Fig. 3 Step-by-step instructions for setting up and executing somatic variant refinement via manual review. a Method for setting up Integrative
Genomics Viewer (IGV) and Integrative Genomics Viewer Navigator (IGVNav) for manual review. bMethod for analyzing each variant during manual review.
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previously defined tags, the reviewer can use the Ambiguous
Other (AO) tag and comment in the Notes section (Fig. S22).
Steps 5 through 7 require synthesizing available information

to manually review the variant. This involves selecting a call,
tag(s), and optionally, providing free text in the Notes section
of IGVNav.

Validation of the manual review SOP
We assessed whether the manual review SOP improved
accuracy of somatic variant refinement using an acute
myeloid leukemia (AML) case with genome sequence data,
extensive variant calling, and orthogonal validation (Fig. 4).1

To emulate normal conditions for genome sequencing
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Fig. 4 Validation of the manual review standard operating procedure (SOP). a Sequencing data from an acute myeloid leukemia (AML) case was
used to test the impact of the SOP on accurately identifying somatic variants. A total of 300 variants that had genome sequencing and orthogonal
sequencing were identified for the experiment. Four novice reviewers assessed 200 variants prior to and after reading the SOP to determine improvement in
accuracy, reduction in interreviewer variability, change in reviewer time per variant, and appropriate use of tags. b Reviewer accuracy was assessed before
and after reading the SOP. The bar plot shows accuracy stratified by reviewer and the box plot shows the reviewers’ cumulative median accuracy. c Box plot
showing the median interreviewer agreement before and after reading the SOP. Agreement for each variant was calculated by assessing the correlation
between the four reviewer calls using a correlation matrix as described in the Methods. d Box plot showing the median time required to conduct manual
review before and after reading the SOP. e Frequency diagram showing the number of reviewers that correctly annotated false positive variants with gold
standard tags, parsed by tag. AI Adjacent Indel, D Directional, DN Dinucleotide repeat, E End of reads, HDR High Discrepancy Region, LM Low Mapping, LVF
Low Variant Frequency, MM Multiple Mismatches, MNMononucleotide repeat, MVMultiple Variants, SSE Same Start End, TN Tumor in Normal, TR Tandem
Repeat.
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manual review, we downsampled the unaligned BAM files to
30× and 50× coverage for normal and tumor samples,
respectively. Sequencing data was aligned to the reference
genome (GRCh38) and variants were detected using the
McDonnell Genome Institute’s cancer genomics workflow.30

Using the union of MuTect4 and VarScan,7 143,042 potential
variants were identified. A subset of these variants (n= 5,090)
had orthogonal validation sequencing at ~1,000× coverage.
Coordinates from the platinum variant list, published by
Griffith et al., were lifted over to GRCh38 and used to label
1,186 variants as true positives (TPs). The remaining 3,904
variants were labeled as false positives (FPs). A random subset
of 300 variants (150 TPs; 150 FPs) were selected for manual
review. After receiving basic instruction on how to set up IGV
and call variants using the required four classes (S, G, A, F),
blinded novice reviewers manually reviewed 200 variants in
two batches of 100 using the downsampled genome sequen-
cing BAM files. Subsequently, the reviewers read the SOP and
reviewed two more batches of 100 variants. The final batch of
100 variants were among the 200 assessed prior to reading the
SOP. Accuracy was assessed by comparing the manual review
calls with the orthogonal validation labels. Interreviewer
variability was calculated by developing a correlation matrix
for all four calls across the four reviewers for each variant.
Correlation for identical calls was 1, correlation for conflicting
calls (e.g., fail and somatic) was 0, and correlation for
semiconflicting calls (e.g., fail and ambiguous) was 0.5
(Table S1). The sum of the matrix was divided by the
maximum possible score (i.e., 16 points) to create a relative
metric for interreviewer agreement. The average agreement
scores from before and after reading the SOP were compared.
To determine if reviewers were using tags appropriately, tags
assigned to false positives by novice reviewers were compared
with gold standard tags created by expert reviewers for false
positives reviewed after reading the SOP (Fig. 4a).

RESULTS
Annotations observed during manual review
Screenshots were created for the 22 annotations used during
manual review (Figs. S1–S22). The illustrations and com-
ments emphasize IGV features that highlight sequencing
patterns, describe cautions for challenging tumor types, and
indicate deviations from standard protocol.

Analysis of four variant calls
This SOP and IGVNav software support four classes of
variant calls: somatic (S), germline (G), ambiguous (A), and
fail (F) (Table 1). For a call to be labeled as somatic, the
variant must have sufficient read data support in the tumor
with absence of obvious sequence artifacts (Fig. S1). Con-
versely, a germline variant is an alteration that has sufficient
support in the normal, beyond what can be attributable to
tumor contamination (Fig. S2). Barring inadequate sequen-
cing depth and/or impact from copy-number alterations, the
VAF for germline variants should be near 100% or 50% in
both the normal and tumor tracks, indicative of homozygosity

or heterozygosity, respectively. Ambiguous calls should be
made when there is insufficient evidence to confidently label a
variant with any other call class. The example in Fig. S3 shows
no support for the variant in the normal track and 14 reads of
support in the tumor. However, most of the reads are on
negative strands and some have multiple mismatches. If a
reviewer has any residual doubt about failing a variant, then
the variant should be labeled ambiguous. To fail a variant, the
reviewer must confidently determine that the variant was
called because of a sequencing or analysis artifact. For
example, Fig. S4 details a variant that was erroneously
identified by an automated caller because reads had been
aligned to a high discrepancy region.

Analysis of 19 variant tags
It is especially important to annotate fail and ambiguous calls
with 1 or more of the 19 tags on the IGVNav interface
(Table 1). Each tag represents a sequencing pattern or artifact
that is commonly observed during manual review. These
patterns can arise during DNA fragmentation, library
construction, sequencing, read alignment, or variant calling.
Alternatively, some concerns observed during manual review
can be caused by simple structural aberrations or more
complex issues intrinsic to the tumor being evaluated. Below,
we describe how these concerning reads are created within the
sequencing pipeline and detail the resulting pattern observed
in IGV.
The tumor type and tissue origin can play a role in

generating patterns observed during manual review. For
example, hematologic tumors or highly metastatic tumors can
cause Tumor in Normal (TN) patterns due to the presence of
tumor cells in the normal biopsy (Fig. S14). Generally, it is
important to characterize the average level of contamination
across an individual sample to determine an acceptable
threshold for TN. Tumor sample preparation can also impact
manual review through sequencing of degraded nucleic acids
(e.g., formalin-fixed, paraffin-embedded samples)31 giving rise
to Short Inserts (SI) or Short Inserts Only (SIO). When
generating paired-end reads, degraded and/or short molecules
will produce two sequences that have overlapping alignments.
This can exaggerate variant support because most variant
callers will consider the overlapping alignments as two
independent pieces of evidence, despite representing a single
originating DNA fragment (Fig. S15). Short inserts can be
visualized in IGV by viewing reads as pairs and looking for
horizontal gray bands (representing overlap) in the middle of
the paired read alignments.
Additional errors can arise during fragmentation, library

construction, and enrichment. DNA quality and quantity,
capture reagent balance and efficiency, sample balance in
multiplexed preparations, and other factors can impact the
uniformity of coverage for a given sample. For example, a
selection bias might skew which molecules are amplified/
sequenced, resulting in an uneven distribution of sequencing
(coverage) across the desired genome space.32 These errors
are labeled as No Count Normal (NCN) (Fig. S6), Low Count
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Normal (LCN) (Fig. S7), and Low Count Tumor (LCT)
(Fig. S8). NCN and LCN are defined by no or few reads in the
normal tracks and LCT is defined by few reads in the tumor
track. Also, given that many real variants have a low VAF, due
to tumor heterogeneity or low purity tumors, the combination
of Low Variant Frequency (LVF) (Fig. S10) and LCT can
prevent a true variant from being confidently called. Our lab
has often adopted a minimum VAF threshold of 5% and a
coverage threshold of 20 reads for both the tumor and normal
tracks. The rationale for the normal track coverage threshold
is that if a sequencing artifact is present at a relatively low
frequency (<5% occurrence), and if the normal track has <20
reads, it is difficult to confidently rule out the presence of a
sequencing artifact. For experiments with higher average
coverage, the minimum VAF threshold can be reduced
accordingly.
After fragmentation and library preparation, nucleic acids

are amplified using polymerase chain reaction (PCR), which
can introduce Directional (D) and Same Start/End (SSE)
artifacts. Directional artifacts occur when variant support is
only apparent on reads in a specific direction (i.e., positive or
negative). Typically, this occurs because the sequencing
context affects the polymerase in one direction more than
the reverse complement (Fig. S5) 33. SSE artifacts occur when
a molecule is preferentially amplified and not removed
through read deduplication programs.34 This artifact can be
confirmed when all variant support reads have the same (or
very similar) start and end position after alignment (Fig. S17).
The next step in the pipeline is sequencing. Sequencing errors

are defined as nucleotides misread by the sequencing instru-
ment, which can be caused by inefficiencies in sequencing
chemistry, technical errors made by the camera system,
interference from neighboring clusters, instrument software
errors, etc. One type of sequencing error, “dephasing,” occurs
when a nucleotide without a proper 3’ -OH blocking group is
incorporated or is not properly cleaved. The affected fragment
(s) lose synchrony with the cluster, contributing to background
noise.35 Ends of reads (E), which occurs when variant support is
exclusively found at the end of read sequences (within 30 base
pairs), is indicative of a dephasing error (Fig. S18).36 These
errors occur with low probability; however, as the read length
increases, the summation of errors can pollute the light signal.
Because the light signal is used to calculate quality scores, the
asynchronous signal should decrease sequence base quality,
which may assist in elucidating artifacts caused by dephasing
errors.
Many artifacts arise from incorrect alignment of sequence

reads to a reference genome. These artifacts include Mono-
nucleotide repeats (MN), Dinucleotide repeats (DN), Tandem
Repeats (TR), High Discrepancy Regions (HDR), Low
Mapping (LM), Multiple Mismatches (MM), Adjacent Indel
(AI), and Multiple Variants (MV). MN (Fig. S19), DN
(Fig. S20), and TR (Fig. S21) are attributable to regions of low
complexity adjacent to the variant locus. They typically occur
when there is a base pair deletion or insertion adjacent to one,
two, or greater than two base pair repeats, respectively. HDR,

LM, MM, and MV occur when single reads map to multiple
and/or incorrect regions. This is typically caused by (1)
homologous sequences at multiple loci, (2) highly variable
regions between or within individuals (e.g., variable, diversity,
and joining (VDJ) regions in immune cells), (3) high error
rates in reads, and/or (4) errors in the reference genome.
HDRs are apparent when multiple reads contain the same
mismatches with the reference genome at various locations
(Fig. S12). LM can be determined by looking for translucent
reads (Fig. S13). MM is used when variants are supported by
reads that disagree with the reference genome at multiple loci
across the same read, indicating low sequencing quality or
misalignment (Fig. S11). Similarly, MV is defined by read
support for three or more different alleles at a given locus,
which might indicate poor quality or misaligned reads
(Fig. S9). AI is used when a structural variant or a small
indel in a repetitive region causes local misalignment and
creation of an apparent single-nucleotide variant (SNV)/indel
(Fig. S16). Observing these artifacts requires careful scrutiny
of the reference genome, base quality, and mapping quality.
In rare instances, if the pre-existing tags cannot adequately

annotate a variant, it can be labeled as Ambiguous Other
(AO). Given that this tag is nondescriptive, it is recommended
to include free text in the Notes section to justify the tag and
associated variant call. In the example provided (Fig. S22), the
insertion variant shows a low complexity region with
increased G/C content that is not contained within a tandem
repeat region. This observation can be annotated using the
AO tag.

Validation of the manual review SOP
Manual review performed by novice reviewers after reading
the SOP improved identification of somatic variants by 16.7%
(77.4% vs. 94.1%; p value= 0.0298) (Fig. 4b) and increased
the average interreviewer correlation score by 12.7% (80.7
points vs. 93.4 points; p value < 0.0001) (see Methods)
(Fig. 4c). The SOP did not significantly impact time required
to conduct manual review (Fig. 4d). Additionally, correct use
of tags was observed for annotations made after reading the
SOP. When evaluating 86 false positives that had 238 tags
confirmed by expert reviewers, 143 tags were correctly
identified by at least three novice reviewers and only 36 tags
were missed by all reviewers (Fig. 4e).

DISCUSSION
Identification and interpretation of variants is crucial for
conducting translational research and guiding clinical man-
agement of cancer patients.13 In general, implementation of
this SOP has improved variant identification consistency,
limiting the total number of false positives requiring down-
stream analysis. Given that variant annotation remains a
major bottleneck in translational and clinical research.37,38

reduction in false positives should substantially improve the
overall efficiency of lab operations. Therefore, we advocate
that others adopt a standardized process for variant refine-
ment such as the SOP presented here.
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There are intrinsic limitations associated with manual review
that will not be rectified by this SOP. First, manual reviewers
have reported reviewer fatigue, especially when evaluating
tumors with a high variant burden. Second, despite extensive
training, some amount of interreviewer variability will likely
remain, especially for ambiguous variants. Third, manual review
of variants might change over time as an individual begins to
recognize the idiosyncrasies associated with a particular tumor
subtype or sequencing platform. Finally, the scope of this SOP is
limited to the manual review of somatic SNVs/indels
in situations where tumor/normal samples are available;
although, many of the aspects of the protocol, including setup
and assessment, can be directly applied to other analyses (e.g.,
structural variant assessment). It is our intent to continuously
improve this protocol through subsequent revisions (https://doi.
org/10.1101/266262). This will include developing an SOP for
tumor-only samples, incorporating features that improve
somatic variant refinement, and developing machine learning
approaches to alleviate manual review burden.
Many of the existing limitations of manual review could be

addressed by automating somatic variant refinement. This
would further standardize the massively parallel sequencing
pipeline and reduce the labor burden required to identify
putative somatic variants. Advancements in computational
approaches provide an opportunity for the development of
such a process.
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