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ABSTRACT
We have recently demonstrated that root cuing from drought-stressed plants increased the survival time 
of neighboring plants under drought, which came at performance costs under benign conditions. The 
involvement of abscisic acid (ABA) was implicated from additional experiments in which interplant 
drought cuing was greatly diminished in ABA-deficient plants. Here, we tested the hypothesis that ABA 
is the exogenous vector of interplant drought cuing. Pisum sativum plants were grown in rows of three 
split-root plants. One of the roots of the first plant was subjected to either drought of benign conditions in 
one rooting vial, while its other root shared its rooting vial with one of the roots of an unstressed neighbor, 
which in turn shared its other rooting vial with an additional unstressed neighbor. One hour after 
subjecting one of the roots of the first plant to drought, ABA concentrations were 106% and 145% higher 
around its other root and the roots of its unstressed neighbor, compared to their respective unstressed 
controls; however, the absolute concentrations of ABA found in the rooting media were substantially low. 
The results may indicate that despite its involvement in interplant drought and the commonly observed 
exchange of ABA between drought-stressed plants and their rhizospheres, ABA is not directly involved in 
exogenous interplant drought cuing. However, previous studies have shown that even minute concen-
trations of ABA in the rhizosphere can prevent ABA leakage from roots and thus to significantly increase 
endogenous ABA levels. In addition, under drought conditions, plants tend to accumulate ABA, which 
could markedly increase internal ABA concentrations over time and ABA concentrations in close proximity 
to the root surface might be significantly greater than estimated from entire rooting volumes. Finally, 
phaseic acid, an ABA degradation product, is known to activate various ABA receptors, which could 
enhance plant drought tolerance. It is thus feasible that while the role of ABA is limited, its more stable 
degradation products could play a significant role in interplant drought cuing. Our preliminary findings 
call for an extensive investigation into the identity and modes of operation of the exogenous vectors of 
interplant drought cuing.
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Introduction

Adaptive plastic responses require the integration of fitness-rele-
vant information.1,2 While most animals perceive and respond to 
environmental information using intricate nervous systems, adap-
tive responsiveness, elaborate decision-making, learning and 
memory are ubiquitous amongst CNS-less organisms, including 
archaea,3 sponges,4 fungi,5 bacteria,6 slime molds,7 plants,8–10 and 
even viruses.11

The adaptive value of plastic responses crucially depends on 
a tight and reliable correlation between the modified phenotype 
and the conditions under which it is expected to operate. 
Because plastic responses require time, it must pertain to forth-
coming rather than to present conditions, therefore fostering 
significant advantages to bearers of sensory systems that enable 
anticipatory responses.12,13 In plants, preemptive responses are 
based on the perception of early cues and signals indicatory of 
forthcoming drought,14 salinity,15 nutrient availability,16,17 

competition,12,18 and neighbor proximity.19–22 Importantly, 
early indications of imminent risks and challenges often come 
from already affected neighboring plants, such as in the cases of 
herbivory,23 pathogen attack24 or drought.25

We have previously demonstrated that unstressed plants 
close their stomata in response to direct or relayed (via addi-
tional unstressed plants) cueing from drought-stressed 
neighbors.26,27 In a recent study, we found that interplant 
drought cuing increased the survival of target Stenotaphrum 
secundatum plants under drought, which came at a cost of 
lowered performance of the communicated plants under 
benign conditions. Further, we found that interplant drought 
cuing was greatly reduced in ABA-deficient plants.25 Our pre-
vious findings have demonstrated that interplant drought com-
munication in Pisum sativum was attained via root cuing, 
suggesting that the involved vectors are emitted from the 
roots of drought-inflicted plants and perceived by the roots of 
unstressed neighboring plants.26 Abscisic acid (ABA) is 
a promising candidate vector that satisfies this mode of com-
munication. It is produced in most plant tissues and is involved 
in the induction of resistance and tolerance to drought and 
other stresses.28 Previous studies have demonstrated that in 
some legumes and grasses, drought may cause ABA leakage 
from the roots.29,30 Additional studies have shown that exo-
genous ABA can be taken up by roots and elicit stress 
responses in receiving plants.31,32 Accordingly, we 
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hypothesized that ABA is the exogenous vector of interplant 
drought cuing.

In the present study, we separately analyzed ABA content in 
the rhizospheres of drought-stressed plants and their 
unstressed neighbors. Based on previous studies (e.g.33), we 
expected to find higher concentrations of ABA in the rhizo-
sphere of drought-inflicted plants and their unstressed neigh-
bors, compared to unstressed or uncued controls.

Materials and methods

Plant material and experimental setup

Pisum sativum was chosen as a model plant because of the 
existing knowledge on the involvement of ABA in its responses 
to drought stresses, and the ease of its handing under variable 
growth conditions (e.g.34).

ABA concentrations were estimated in root leachates sepa-
rately collected from either drought-stressed or unstressed 
plants and their unstressed neighbors. Testing for the effects 
of drought cuing required that specific induced plants (IND) 
experience drought or benign conditions, while their neighbor-
ing target plants (T1, T2) would only experience root cuing 
from the IND plants (Figure 1a). This was achieved by using 
triplets of split-root P. sativum cv. Dunn plants planted in rows 
of four vials (Figure 1a).

The experiment started by growing plants with two equal 
roots following removal of the tip of the seminal root (‘split- 
root plants’27). Three days from germination, the seminal root 
was severed 2 mm below the hypocotyl and the plants were 
replanted in damp vermiculite. Seven days from germination, 
the stump of the seminal root typically regenerated three lateral 

roots. After severing one of the roots, plants with two 25– 
30 mm long roots were grown in an aqueous medium in 
50 ml vials as described in Figure 1a. One of the roots of the 
IND plant (in vial 1) was subjected to either drought or benign 
conditions, while its other root shared vial 2 with one of the 
roots of its nearest unstressed neighbor (T1). The other root of 
T1 shared vial 3 with one of the roots of an additional 
unstressed target plant (T2). This configuration permitted T1 
to exchange root exudates with both IND and T2 while pre-
venting direct root cuing between IND and T2, and thus 
allowing to separately study the effects of direct and relayed 
drought cuing on T1 and T2, respectively25 (Figure 1a).

The experiment was conducted in a growth chamber, at 
25°C, under continuous 130 µE m−2 sec−1 of mixed cool- 
white fluorescent and incandescent lights.

Experimental protocol

Drought induction was carried out by carefully pumping the 
water from Vial 1 (orange; Figure 1a) using a flexible-tip 
syringe, and filling it with 8 g of either dry or wet mixture of 
4:1 mixture of no. 1 vermiculite (Agrekal, Habonim, Israel) and 
bentonite (Minerco, Netanya, Israel); (VB) for 1 h. To account 
for handing effects, control (benign) sets were induced by 
filling vial 1 with a mixture of wet VB (5.5 g VB and 45 mL 
distilled water). Accordingly, ABA concentration in the root-
ing media of vials 2 and 3 reflected the effects of drought cuing 
rather than responses to the physical handing of the plants or 
the chemical components of VB.

Following the induction period, the contents of the rooting 
vials of stressed (IND) plants (vial 2) and of their cued 
unstressed neighbors (vial 3) were analyzed. The experiment 

Figure 1. The effects of drought cuing on rhizosphere ABA concentrations. Triplets of split-root P. sativum plants were grown in rows as described in Figure 1 (a). One of 
the roots of the IND plant (pot 1, Orange) was subjected to either drought or benign conditions for one hour. ABA concentrations were analyzed in the rhizospheric 
solution of vial 2 (shared by drought-treated IND and its unstressed T1 neighbor, green) and vial 3 (shared by unstressed T1 and T2 plants, blue). Values are means ± 
SEM of ABA concentrations in vial 2 (green) and vial 3 (blue). Significance values are for Kruskal–Wallis one-way comparisons between drought-cued plants and their 
controls, * P < .05, *** P < .01, n = 6.
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was conducted with 12 biological replications, and leachates 
were pooled into six 100 mL technical replicates to increase 
metabolite concentrations in the analyzed samples. The lea-
chate samples were lyophilized, and the dry pellets were ana-
lyzed for ABA content at the Instituto de Biologia Molecular 
y Celular de Plantas, CSIC, Universidad Politécnica de 
Valencia, Spain. Individual samples were macerated in liquid 
nitrogen with the addition of 1.8 mL of the extraction solution 
(80% methanol, 1% acetic acid and 19% distilled water), fol-
lowing the addition of the deuterated analogue of ABA 
(Olchemim Ltd, Olomouc, Czech Republic) to be quantified 
(30 μL of a solution containing ABA). Following, the samples 
were shaken for 1 h at 4°C and then centrifuged at 10000 g at 
4°C for 4 min. The supernatant was removed and conditioned 
in a 2 mL tube for 24 h at −20°C for precipitation of proteins, 
and the samples were centrifuged again at 10000 g at 4°C for 
4 min; the supernatant was transferred to 5 mL glass tubes, and 
the samples were concentrated in a rotovapor (Thermos 
Scientific®) for 3 h. The concentrated samples were finalized 
with 1 mL of 1% acetic acid, and after a rapid shaking, filtered 
in Oasis HLB® columns (reverse phase). ABA was recovered by 
applying 1 mL of 95% methanol, and the samples were dried in 
the rotavapor and subsequently dissolved with 150 μL of 5% 
acetyl nitrile (ACN) + 1% acetic acid. Readings were retrieved 
from a spectrometer coupled to a UHPLC and an autosampler 
(Accucore RP-MS column 2.6 μm, 50 × 2.1 mm; ThermoFisher 
Scientific).35

Statistical analyses

The effects of drought cuing on ABA concentrations in the 
rooting media of P. sativum under drought or drought cuing 
were analyzed using Kruskal–Wallis one-way ANOVAs. The 
statistical analyses were conducted using SYSTAT 13 (SPSS).

Results and discussion

Drought cuing significantly affected ABA concentration in the 
rhizosphere of both drought-stressed plants and their 
unstressed neighbors. Sixty minutes following the onset of 
a drought treatment to one of the roots of the IND plant (vial 
1, Figure 1a), ABA concentrations were 106% and 145% higher 
in vials 2 and 3 of the drought treatments, compared to their 
respective ‘benign’ controls, with a more pronounced differ-
ence in vial 3 (targets 1 and 2) than in vial 2 (IND and target 1; 
Figure 1b).

Under drought, plants adaptively change the amount and 
composition of their volatile emissions (e.g.36) and root 
exudates,37–39 with increased concentrations of various organic 
acids, sugars, alkaloids and terpenoids, among others.40–42 

Increased root exudation has been demonstrated to help plants 
alleviate drought and osmotic stresses and manipulate the 
abundance and composition of mycorrhizal fungi and soil 
bacteria, some of which help plants tolerate drought and accel-
erate post-drought regeneration.37,41,43

In some plants, drought may also cause increased exudation 
of ABA from the roots.30,44,45 As roots readily uptake exogen-
ous ABA, which in turn can elicit adaptive stress responses in 
receiving plants,31,32 our results (Figure 1b) could seemingly 

support the hypothesis that ABA is the exogenous vector of 
interplant drought cuing. However, although both stressed 
IND plants and their unstressed target neighbors substantially 
increased ABA exudation compared to their unstressed con-
trols, the absolute concentrations of ABA found in their root-
ing media were exceedingly low, ca. three orders of magnitude 
below the known affinity of ABA receptors.46

We have previously demonstrated that 1 h of drought stress 
elicited stomatal closure in both stressed P. sativum plants and, 
via a chain root cuing, in multiple neighboring plants.26,27 

Additionally, a recent study clearly demonstrated the involve-
ment of ABA in interplant drought cuing.25 Thus, how can we 
interpret the extremely low ABA concentrations found in the 
rooting media of the stressed plants and their unstressed 
neighbors (Figure 1b)? A simple sobering possibility could be 
that despite its involvement in interplant drought cuing and 
the exchange of ABA with the rhizosphere, ABA might not 
participate in exogenous root cuing in the studied plants and 
further efforts should be allocated to alternative candidate 
metabolites, the presence47 or the exudation of which is 
increased under drought.45 However, we posit that our pre-
liminary findings do not negate the possibility that ABA might 
be directly involved in exogenous belowground interplant 
drought cuing for the following reasons:

(a) Minute ABA concentrations can play a role: roots 
uptake and accumulate ABA over time and thus inter-
nal ABA concentrations can substantially increase over 
time.48 In addition, even extremely low and otherwise 
negligible ABA concentrations (1 nM) were demon-
strated to effectively prevent ABA leakage from roots 
and thus to significantly increase endogenous ABA 
levels and their adaptive effects on plant drought toler-
ance and resistance.49,50

(b) Local versus mean ABA concentrations: the balance 
between root exudation and diffusion typically gener-
ates a radial downhill gradient of exudates around the 
root.51 However, the analysis of exudate concentrations 
in entire rooting vials, as done here, necessarily reflects 
the mean concentration of ABA in the entire rooting 
volume rather than the effective ABA concentration 
near the root surface. Theoretically, more accurate con-
centrations can be mathematically modeled, but esti-
mating the precise exudate concentrations and their 
functional effectiveness in multiple spatial and temporal 
(4D) coordinates in large rooting volumes and a vast 
variety of root distances and states is expected to be 
overwhelmingly challenging, if at all possible.

(c) The possible role of ABA degradation products: large 
amounts of ABA and its catabolism products are con-
stantly emitted into the soil following the decomposi-
tion of dead plant matter.52 Interestingly, both plants 
and bacteria metabolize ABA to phaseic acid, dihydro-
phaseic acid, fulvic acids, and other metabolites, which 
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could take part in interplant drought cuing47 

Specifically, phaseic acid is known to activate various 
ABA receptors, which in turn could enhance plant 
drought tolerance.53 Accordingly, it is feasible that at 
least under some circumstances, direct ABA cuing is 
limited, but ABA’s degradation products could play 
a significant role in interplant drought cuing.

As a follow-up to this preliminary study, it would be interesting 
to further investigate the potential roles of ABA and its decom-
position products in interplant drought cuing; however, 
although these metabolites seem to be suitable candidates, it 
is undeniably feasible that additional or totally different meta-
bolites as well as various soil microbes are involved in the 
newly discovered inter-root drought cuing.
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