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Abstract: Control of excessive mitochondrial oxidative stress could provide new targets for both
preventive and therapeutic interventions in the treatment of chronic inflammation or any pathology
that develops under an inflammatory scenario, such as rheumatoid arthritis (RA). Increasing evidence
has demonstrated the role of mitochondrial alterations in autoimmune diseases mainly due to the
interplay between metabolism and innate immunity, but also in the modulation of inflammatory
response of resident cells, such as synoviocytes. Thus, mitochondrial dysfunction derived from
several danger signals could activate tricarboxylic acid (TCA) disruption, thereby favoring a vicious
cycle of oxidative/mitochondrial stress. Mitochondrial dysfunction can act through modulating
innate immunity via redox-sensitive inflammatory pathways or direct activation of the inflammasome.
Besides, mitochondria also have a central role in regulating cell death, which is deeply altered in
RA. Additionally, multiple evidence suggests that pathological processes in RA can be shaped by
epigenetic mechanisms and that in turn, mitochondria are involved in epigenetic regulation. Finally,
we will discuss about the involvement of some dietary components in the onset and progression
of RA.

Keywords: rheumatoid arthritis; mitochondria; oxidative stress; metabolism; inflammation; cell
death; epigenetic; diet

1. Introduction

Rheumatoid arthritis (RA) is a prototype of systemic autoimmune inflammatory
disorder that is characterized by neovascularization and abnormal synovial hyperplasia
associated with local infiltration of several immune and inflammatory cells, which finally
damage the structure of the adjacent cartilage and bone driving to functional disability [1].
The development of oxidative stress or redox imbalance result from the excessive level
of the different reactive oxygen species (ROS), either by their increased production, the
diminishment of antioxidant defenses, or a combination of both. Oxidative stress plays
a crucial role in the pathogenesis of RA [2]. In fact, the presence of oxidative stress is
associated with clinical parameters of disease activity in RA [3]. Additionally, minor
concentrations of antioxidants defenses have been found in serum and synovial fluid of
RA patients [4]. Thus, multiple studies have described a shift in the oxidant/antioxidant
balance favoring the former in RA serum, synovial tissue and fluid, and contributing
to the presence of oxidative damage in cartilage [3,5–8]. Accordingly, in RA patients,
mitochondrial ROS correlates with elevated levels of TNFα in plasma [9] and TNF blocking
therapy suppresses oxidative stress and hypoxia-induced mitochondrial mutagenesis as
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well as recovery of disease evaluated with DAS28 score [10]. In this sense, multiple
studies reported the usefulness of drug treatments modulating the RA-related oxidative
process [3,10–12], but not all studies [13].

Emerging growing evidence has highlighted the rising capabilities of mitochondria
in modulating oxidative stress [14]. In this sense, mitochondria are not only recognized
as the most important source of reactive oxygen species (ROS), but are also targeted by
these molecules [15]. These regulated flares in mitochondrial ROS production plays a
central role in the circulation of cellular information; however, in a mitochondrial impair-
ment scenario, there is a boosted production of ROS, which could induce oxidative stress
and an inflammatory response [16]. In relation, another key event is the hyper-mutable
level of mitochondrial genome mainly as a result of damage caused by the high levels of
ROS [17,18], but also by replication errors made by the mtDNA polymerase [18]. Moreover,
oxidative damage to mitochondria includes oxidation of proteins, membrane lipids and
mtDNA [19], which can also increase mitochondrial destabilization and aggravating ox-
idative stress, which may lead to further mtDNA mutations leading to a vicious cycle of
mitochondrial damaging, thereby causing increased cell damage [20]. This is the reason
why mitochondrial impairment has been linked to several human diseases, including
RA [21–27].

Although the past decade has undoubtedly constituted a great revolution in treatment
strategies for RA, some patients do no reach low disease activity or become non-responders,
and most of the treatments cause long-term adverse side effects [28,29]. In this scenario,
dietary bioactive compounds that exhibit anti-oxidant and anti-inflammatory properties
have been proposed as potential candidates for the development of new therapeutic inter-
ventions [30–33]. Additionally, multiple evidence suggests that pathological processes in
RA can be shaped by epigenetic mechanisms [34]. Thus, it should be noted that nutrition
could modify epigenetic and mitochondria are involved in epigenetic regulation [35].

This review will be focused on the importance of mitochondria on oxidative stress
and its interplay with metabolism, inflammation and cell death processes. The most
recent advances on the existing knowledge concerning the impact of dietary factors on
mitochondrial status, and how it may influence the above-mentioned topics in RA course
will also be reviewed.

2. Physiological Function of Mitochondria and mtROS

Historically, the most recognized function of mitochondria is to be the primary source
of cellular energy by coupling the oxidation of fatty acids and pyruvate with the production
of high amount of adenosine triphosphate (ATP) by the mitochondrial respiratory chain
(MRC) [36]. During mitochondrial oxidative phosphorylation (OXPHOS), the movement
of electrons along the first four complexes on MRC produces a proton gradient across the
inner mitochondrial membrane that defines the mitochondrial membrane potential (∆Ψm),
which is used by complex V to produce ATP. As a result of their activity, mitochondria
are the most important source of ROS, generated by the reaction between oxygen and a
little quantity of electrons that escape from MRC [14]; but paradoxically, mitochondria are
also targets of these molecules [14]. Overall, at the low to moderate physiological levels,
the list of targets of redox signaling is lengthy [37]. In this way, ROS is a main signal
leading through specific cell signaling pathways (protein phosphorylation, ion channels,
and transcription factors), the metabolic regulation and stress responses to support cellular
adaptation to a changing environment and stress (immune system, differentiation, cell
death, or migration).

In relation to immune response, accumulated evidence has highlighted the vital role
of mitochondria as boosters of immunity [3,20,38,39]. Therefore, ROS are the primary
host defense tool against infection and adverse scenarios [40]. In this sense, MRC adapta-
tions in immune cells through mitochondrial derived metabolites, redox molecules and
naturally mtROS contribute to antimicrobial host defense [41]. In fact, during viral in-
fection, metabolic signals can induce the release of mtDNA from mitochondria with the
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subsequent type I interferon response [40]. Additionally, principal elements of innate
immune essential for fighting pathogen invasion, such as innate immune mitochondrial
antiviral signaling protein (MAVS) are modulated by glucose metabolism [42], nucleotide
binding oligomerization domain (NOD)-like receptor 1 (NLRX-1) [43] and also mitochon-
drial dynamics (fusion and fission processes) among others signals [44,45]. For example,
dimethylarginine dimethylaminohydrolase 2 (DDAH2) suppresses RIG-I-like receptor
(RLR)-MAVS-mediated innate antiviral immunity by stimulating nitric oxide-activated,
Drp1-induced mitochondrial fission [45]. Interestingly, some pathogens have acquired
the power to negatively regulate mtROS generation and mtDNA sensing, thus potentially
suppressing macrophage defense mechanisms, and preventing pathogen clearance and
disease resolution [46]. Furthermore, as detailed later, multiple studies pointed out a role
for ROS in immune responses through activation of redox-sensitive inflammatory path-
ways by mitochondrial impairment [22,23] as well as modulation of NLRP3 inflammasome
activation [47,48].

Mitochondria, as a remainder of their bacterial origin, possess their own genetic
material, which is functionally coordinated with the nuclear genome. Hence, due to the
adaptation to the climatic and environmental conditions suffered throughout the different
migrations of the human species from its African origin, mitochondria have acquired a
series of stable mutations termed haplogroups, which allow them to characterize human
populations according to their geographical origin [49]. As a result of their adaptive origin
to environmental conditions, each haplogroup presents different metabolic mechanisms
and functions. These differences have been related to the predisposition to suffer from
different diseases, including rheumatic pathologies such as RA [50]. On the other hand,
mtDNA is especially sensitive to mutations caused by ROS due to its proximity to the
site of ROS formation as described earlier. The mtDNA encodes 13 polypeptides that are
part of the MRC complexes, so mutations in the mitochondrial DNA can compromise the
appropriate performance of the mitochondria. In addition, ATP synthase, as well as other
MRC enzymes, has been shown to be sensitive to inactivation by oxidative stress [51]. These
events can lead to impaired mitochondrial function, which in turn leads to an increase in
ROS production, instigating a vicious cycle of mitochondrial collapse.

Finally, the theory of oxidative aging postulates that chronic low-grade inflamma-
tion in aging, related to dysregulation of ROS, results in increased damage to organic
molecules, which may serve as a bridge between healthy aging and age-related patholog-
ical processes [52]. However, a recent study has suggested that oxidative modification
target, rather than oxidative modification degree, could underlie ROS-dependent dis-
eases of aging [53]. Undoubtedly, further studies are needed to better determine how
redox homeostasis regulates physiology and pathophysiology and to define the basis for
novel therapies.

3. Interplay between Mitochondrial Oxidative Stress, Metabolic Status and
Inflammation in RA

Mitochondria play essential roles at the crossroads of metabolism and innate immu-
nity [40,54]. Relevant to RA, human RA synoviocytes [55–58] and healthy synovial cells
under arthritis-like stimulation, such as inflammatory mediators [59,60] or hypoxia condi-
tion [61], impair mitochondrial state of human synovial cells, driving a significant elevation
in ∆Ψm, shifting their metabolism to aerobic glycolysis, and in turn increasing mutation
rates [55,56]. Additionally, a recent study has demonstrated in human synoviocytes that
oxidative stress induced by 4-hydroxy-2-nonenal (4-HNE) reprograms energy metabolism
reducing enzymatic activity of OXPHOS complexes III and IV and favoring glycolysis,
increasing ROS production as well as elevating mitochondrial mutagenesis, contributing
to acceleration of inflammatory processes and subsequent defective angiogenesis; thereby
favoring a vicious cycle of oxidative/mitochondrial stress [3]. Similar results were obtained
in synovial tissue of RA patients [3].
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3.1. Hypoxia, Oxidative Stress and Inflammation

Oxidative damage in synovial tissue is associated with in vivo hypoxic status in the
arthritic joint [7]. In fact, multiple studies have showed that the RA tissue is deeply hy-
poxic [10,61,62]. Even, a preclinical study showed that hypoxia appears at the pre-arthritic
stage and shows colocalization with early synovial inflammation [63]. The transcription
factor hypoxia-inducible factor (HIF)-1α is activated in response to low pO2 being the key
regulator of oxygen homeostasis. During RA, hypoxia induced high quantities of ROS [64]
and ROS can also induce the activation of HIF-1 [65,66]. This factor has been found to be
highly activated in the RA synovium, being responsible for the expression, among other
gene products, of both VEGF (essential in angiogenic processes) and MMPs (essential in
angiogenic processes and also in cartilage destruction) [67–69]. In addition, it has been
related to the induction of COX-2 and IL-8 expression in different cell types [70,71]. HIF-1
is a dimeric factor formed by the HIF-1β subunit, which is expressed constitutively and
is maintained at constant levels regardless of oxygen levels; and the HIF-1α subunit, the
synthesis of which is constitutive, although its stability is highly regulated by oxygen
levels. Under conditions of normoxia, HIF-1α is rapidly degraded; however, under hypoxic
environment it stabilizes and translocates to the nucleus where it dimerizes with HIF-1β
and the complex formed becomes transcriptionally active [72,73]. The activation of HIF-1α
is key for the adaptation of cells to hypoxic conditions, activating the transcription of genes
related to angiogenesis or the glycolytic pathway in an attempt to restore the supply of
oxygen and correct the defect in the generation of ATP [74]. Other factors besides hypoxia
and ROS can induce the activation of HIF-1, such as the cytokines IL-1β and TNFα, hor-
mones, growth factors or mechanical stress, all of them important factors in the pathology
of RA [75]. Thus, IL-17 and TNFα combination induces a HIF-1α-dependent invasive
phenotype in synoviocytes [76]. HIF-1α also is essential for myeloid cell-mediated inflam-
mation as well as TH1/TH2 lymphocytes ratio in animal model of arthritis [77,78]. Hypoxia
also activates the expression of NF-κBp65 through the canonical signaling pathway [79],
and the STAT3 signaling [71]. Finally, a more recent in vitro study with RA synoviocytes
shows that mitochondrial dysfunction and increased glycolysis induced by hypoxia was
associated in vivo with synovial expression of several glycolytic enzymes as well as glucose
transporter 1 (GLUT1) to improve uptake of glucose in RA patients with low pO2 levels [80].
Additionally, Tannahill et al. show that succinate induces IL-1β secretion through HIF-1α
induction in macrophages [81].

To the best of our knowledge, it has also been reported that hypoxia can induce
Notch activation in RA [82]. The Notch signaling pathway is a key developmental route
that regulates many cellular processes, including proliferation, cell survival/death and
differentiation through intracellular signal transmission that involve receptor-ligand in-
teractions between adjacent cells [83]. In this sense, the activation of Notch signaling is
involved in lymphocytes, synoviocytes and endothelial cells of RA patients [82,84–86]
being promoted by TNF in RA synoviocytes [87]. Additionally, several studies have shown
that Notch activation accelerates the production of proinflammatory mediators in RA [82].
On the other hand, Notch-1 and Notch-3 mediate hypoxia-induced synovial fibroblasts
activation and angiogenesis in RA [82]. In relation to T helper cells from RA patients, a
significantly altered expression profile of Notch receptors and enhanced activation of Notch
signaling is displayed compared with healthy controls [85]. Additionally, Notch-regulated
miR-223 targets the aryl hydrocarbon receptor pathway and increases cytokine production
in macrophages from RA patients [88]. In this regard, the amelioration of experimental
arthritis by silencing miR-223 has been described [89] and, in addition, miR-146a modulates
macrophage polarization by inhibiting Notch-1 pathway in macrophages [90]. Finally, inhi-
bition of Notch signaling ameliorates experimental inflammatory arthritis [91–93]. Thus,
Notch signaling could be a potential pharmacological target for RA treatment.

As it was commented above, multiple evidence suggests that pathological processes in
RA can be shaped by epigenetic mechanisms [34,94]. In this sense, it should be noted that
hypoxia is one of the best-described elements influencing the epigenotype [95]. Therefore,
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advances in understanding how hypoxic RA tissue induces epigenetic modulations may
provide potential advances for novel therapies.

3.2. Oxidative Stress, Cell Metabolism and Inflammation

Overall, a healthy synovium has a very different metabolic degree compared to RA
synovium (pannus), since one of the main signatures of the RA synovial tissue is a remod-
eled cell metabolism. Indeed, several type of RA cells (synoviocytes, macrophages, CD4+
T cells, T-helper type 17 (TH17) cells and dendritic cells) choose the glycolytic route to
produce ATP instead of the more productive OXPHOS route [57,96–103]. This switch in
cell metabolism, not related to oxygen availability, is the so-called Warburg effect or aerobic
glycolysis [104]. In this sense, recent findings point out glycolysis rate-limiting enzymes
as novel potential regulators of RA pathogenesis [105]. In fact, it has been shown that the
expression of the first rate-limiting enzyme of glycolysis, hexokinase 2 (HK2), is elevated
in the RA synovial tissue, as well as that its overexpression in the synovial lining of a
preclinical model promotes hypertrophy of healthy synovium and an aggressive synovial
phenotype. By contrast, HK2 deletion in FLS decreases its invasive phenotype, both in vitro
and in a model of arthritis [57]. The second key rate-limiting enzyme in the glycolytic
pathway is phosphofructo-2-kinase/fructose-2, 6-bisphosphotase (PFKFB). PFKFB is over-
expressed in RA synoviocytes regulating the expression of multiple inflammatory cytokines
and chemokines, promoting cell proliferation, invasion and migration, and concomitant
pannus formation [106]. Additionally, RA CD14+ monocytes display increased levels of
key glycolytic enzymes HK2 and PFKFB, and demonstrate a reliance on glucose consump-
tion and inflammatory dysfunction, a phenotype that precedes clinical manifestation of
disease [107]. By contrast, in naïve CD4+ T cell of RA patients show low levels of PFKFB
and high levels of glucose-6-phosphate dehydrogenase (G6PD) inducing a decrease in gly-
colytic pathway and an increase in pentose phosphate pathway that lead to ROS exhaustion
and low ATP levels [108,109]. Finally, pyruvate kinase M2 (PKM2), a critical enzyme that
catalyzes the last step of glycolysis, is usually upregulated in proliferative cells. Thus, RA
synoviocytes present high PKM2 expression according to increased glycolytic activity [98].
In relation, PKM2 knockdown suppressed migration, invasion, and the expression of IL-1β,
IL-6, and IL-8 by TNFα–treated RA FLSs [110]. Additionally, metabolic reprogramming
of macrophages instigates CCL21-induced arthritis [111]. As a result of all these changes,
RA synovial fluid and synovial tissue have a significant elevation in lactate and a decrease
in glucose levels, which correlated with the marker of disease activity PCR [112,113]. Of
note, pro-inflammatory profile of autoimmune CD8+ T cells relies on increased lactate
dehydrogenase A (LDHA) activity and aerobic glycolysis [114]. Additionally, lactate boosts
the switch of CD4+ T cells to an IL-17+ subset [113]. Besides, lactate together with other
glycolytic intermediates could contribute to RA pathogenesis through potent stimulation
of angiogenesis [80]. Finally, it should be remarked that recent studies suggest that the
hypoxia-lactate axis could temper inflammation [115]. Therefore, lactate could counterbal-
ance the inflammatory scenario triggered by hypoxic environment, promoting a metabolic
switch from inflammatory macrophage to homeostatic M2 like-polarization by epigenetic
modifications (histone lactylation) [95].

Other intermediates of mitochondrial tricarboxylic acid (TCA), such as succinate,
fumarate and citrate, are relevant in RA pathogenesis. Succinate is abundant in synovial
fluids from RA patients. Furthermore, succinate promotes the stabilization of HIF-1α and
enhances pro-inflammatory IL-1β production in a succinate receptor (GPR91)-dependent
manner [116,117]. Thus, succinate receptor deficiency attenuates arthritis by reducing
dendritic cell traffic and expansion of TH17 cells in the lymph nodes [118]. Succinate
can also induces synovial angiogenesis in RA through metabolic remodeling and HIF-
1α/VEGF axis [67]. With regard to citrate, which can be metabolized into itaconate by
the enzyme immune responsive gene-1 (IRG1), fumarate has been observed to mediate
anti-inflammatory effects [119,120]. In fact, increasing plasma itaconate levels in early RA
patients correlated with improved DAS44 score and decreasing levels of C-reactive protein
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(CRP) associated macrophage activation [121]. Additionally, activation of Nrf2/heme
oxygenase (HO)-1 signaling pathway by dimethyl fumarate ameliorates complete Freund’s
adjuvant-induced arthritis in rats [122].

Notably, several drugs currently in use for the treatment of RA could exert a num-
ber of anti-inflammatory actions by affecting metabolic signaling pathways [80,119,121].
Thus, tofacitinib, an oral Janus kinase inhibitor for the treatment of RA, decreases in RA
synoviocytes [100] and CD8+ T cells [114] the mRNA expression of different glycolysis
rate-limiting enzymes such as the mentioned HK2, PFKFB or other molecules involved
in aerobic glycolysis, as GLUT1, also higher in RA synoviocytes, which in turn results in
the attenuation of inflammatory response and hyperplasia state. In the same line, glucose-
lowering agents such as metformin or thiazolidinediones (TZDs) have shown potential
anti-inflammatory activities and protective effects on RA [123–125]. Interestingly, blockade
of glycolysis alleviates inflammatory phenotype in RA macrophages and RA fibroblasts,
even when metabolic regulation of both cell types is distinct [126].

Notably, a recent study described different metabolic phenotype of synoviocytes that
discriminates acute, self-limiting synovitis (resolving arthritis) from a persistent very early
RA (veRA) [127], which may in turn explain differences in phenotypes between subgroups
of patients. veRA synoviocytes may exhibit a delay in upregulating glycolysis in response
to inflammatory mediators. Intriguingly, this later study not showed differences between
both metabolic phenotypes relative to glucose and lactate levels. Definitely, it would
need further investigation about the role of glucose metabolism in the pathogenesis of
RA to explore novel therapeutic strategies as well as new panels of biomarkers to help to
understand the heterogeneity of RA.

3.3. Oxidative Stress, Mitochondrial Dysfunction and Inflammatory Response

There is accumulating evidence for an apparent connection between oxidative stress,
mitochondrial dysfunction and inflammatory and immune responses [20,24,26,54,128].
Damaged/dysfunctional mitochondria could release damage-associated molecular pat-
terns (DAMPs, also known as alarmins) such as mtROS and also mtDNA. DAMPs can
act through modulating innate immunity via redox sensitive inflammatory pathways
(i.e., NF-κB or AP-1) or direct activation of the inflammasomes, cytosolic receptors that
once activated induce the maturation of the pro-inflammatory cytokines IL-1β and IL-
18 through caspase-1 activation [47,48,129]. NLRP3 is one of the most extensively de-
scribed inflammasome receptors for its relevant role in the pathogenesis of many sterile
inflammatory diseases such as RA. Redox sensitive inflammatory pathways as well as
inflammasome pathway are elevated in RA [48,130]. Remarkably, both pathways could
interact between them boosting the inflammatory response. In this line, it has also been de-
scribed mitochondrial impairment could sensitize cells, causing a significant exacerbation
of cytokine-induced inflammatory response through ROS generation and sensitive-redox
transcription factor as NF-κB [22,23,131]. Specifically, when mitochondrial impairment
was induced in normal synoviocytes by commonly mitochondrial inhibitors, an otherwise
less efficient concentration of IL-1βwas as effective as a 10 times greater concentration of
IL-1β in the absence of mitochondrial impairment [22]. On the other hand, several studies
and our own research have demonstrated in vitro that several inflammatory mediators,
such as the cytokines TNFα and IL-1β, as well as reactive RNS may induce mitochondrial
alterations [27,132,133]. Parallel, oxidative stress increases mtDNA mutations and ROS [3],
contributing to perpetuate a vicious cycle of oxidative/mitochondrial stress. The function
of NLRP3 is monitoring the cytosol for stressful environments. NLRP3 is activated after
exposure to a wide range of stimuli including those of mitochondrial origin (DAMPs) such
as ATP, ROS, cardiolipin or oxidized mitochondrial DNA fragments and other stimuli
such as nigericin, bacterial toxins such as lipopolysaccharide LPS, viruses or alcohol [134].
Activation of typical NLRP3 requires two signals: a first signal in which transcription of
the pro-IL-1β and pro-IL-18 genes is induced, as well as NLRP3, which dependent on the
activation of the NF-κB signaling pathway (cytokine or Toll-like receptors). Moreover, a
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second signal, in which the extra- or intra-cellular stimuli recruit the adapter molecule
caspase recruitment domain (ASC) and caspase-1 to assembly NLRP3 inflammasome, lead-
ing to caspase-1 activation and, consequently the maturation of IL-1β and IL-18. Thus,
the pivotal roles of mitochondria in the initiation and regulation of NLRP3 is beyond
any doubt. Curiously, NF-κB via autophagy inhibits NLRP3 inflammasome activation
through p-62-dependent clearance of damaged mitochondria [135]. By contrast, extrinsic
and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly [136],
and caspase-1 initiates apoptosis in the absence of gasdermin D [137]. Finally, note that
epigenetic dynamics is a key regulator of the expression of inflammasome components and
its further activation [138]. Therefore, targeting mitochondrial maintenance may control
cell homeostasis, and in turn, delay aging and prevent related diseases such as RA.

3.3.1. Redox-Sensitive Inflammatory Pathways in RA

There is an extensive variety of cellular redox-sensitive signaling processes such as
the activation of nuclear factor-kB (NF-κB), the activator protein-1 (AP-1) that lead to
a transcriptional up-regulation of a number of genes involved in inflammation and/or
fibrogenesis [139] or the nuclear factor erythroid-2-related factor 2 (Nrf2), which is a
crucial transcription factor resolving inflammatory and apoptosis process [140]. Since
mitochondria are the major source of ROS, mitochondria are also critical elements in the
control of cellular redox-sensitive signaling.

In RA, the transcription factor NF-κB is highly activated and represents one of the main
inflammatory mediators since it is involved in the induction of numerous pro-inflammatory
cytokines such as IL-1β, IL-6, IL-8 or TNF-α in monocytes, macrophages and also in syn-
oviocytes [22,23,141]. In turn, these cytokines are capable of activating the NF-κB factor
in other immune cells such as T and B lymphocytes and in synoviocytes, thus inducing
the expression of additional inflammatory cytokines and chemokines, which leads to an
inflammatory loop, with a greater recruitment of inflammatory cells from the immune sys-
tem and the spread of inflammation [142]. In relation, oxidative stress could modulate the
cytokine response of differentiated Th17 and Th1 cells during RA [143]. Another important
role of NF-κB in RA is to promote synovial hyperplasia by promoting cell proliferation and
inhibiting apoptosis, assuming a link between the inflammatory process and the reduced
rate of cell death [144]. In addition, it contributes to tissue destruction since it is involved
in the synthesis of MMPs and vasoendothelial growth factors such as vascular endothelial
growth factor (VEGF), which favors, to a large extent, the characteristic invasive capacity of
the AR synovium. Surprisingly, it has been demonstrated that mitochondrial dysfunction
may generate low-grade inflammatory and matrix degradation via mitochondrial calcium
exchange, ROS production and NF-κB activation [22,23,145]. The aforementioned hypoxia
also activates the expression of NF-κB through the canonical signaling pathway [79], dis-
playing synergistic behavior during hypoxic inflammation and contributing to stablish an
inflammatory loop [146]. Additionally, remember again that NF-κB could restrict inflamma-
some activation via elimination of damaged mitochondria providing an essential regulatory
loop to limit its own inflammatory response [135]. Interestingly, NF-κB polymorphism
are also important in the pathophysiology of RA. Thus, a recent study associate NFKB2
polymorphisms with the risk of developing RA and the response to TNF inhibitors [147].
In relation, it has been demonstrated that the combination of NF-κB targeted siRNA and
MTX in a hybrid nanocarrier could effectively treat the RA in a preclinical model avoiding
the adverse effects of MTX and opening a novel therapeutic approach in the treatment
of RA [148]. In this way, targeting NF-κB activation could represent a novel therapeutic
approach to attenuate RA development.

ROS also activates the AP-1 pathway followed by expression of pro-inflammatory
genes such as TNFα and MMPs [149,150]. Therefore, some of the effects of AP-1 activation
are the increase in cell proliferation, angiogenesis, induction of osteoclastogenesis or matrix
degradation by synoviocytes [151–153]. Additionally, a recent study has identified new
functionally relevant mutations in the coding regions of the human Fos and Jun proto-
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oncogenes in RA synovial tissue [154]. Finally, and relative to progress toward prevention,
the therapeutic potential of a novel selective histone deacetylase 6 inhibitor in a murine
model of arthritis via blockade of NF-κB and also AP-1 activation has been described [155].

Nrf2 regulates the expression of more than 200 genes involved in antioxidant de-
fense [5]. It is activated in the synovium of RA patients and increased levels of its target
enzyme HO-1 have also been found in RA synovial fluid. Thus, although this antiox-
idant factor is unable to control the oxidative stress associated with the pathology, its
silencing would cause an aggravation of the symptoms and joint destruction [8]. On the
contrary, its induction with different agents attenuates the severity of arthritis. Further-
more, the Nrf2 inducer sulforaphane has also shown the ability to induce apoptosis in
TNF-stimulated synoviocytes, but not in healthy synoviocytes [156]. More recently, the
anti-arthritis effect of sulforaphane has also been associated with the inhibition of both B
cell differentiation and the production of inflammatory cytokines [157]. As commented
above, the endogenous mitochondrial TCA metabolite itaconate is increasing in plasma
from early RA patients and correlate with improved DAS44 score and decreasing levels
of C-reactive protein (CRP) [121]. In relation, it has been demonstrated that itaconate
activates Nrf2 via alkylation of its inhibitory protein Kelch-like ECH-associated protein
1 (KEAP1) [120]. Remarkably, Nrf2 exerts its anti-inflammatory effects, at least in part,
through the inhibition of NF-κB pathway. In this sense, there is a cross-talk between Nrf2
and NF-κB pathways [5].

Further studies are necessary to establish effective strategies to maintain the appro-
priate levels of oxidative stress and to offer novel potential therapeutic strategy for the
treatment of RA.

3.3.2. NLRP3 Inflammasome in RA

Compelling evidence has described that NLRP3 inflammasome, and in turn IL-1β
secretion, are highly activated in both RA patients and arthritis preclinical models in
several type of RA cells (macrophages or monocytes, CD4+T cells, Th17 and synovio-
cytes) [48,158–161]. Therefore, monocytes from RA patients display an increased produc-
tion of IL-1β via NLRP3 inflammasome [161]. Notably, NLRP3 inflammasome regulates
Th17 differentiation in RA [162] as well as Th2 differentiation [163]. Besides, Th1 immunity
requires complement-driven NLRP3 inflammasome activity in CD4+ cells [164]. These
results suggest that NLRP3 is also involved in adaptive immunity and not just innate
immunity. On the other hand, drugs used in chronic arthropathies [165], but not in all
studies, modulate inflammasome activation on RA. Thus, tofacitinib restores the balance
of γδTreg/γδT17 cells in RA by inhibiting the NLRP3 inflammasome [166]. However, it
has been described that, paradoxically, glucocorticoids can also have proinflammatory
influence on the immune system through upregulation of the NLRP3 inflammasome [167].
Remarkably, it has been observed how a genetic modification that predisposes to the de-
velopment of arthritis in mice results in greater activation of the NLRP3 inflammasome
complex and likewise, the deletion of a functional NLRP3 complex produces notable im-
provements in the disease [168]. In this line, Guo C. et al. have recently shown an increased
expression of NLRP3, caspase-1 and IL-1β in the synovial tissue of mice in which arthritis
was induced, and which was reduced by treating animals with the selective inhibitor of
NLRP3, MCC950 [48]; however, phase II clinical trials in RA where inhibitor MCC950 was
used were interrupted because of its hepatoxicity [129]. By contrast, caspase-1 mediated
IL-18 activation in neutrophils promotes the activity of RA in a NLRP3 inflammasome in-
dependent manner [169]. Interestingly, a recent study has described how anti-citrullinated
protein antibodies (ACPAs) promote IL-1β production in RA by activating the NLRP3
inflammasome, suggesting a new role of ACPAs in RA pathogenesis [170]. Moreover,
NLRP3-mediated IL-1β secretion could be regulated by a variant within the gene locus
encoding PTPN22, which has emerged as an important risk factor for auto-inflammatory
disorders, including RA [171]. In addition to this, polymorphisms and expression of
inflammasome genes are associated with susceptibility, disease activity and anti-TNF treat-
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ment response in RA [172–174], while it has also been described how several microRNA
(miR-33, miR-20a and miR-30a) act as positive regulator of the NLRP3 inflammasome in RA
macrophages [175–177]. More recently, the synergy of complement C1q with PTX3 in pro-
moting NLRP3 inflammasome over-activation and pyroptosis in RA has been detailed [178].
In relation, the DNA repair nuclease MRE11A works as a mitochondrial protector and
prevents T cell RA pyroptosis and tissue inflammation [179]. Finally, a last study by Jäger
et al. reports how calcium-sensing receptor-mediated NLRP3 inflammasome response to
calciprotein particles drives inflammation in RA monocytes and enhances inflammatory
arthritis and systemic inflammation [180]. Collectively, these results suggest that direct
therapies targeting NLRP3 inflammasome could be a potential therapeutic strategy for the
treatment of RA [47].

4. Mitochondrial Oxidative Stress and Cell Death in RA

An altered ratio of programmed cell death could actively contribute to the develop-
ment of synovitis and finally, the formation of the synovial pannus. Therefore, synovial
hyperplasia could be the consequence of the dysregulation of programmed cell death
in various associated cell types (synoviocytes, T cells, B cells, monocyte-macrophages
and neutrophils) in a context of excessive cell proliferation, such as that observed in RA
synovium [181].

Cell death is a physiological process involved in maintaining tissue homeostasis dur-
ing normal development of different structures, natural aging process or in case of injury;
and acts by establishing a balance between the number of new cells and those that are
damaged. In this way, defective cell death can lead to a pathological scenario [26,182]. This
way, uncontrolled cell proliferation results in the development of diseases such as cancer or
RA, while an excessive level of cell death can lead to diseases such as Alzheimer’s or Parkin-
son’s [182]. Mitochondria also have a central position in regulating cell death [182,183]. As
a result, it is not conspicuous that damaged mitochondria have been associated to multiple
acute and chronic diseases as RA [184].

Depending on the morphological alterations of dying cells, the mechanisms by which
these and their fragments are eliminated, classically cell death has been established in three
types: type I cell death or apoptosis, type II cell death or autophagy and type III cell death or
necrosis [185]. However, the last Cell Death Nomenclature Committee of 2018 proposes an
updated and complete classification, focused on morphological, molecular and functional
aspects of the cell death process. Thus, up to 12 different types of cell death have been
identified [185] that can be executed following different or overlapping signaling pathways,
even sharing the same molecular process [185]. Additionally, regulated cell death has long
been considered as an immunologically silent or even tolerogenic event [186]; however,
depending of the cell death type, dying cells release and exhibit different signals at their
surface, which could dictate the immunogenicity of cell death [136,187–190].

Apoptosis or type I programmed cell death is the most common form of cell death [188].
Morphologically, it exhibits a series of highly organized alterations that include cytoplas-
mic contraction, chromatin condensation, nuclear fragmentation, and vesicle formation
in the plasma membrane [188]. All of these events culminate in the formation of small
vesicles known as “apoptotic bodies” that enclose the intracellular components [185]. These
compartments can be easily captured by neighboring cells with phagocytic activity and
degraded within the lysosomes [185], which means that the frequency of apoptosis is often
undervalue. To date, two main signaling pathways have been described that can trigger
the execution of apoptotic cell death: the extrinsic pathway, which involves the classical
interaction between ligand and receptor (also called death receptor) on the cellular surface
such as TNFα receptor-1 (TNFR1) or FAS; and the intrinsic or mitochondrial pathway [185].
Both signaling pathways involve the activation of a family of enzymes called caspases [191].
Although the two routes of apoptosis are very different, both have in common a last phase
of execution of cell death that is characterized for being irreversible and for involving the
activation of effector caspases-3 and -7 [192,193]. Interestingly, caspase-1 is able to initiate
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apoptosis [137], highlighting the interplay between cell death and inflammasome activa-
tion [194]. As commented above, the intrinsic pathway is associated to mitochondria and is
inducible by multiple stimuli, including high levels of mtROS [183,195]; these produce the
activation of BH3 proteins that, in turn, activate BAX and BAK, triggering the permeabi-
lization of the mitochondrial outer membrane [194]. In fact, the crucial event of intrinsic
apoptosis is the mitochondrial outer membrane permeabilization, which leads to the liber-
ate of cytochrome c and the assembling of the prominent complex apoptosome [196,197];
that subsequently causes the downstream cascade activation. Mitochondrial inner mem-
brane permeabilization enables mtDNA release during apoptosis [54,190] and underpins
various inflammatory pathways triggered by mtDNA efflux.

Autophagy or type II programmed cell death was originally identified as a strategy
for cell survival during lack of nutrients or other stress situations, but it has been observed
that it is capable of mediating cell death depending on the context in which it is found. In
this way, autophagy plays a delicate role in the regulation of cell survival and death. Cell
death by autophagy is the result of excessive induction of the autophagic process because
of intracellular damage or an excessively high number of non-functional organelles; so
once it is pushed to the limit and has reached the “point of no return”, it ends with the
death of the cell. This is morphologically characterized by the accumulation of cytoplas-
mic vesicles (destruction of large amounts of cytoplasm occurs) resulting in irreversible
cellular atrophy and the consequent collapse of crucial cellular functions [185,198]. This
type of death is a regulated and catabolic process dependent on lysosomal action, which
therefore makes it easier for cells to eliminate cellular components that are damaged or
have ceased to be functional (mitochondria, endoplasmic reticulum, peroxisomes), proteins
that are poorly folded or pathogenic, in order to preserve cellular homeostasis [185]. Cell
death by autophagy is caspase-independent. The mTORC1 complex is the major sensor of
autophagy, since it avoids the initiation of the autophagy by Atg1 (autophagy related 1). In
relation, Atg genes control the autophagy development. Autophagy is classically organized
in five stages. Initiation of the autophagic process with the formation of the ULK1 complex.
Phagophore formation and nucleation in which beclin-1 is required. Elongation with the
recruitment of processed LC3 to the membrane of the growing phagophore and interaction
of the p62/SQSTM1 adapter with cytosolic cargo. Maturation in which the phagophore
encloses the cellular cargo, giving rise to the mature double-membrane autophagosome.
Finally, the autophagosome and lysosome fusion to form the autophagolysosome where the
degradation of the cytosolic cargo occurs by lysosomal enzymes proteolytic degradation.
It is important underline that several authors have described a non-canonical pathway of
autophagy. This term is used to distinguish a process in which autophagosome forma-
tion and maturation is independent of beclin-1 [199]. Mitochondria could act regulating
autophagy through ROS as well as by interacting with lysosomes and endoplasmic reticu-
lum [200]. Apoptosis and autophagy were studied for a long time as two totally isolated
mechanisms that represented two mutually exclusive cellular states; instead, the steady
accumulation of evidence over the past decade has suggested that these two modes of
programmed cell death may often be interconnected by complex networks of proteins [201].
Thus, depending on the context surrounding the cell, the two main cell death pathways
cooperate in a balanced interaction that promotes cell survival or cell death [202,203].
Therefore, mitochondria have plausible therapeutic options for the treatment of many
diseases [182,183].

4.1. Apoptosis in the Pathophysiology of RA

RA synoviocytes undergo fundamental changes during the course of the disease,
adopting an activated tumor-like phenotype associated with the acquisition of resistance to
apoptosis [184]. In this way, insensitivity to apoptosis leads to abnormal proliferation of
RA synoviocytes [181]. Numerous events that converge in the RA synovial environment
promote the survival of synoviocytes and hinder their elimination through apoptosis. Thus,
two of the most significant alterations in T-cell impaired in RA is the permanent activa-



Antioxidants 2022, 11, 1151 11 of 30

tion of T-cells and the subsequent abnormal proliferation state which also stimulate the
proliferation of fibroblasts within the joint synovial tissue contributing and favoring, to a
great extent, the survival of active synoviocytes [204]. Likewise, it has been shown how
the cells present in the RA synovium show an increased expression of the antiapoptotic
proteins of the Bcl-2 family (Bcl-2 and Mcl-1) that would act by restricting the susceptibility
to the intrinsic pathway of apoptosis [205]. In agreement, it has been observed in in vitro
studies with RA synoviocytes that the stimulation of these cells with proinflammatory
mediators such as TNF-α or IL-1β increases the expression of Bcl-2 and, therefore, protects
them from cell death in an inflammatory environment. In addition, sometimes this expres-
sion is located in lymphoid aggregates, which could suggest a protective mechanism of
T and B cells against cell death [205]. In this line, the survival of T lymphocytes ensures
that both non-immune cells, such as synoviocytes, as well as immune cells, including B
cells, macrophages, dendritic cells, mast cells or neutrophils, continue to survive in the
RA synovium where they perpetuate the chronic inflammatory process of RA [204,206].
Interestingly, the inhibition of NF-κB signaling pathway induces apoptosis and suppresses
proliferation and angiogenesis of human fibroblast-like synovial cells in rheumatoid arthri-
tis [207]. Additionally, it has been described as hypoxia reduced RA synovial fibroblast cell
apoptosis through Notch-3, whereas an increase in autophagy bodies under hypoxia can
be limited by siNotch-3 [82].

On the other hand, recent studies identified a new crosstalk between metabolic status,
mitochondria and apoptosis in RA. Thus, moderate extracellular acidification inhibits
capsaicin-induced apoptosis through regulating calcium mobilization, NF-κB translocation
and ROS production in synoviocytes [208]. Moreover, the glycolytic enzyme HK2, which is
elevated in RA synoviocytes can bind to mitochondrial membrane via its interaction with
the outer membrane porin protein voltage-dependent anion channel (VDAC) and inhibit
the release of cytochrome c, and in turn might protect synoviocytes from apoptosis [57].
In relation, commonly used drugs for the treatment of RA could exert their therapeutic
benefits, at least in part, by regulating apoptosis [181]. As an example, a JAK inhibitor
suppressed the pro-inflammatory behavior of RA synoviocytes accelerating apoptosis and
abrogating thickening of the synovium [209].

4.2. Autophagy in the Pathophysiology of RA

What role does autophagy play in RA? Similar to other autoimmune diseases, au-
tophagy plays a dual role in RA [26,210], showing both a therapeutic and a pathogenic
effect [211,212]. In addition to the defective apoptosis in resident synoviocytes as well as in
immune and inflammatory cells which infiltrate the RA synovium and that contribute to
the persistence of RA, it has been described how the autophagy level in the synovial tissue
of patients with active RA are greatly increased, correlating with disease severity [213].
Furthermore, increased autophagy in CD4+ T cells results in T-cell hyperactivation and
also contributes to their apoptosis resistance [206]. In relation, low oxygen levels in the RA
joint are inversely associated with an increase in autophagy, and consequently, in synovial
inflammation and oxidative damage, given the implication of this type of cell death in
the activation of immune function [214]. In addition, autophagy increases auto-antigen
presentation by antigen presenting cells [215]. However, other studies have suggested that
severe endoplasmic reticulum stress in RA synoviocytes leads to cell death through the
formation of autophagic vesicles. In particular, Kato M. et al. explain that: “in contrast to
the apoptosis-resistant phenotype of the AR synoviocytes, a potential Achilles’ heel has
been identified in these cells by inducing cell death by autophagy” [210]. In addition, it
has been described that a combination of the mTOR (suppressor of autophagy) inhibitor
everolimus and MTX may have clinical benefit for the therapy of RA in patients who have
an insufficient response to MTX monotherapy [216]. In addition, there is no doubt that
dysregulated autophagy could modulate inflammasome activity and be a main driver of
multiple autoinflammatory and auto-immune diseases [131,135,217]. In fact, autophagy
inhibits NLRP3 inflammasome activation through p-62-dependent clearance of damaged
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mitochondria [135] and, subsequently, regulating innate immune responses by inhibiting
the release of mitochondrial DNA mediated by the NLRP3 inflammasome [131]. In this
sense, our group has recently described that autophagy activation by resveratrol reduces
the severity of experimental RA that pharmacological intensification of autophagic flux
by resveratrol in an RA preclinical model limits the cross-talk existence with inflamma-
tion [218,219]. In agreement, autophagy enforces functional integrity of regulatory T cells
by coupling environmental signals and metabolic homeostasis [220]. In fact, PFKFB defi-
ciency impairs ATP generation, autophagy, and redox balance in RA T cells with increased
susceptibility to apoptosis [108]. Finally, a recent study showed how RA T cells with hyper-
activated mTORC1 pathway leads to pro-inflammatory TH1 and TH17 helper T cells and
promotes synovial tissue inflammation [221]. Due to the central role of mitochondria in cell
death, understanding of how mitochondria fine-tune the interplay between metabolism,
apoptosis, and autophagy might provide most effective strategies for clinical treatment,
also in RA.

5. Interplay between Mitochondrial and Epigenetic Mechanisms in RA

Epigenetic concerns to changes in the expression and functions of genes that are heri-
table even when the DNA sequences persist without changes. Thus, epigenetic changes
include DNA methylation, histone modification, and expression of micro-RNAs [222].
Multiple emerging evidences describe differences in the epigenome of disease-relevant
cells in RA patients in relation to healthy subjects [223–225]. In fact, DNA from peripheral
blood mononuclear cells (PBMCs) and RA synoviocytes are hypomethylated in active
RA and methylation correlates with disease activity [94,226]. Interestingly, it should be
noted that the hypoxic status that defines the arthritic joint is one of the best-defined
features governing the epigenotype [95,227]. On this point, lactate could compensate the
inflammatory setting triggered by hypoxic condition, promoting a metabolic switch from
inflammatory macrophage to homeostatic M2 like-polarization by epigenetic modifica-
tions (histone lactylation) [95]. Methylation also promotes inflammation and activation
of fibroblast-like synoviocytes in RA [228,229] as well as is associated with the level of
transcript in T lymphocytes from RA patients [230]. Notably, differential DNA methylation
correlates with response to methotrexate in RA PBMCs [231,232]. In fact, the key drivers
of RA synovitis, TNF and IL-1, reprogram the epigenomic landscape of FLS by altering
chromatin and contributing then to induce unremitting expression of arthritogenic genes in
RA synoviocytes [233–235]. Additionally, note as different epigenetic changes are involved
into NLRP3 inflammasome activation [138]. Histone modification and micro-RNA are too
involved in epigenetic regulation in the pathogenesis of RA. Thus, a reduced activity of
HDAC3 and increased acetylation of histones H3 has been described in PBMCs of RA
patients [236]. In relation, a recent study showed in a preclinical model of RA as well as in
human RA synoviocytes the therapeutic potential of a novel selective histone deacetylase
inhibitor [155,237]. As an example of micro-RNA-mediated pathogenesis of RA, plasma
micro-RNA-22 is associated with disease activity in well-established RA [238]. Besides,
there is a lower circulating of miR155 levels in RA patients compared to healthy controls
that interestingly correlated with a miR-155 gene methylation level significantly higher in
RA patients [239].

For years, it has been known that nutrition plastically modulates the epigenetic land-
scape, but also epigenetic marks exert profound effects on metabolic genes regulation
favoring the choice of the glycolytic route to produce ATP instead of the more productive
OXPHOS route [35]. In this context, mitochondrial function/dysfunction is the main actor
and for this reason, the interplay between metabolism and epigenetic changes and muta-
tions in mitochondrial genetics is a novel subject of interest [35,127]. Thus, mitochondria
could be involved in epigenetic modulation through bidirectional crosstalk between mito-
chondrial and nuclear genome. Besides, mitochondria genome methylation could be also
involved in the process. In this regard, the metabolic intermediate of mitochondrial TCA,
succinate has been related to changes in DNA methylation and associated histone proteins,
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which in turn regulate gene expression [240]. In relation, Torres et al. described the switch
in the epigenetic environment of genes associated to the regulation of nutrient transporters
in RA synoviocytes [241].

Although still in the midway between facts and fiction, the reversibility of epigenetic
marks, and in turn, the possibility of epigenetic reprogramming could open novel pharma-
cologic opportunities in the treatment of RA [34]. Moreover, epigenetic signatures could
provide new panels of biomarkers to offer a new perspective for the diagnosis of RA.

6. Dietary Factors on Mitochondrial Status in RA

Accumulating evidence has identified some dietary factors as important risks factors
for RA. In this sense, conducting a literature search on studies that analyze the impact
of obesity on disease activity and treatment response in RA, there is no doubt that obe-
sity is associated with more severe symptoms among RA patients. However, it remains
unclear whether poorer treatment response rates are related to reduced efficacy of ther-
apies [242]. Obese patients may have increased levels of inflammatory cytokines and
adipokines [243,244]. In addition, insulin resistance is closely associated with an increased
risk of subclinical atherosclerosis in patients with rheumatoid arthritis (RA). Anti-TNF
therapy reduces insulin resistance and improves insulin sensitivity in patients with severe
RA. New findings have shown, however, that the efficacy of these agents in this regard is
impaired by obesity [245–247].

On the other side, natural compounds that exhibit anti-oxidant and anti-inflammatory
properties have gained medicinal potential for the development of new drugs or as effec-
tive co-adjuvant medication in the management of RA [2,33,248,249]. In this line and as a
representative of this approach, resveratrol is a polyphenol present in our diet, which it has
been widely recognized for its anti-inflammatory, anti-oxidant, anti-cancer and anti-ageing
properties [218,248,250–253]. Previously, we have reported a decreased disease severity in
an acute antigen-induced arthritis (AIA) model by dietary oral administration of resver-
atrol. The reduced arthritis severity was accompanied by significant down-regulation of
synovial hyperplasia, as well as by a reduction of local massive infiltration of immune and
inflammatory cells. Besides, a potent decrease of cytokine-mediated inflammation and
oxidative damage were described [218]. Other research has also demonstrated decreased
severity in other animal models of arthritis using resveratrol [254–256]. In relation to
mitochondria, recent findings of our group has also demonstrated as enhancing autophagic
flux and modulating the cross-talk existence with inflammation by limiting inflamma-
some activation, at least in part, mediate these protective effects [219]. In addition, we
have reported that resveratrol can modulate the inflammation induced by mitochondrial
dysfunction by decreasing ROS production and NF-kB activation, in normal human syn-
oviocytes [22]. Resveratrol may inhibit NF-κB signaling and inflammation by up-regulating
the enzyme adenosine monophosphate kinase (AMPK) and in turns NAD+ and the activity
of sirt1 [251]. Additionally, resveratrol as well as other dietary agents could modulate Notch
pathway [257,258]. In relation to monocytes and macrophages, several in vitro macrophage
studies have also shown that resveratrol pre-treatment can modify the macrophage inflam-
matory and oxidative response to the inflammatory stimulus and Toll-like receptor (TLR)
4 ligand, the lipopolysaccharide. On the other hand, if resveratrol could lead to a better
treatment response in obese RA patients remains to be elucidated. In this regard, several
human and animal studies show as resveratrol leads to improved insulin resistance, weight
loss, and enhanced glucose homeostasis through promoting fat browning of white adipose
tissue by regulating the secretion of adipokines and myokines [259]. In particular, resvera-
trol alleviates obesity-induced skeletal muscle inflammation via decreasing M1 macrophage
polarization and increasing the regulatory T cell population [260]. Similarly, resveratrol
reduced obesity in high-fat diet fed mice via modulating the composition and metabolic
function of the gut microbiota [261]. In connection with the later, the modulation of in-
testinal microbiota is a potential therapeutic option for the management of RA [262–264].
In fact, gut microbiota is associated with the genotype for RA risk even in the absence of
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disease [264]. However, all these results were obtained on different models at various time
points, with different doses and from different tissues and cell types and it is difficult to
extrapolate what is happening in the articular environment. This difficulty is increased
by the fact that the effect of resveratrol is organ and tissue-dependent [265]. Finally, some
clinical trials evaluate the effect of resveratrol on obesity. However, the heterogeneity in the
populations as well as the different administered doses of resveratrol has limited the results
obtained [266,267]. Thus, resveratrol studies are controversial and reveal a pleiotropic
immunomodulatory property that is dose-time–target cell-dependent [268].

It is worth mentioning that omega-3 fatty acids are other well-known dietary bioac-
tive compounds to have anti-inflammatory properties and beneficial roles in a variety of
inflammatory human diseases, including RA. Thus, omega-3 fatty acids are associated with
a lower prevalence of anti-cyclic citrullinated peptide autoantibodies in a population at
risk for future RA [269]. In relation to macrophages, omega-3 fatty acids suppress both
LPS-induced priming and NLRP3 inflammasome activation [270] and also reduce the
inflammation by elevating autophagy process [271]. It should be noted that long-term
supplementary administration of coenzyme Q10 and omega-3 fatty acids and especially
their combination is able to restore the impaired mitochondrial bioenergetics and antiox-
idant status in a preclinical model of arthritis [272]. In this sense, dietary omega-3 fatty
acids have been suggested to counteract insulin resistance development by modulating
mitochondrial bioenergetics and ER stress [273].

In the Table 1 are presented a few examples of the most referenced compounds
in PubMed over the past five years that demonstrate potential antioxidant and anti-
inflammatory benefits. It should be taken into account that the list of natural products that
demonstrate potential benefits in the management of RA supported by in vitro and animal
studies is too extensive to cover exhaustively, and we direct the readers to other reviews on
the topic (for review, see REFs [274–278]).

In the last few years, numerous studies have strongly evidenced that epigenetic signa-
tures are related to nutrients from diet regulates gene expression and in turn are involved
in both health and disease [279,280]. In particular, emerging scientific data suggests that
resveratrol and other dietary bioactive compounds as well as their gut metabolites could act
as epigenetic regulators with a potential impact on human health [281–283]. Nevertheless,
more studies are needed to evaluate if those natural bioactive agents of a healthy diet
protect mitochondria and inhibit the overactivation of mitochondrial oxidative stress and
the associated inflammatory response that define RA.

Table 1. Natural compounds with beneficial effects on oxidative damage and inflammatory response
in RA.

Compound Model Outcome References

Oxidative Markers and Antioxidant Proteins

Resveratrol

AA model/male and female Sprague
Dawley rats

Human synoviocytes, RA-FLS, RA
monocytes, THP-1 cells

Alleviated synovial hyperplasia, inflammatory cell
infiltration in synovium and decreased oxidative stress
↑SIRT1 signaling pathway, ↑Nrf2, ↑HO-1, ↑NQO1,

↑miR-29a-3p and miR-23a-3p and NF-κB-p65 inhibition,
↑AMPK, ↓TNF-α, ↓IL-1β, ↓IL-6, ↓HIF-1α

↓mtROS, ↑mitochondrial membrane potential (∆ψm), ↓ROS,
↓COX-2, ↓PGE2

[22,284–288]

Curcumin CFA arthritic induced male and female
Wistar albino rats

Potent antioxidant and suppressor of immune functions
of T-cells

↑GSH, ↑GST, ↑GPx, and ↑SOD levels
[289]

Hesperidin

AA model/female Wistar rats
AA model/male C57BL/6 mice

Mononuclear macrophage cell line
RAW264.7

Reduce inflammation, improve antioxidant status and
modulate apoptotic processes
↓ROS, ↑CAT, ↑GST, i↓NOS

↓TNF-α, ↓INF-γ

[290,291]

Ferulic acid Mononuclear macrophage cell line
RAW264.7

↓NF-κB-p65, ↓c-Fos, MMP-9, ↑Nrf2, ↑GSH, ↑CAT,
↑SOD, ROS [292]
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Table 1. Cont.

Compound Model Outcome References

Oxidative Markers and Antioxidant Proteins

Quercetin AA model/female C57BL/6 mice
RA-FLS

Inflammation suppressor and antioxidant defense booster
↓NF-κB-p65, ↓TNF-α, ↓INF-γ, ↓IL-6, ↑IL-4, ↑IL-10

↑active caspase-3, ↑apoptotic rate, ↓autophagic markers
[293–295]

Gentiopicroside
AA model/male Sprague Dawley rats

CIA model/male C57BL/6J mice
RA-FLS

Immunomodulator, analgesic and
osteoclastogenesis inhibitor

↓histopathological markers, ↓CD68
↓NF-κB-p65, ↓TNF-α, ↓IL-1β, I↓L-6, ↓IL-17, ↓VCAM-1,

↓TGF-β, ↓caspase-1, ↑GSH, ↑SOD, ↑GSH-Px

[159,296,297]

Oleocanthal CIA model/male DBA-1/j mice
Macrophages

↓NF-κB-p65, ↓IL-1β, ↓INF-γ, ↓IL-6, ↓TNF-α, ↓MMP-3,
↓PGE2, ↓iNOS, ↓NO2 production, ↑Nrf2, ↑HO-1, ↓NLRP3,

↓active caspase-1, ↓ASC
[298]

Sulforaphane
CIA model/male DBA/1J mice

PMBCs
RAFS

Great ability to induce phase II antioxidant enzymes and
exert anti-proliferative effects

↓RANKL, ↓TNF-α, ↓IL-6, ↓IL-17, ↑Nrf2
[157,299]

Omega 3 fatty acids
CIA model/female DBA-1 mice

CIA model/Fat-1 transgenic mice
AA model/male Lewis rats

Anti-inflammatory effect through immune cell inhibition
↓NF-κB-p65, ↓NLRP3, ↓ASC

↓IL-17, I↓L-6, ↓IL-23, ↓ATP, ↓ADP,
↓plasma CoQ9, ↑mitochondrial CoQ9 and CoQ10

[272,300,301]

AA: Adjuvant-induced Arthritis; ADP: Adenosine Diphosphate; AMPK: Adenine Monophosphate Protein Kinase;
ASC: Associated Speck-like Protein Containing a CARD; ATP: Adenosine triphosphate; CAT: Catalase; CD68:
Cluster of Differentiation 68; coQ: Coenzyme Q; COX-2: Cyclooxygenase-2; GPx: Glutathione Peroxidase; GSH:
Glutathione; GST: Glutathione S-transferases; HIF-1α: Hypoxia-inducible Factor-1α; HO-1: Heme Oxygenase
1; IL: Interleukin; INF-γ: Interferon-γ; iNOS: Inducible Nitric Oxide Synthase; NF-κB: Nuclear Factor κB; Nrf2:
Nuclear Factor-rythroid-2–Related Factor 2; NLRP3: NLR Family Pyrin Domain Containing 3; NO: Nitric Oxide;
NQO1: NAD(P)H quinone dehydrogenase 1; MMP-3: Matrix Metallopeptidase 3; PGE2: Prostaglandin E2; RA:
Rheumatoid Arthritis; RA-FLS: Rheumatoid Arthritis Fibroblast-like Synoviocytes; RANKL: Receptor Activator
for Nuclear Factor κB Ligand; ROS: Reactive Oxygen Species; SIRT-1: Sirtuin-1; SOD: Superoxide Dismutase;
TGF-β: Transforming growth factor-β; THP-1: Tohoku Hospital Pedriatrics-1 Cells; TNF-α: Tumor necrosis
factor-α; VCAM-1: Vascular Cell Adhesion Molecule-1.

7. Conclusions and Future Perspectives

Undoubtedly, loss of mitochondrial activity can define multiple pathological condi-
tions, including RA (Figure 1) [22,119]. Interestingly, enhanced metabolism is needed to
contribute to the abnormal synovial hyperplasia associated with local infiltration of various
type of immune and inflammatory cells that define the synovial pannus. In this sense, a
body of recent research indicates glycolysis rate-limiting enzymes as novel potential regula-
tors of RA pathogenesis [105]. In fact, regulation lactate metabolism imbalance could allow
revolutionary pharmacological approaches to restore mitochondrial function in RA [302].
Remarkably, several drugs currently used for the treatment of RA could exert their anti-
inflammatory actions by affecting mitochondrial metabolic signaling pathways. In addition,
persistent inflammation could lead to some epigenetic marks with negatively influence in
the development of RA. In this regard, the impact of nutraceutical components could mod-
ulate metabolic inflammation through epigenetic reprogramming. Future studies should
elucidate the preservation of mitochondrial activity with natural anti-inflammatory and
antioxidant compounds, e.g., resveratrol or omega-3, as a potential strategy for controlling
the excessive oxidative stress within mitochondrial inflammatory response in RA. In the
same line, the emerging field of redox-medicine [37] aims to controlling excessive oxidative
stress between mitochondria to offer both preventive and therapeutic opportunities in
pathologies characterized by a plethora of ROS and mitochondrial damage, such as RA.
Finally, further and larger studies are needed to better define whether precise metabolic
marks could be applying to identify patients with RA according to outcome, disease activity
and therapeutic response.
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clearance of damaged mitochondria as well as autophagy modulate NF-κB activation [135]. Addi-
tionally, multiple evidence suggests that pathological processes in RA can be shaped by epigenetic 
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Figure 1. Theoretical model for the multidirectional interplays between mitochondrial oxidative
stress, metabolic status, inflammation and cell death in RA. Mitochondria play essential roles at
the crossroads of metabolism and innate immunity [54]. Thus, mitochondrial dysfunction derived
from several danger signals could activate TCA disruption and thereby favoring a vicious cycle
of oxidative/mitochondrial stress. In fact, oxidative damage in synovial tissue is associated with
in vivo hypoxic status, high lactate and low glucose levels [3]. Mitochondrial dysfunction can act
through modulating innate immunity via redox-sensitive inflammatory pathways (i.e., NF-κB) or
direct activation of the inflammasome. Inflammasome activation and NF-κB pathway could work
together to activate inflammatory cytokines, thereby leading to overstimulation of the inflammatory
response. On the other hand, mitochondria also have a central position in regulating cell death. In this
sense, the two main regulated cell death pathways, apoptosis and autophagy, cooperate in a balanced
interaction that promotes cell survival or cell death. Additionally, NF-κB could restrict inflammasome
activation via elimination of damaged mitochondria through p-62-dependent clearance of damaged
mitochondria as well as autophagy modulate NF-κB activation [135]. Additionally, multiple evidence
suggests that pathological processes in RA can be shaped by epigenetic mechanisms and that mi-
tochondria are involved in epigenetic regulation [241]. Natural bioactive agents of a healthy diet
could protect mitochondria and inhibit the overactivation of mitochondrial oxidative stress and the
associated inflammatory response that define RA.



Antioxidants 2022, 11, 1151 17 of 30

To date, all previous findings support the relevance of mitochondria as new pharma-
cological targets. The proper maintenance of a good mitochondrial activity could control
oxidative stress and successfully represent a new protective and therapeutic new strategy
in RA and other inflammatory arthritis. However, in spite of all the advances that have
been achieved in the field, the knowledge obtained is still at an early stage and it is neces-
sary more evidence to shed light on how mitochondrial dysfunction could modulate the
onset and progression of RA. In this regard, appropriate assay methods to avoid opposite
results is the use of not manipulated cells from RA and healthy donors. In addition, most
in vitro studies are performed in cultures maintained in a normal atmosphere and with
high glucose concentrations, quite different from the hypoxic conditions of rheumatoid
joints, which could lead to obtain their energy primarily from anaerobic glycolysis, which
probably could mask the obtained results. In the same line, cell–cell crosstalk is a principal
contributor to RA pathogenesis. These models should generate more robust and powerful
findings. Moreover, most studies evaluate a reduced number of factors when several
“omics” studies at different molecular levels, including transcriptome, epigenome, pro-
teomics, and metabolomics should be performed to compare different RA profiles. Many of
these approaches require a huge economic and human effort. For this reason, the develop-
ment of coordinated studies that allow obtaining more solid and robust results is essential
to understand the heterogeneity of RA and facilitate the discovery and development of
novel drug treatments.

Definitely, it is necessary to keep in mind that prevention is the best treatment. In this
sense, a healthy diet based on incorporation of a wide variety of nutrients and preventive
nutrition could contribute to reduce the appearance of diseases that arise as a consequence
of a deficient or improper diet as several studies suggest could happen with RA [33,249,
269,303]. This way requires the participation of different sectors, both public and private,
with national policies that promote a healthy diet. In this manner, we can help to fulfill the
maxim sought by Hippocrates 25 centuries ago: “Let food be the medicine and medicine be
the food”.
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