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Abstract: Chitosan oligosaccharide (COS) has become of great interest in recent years because of
its worthy biological activities. This study aims to produce COS using the enzymatic method,
and investigates Paenibacillus sp. TKU047, a chitinolytic-producing strain, in terms of its chitosanase
productivity on several chitinous material-containing mediums from fishery process wastes.
The highest amount of chitosanase was produced on the medium using 2% (w/v) squid pens
powder (0.60 U/mL) as the single carbon and nitrogen (C/N) source. The molecular mass of TKU047
chitosanase, which could be the smallest one among chitinases/chitosanases from the Paenibacillus
genus, was approximately 23 kDa according to the sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) method. TKU047 chitosanase possessed the highest activity at 60 ◦C,
pH 7, and toward chitosan solution with a higher degree of deacetylation (DDA) value. Additionally,
the hydrolysis products of 98% DDA chitosan catalyzed by TKU047 chitosanase showed the degree
of polymerization (DP) ranging from 2 to 9, suggesting that it was an endo-type activity chitosanase.
The free radical scavenging activity of the obtained chitosan oligosaccharide (COS) was determined.
The result showed that COS produced with Paenibacillus sp. TKU047 chitosanase expressed a higher
2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity than that from the commercial
COSs with maximum activity and IC50 values of 81.20% and 1.02 mg/mL; 18.63% and 15.37 mg/mL;
and 15.96% and 15.16 mg/mL, respectively. As such, Paenibacillus sp. TKU047 may have potential use
in converting squid pens waste to produce chitosanase as an enzyme for bio-activity COS preparation.

Keywords: chitosan; chitosanase; chitosan oligosaccharides; Paenibacillus; free radical
scavenging activity

1. Introduction

Chitosan is a linear polymer that is produced from chitin via the deacetylation process [1].
Chitosan comprises some excellent properties including non-toxicity, adsorption, biocompatibility,
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and biodegradability, thus, it can potentially be used in many fields such as medicine, wastewater
treatment, agriculture, and functional food [2–7]. One of the most challenging applications of
chitosan is its poor solubility in a neutral aqueous solution. Therefore, chitosan oligosaccharide (COS),
which shows a higher solubility in neutral water than chitosan, is receiving great attention. COS exhibits
numerous properties, such as antifungal, antimicrobial, antitumor, antioxidant, immuno-enhancing,
anti-inflammatory, and antidiabetic activities [8–17]. The three major processes to convert chitosan
into COS include physical, chemical, and enzymatic methods. Compared to physical and chemical
methods, the enzymatic method seems to be more advantageous because it enables controlling the
molecular mass of the COS product and the reaction condition is gentler [2]. However, the biggest
obstacle to adopting this method is the expensive cost of the enzyme. To reduce the cost of the enzyme
and that of COS produced by the enzymatic method, some solutions include reducing the enzyme
purification steps [18], using a commercial enzyme complex to hydrolyze chitosan [19], immobilizing
the enzyme [20], using ultrafiltration membrane enzymatic system [21], and utilizing low-cost materials
to produce chitinolytic enzymes via microbial fermentation [22].

Chitosanase is a group of hydrolytic enzymes that catalyze the breakdown of 1,4 glucoside
bonds of chitosan. This enzyme can be split into endo-type activity (endo-chitosanase) and exo-type
activity (exo-1,4-β-d-glucosaminidase) based on its cleavage site on the substrate [2]. Endo-chitosanase
degrades chitosan at a random position and releases COS, thus it is the major enzyme responsible
for COS production [2]. Until now, numerous bacteria have been explored for their chitosanase
producing ability, such as Bacillus [10,15,18,23–29], Paenibacillus [8,13,30–41], Acinetobacter [42,43],
Streptomyces [14,44], Serratia [45], and Pseudomonas [46]. For the production of chitosanase via bacterial
fermentation, chitin is the common carbon and nitrogen (C/N) supplement. To produce chitin from
chitinous materials by a chemical process, a series of steps named deproteinization (using an alkali),
or demineralization (using an acid), must be performed [2–4]. However, some drawbacks occur during
or after the chitin and chitosan preparations, such as the reduction of chitin quality and the emissions of
polluting wastewater [2]. Fishery processing by-products—squid pens, crab shells, and shrimp shells,
for example—are the main sources for chitin and chitosan [4,20]. In addition to the chitin component,
they also contain a significant amount of protein and mineral salts [4,47]. Thus, these chitinous materials
can be directly used as the source of nutrition for microbial fermentation to produce chitinolytic
enzymes [8,10,13–15] as well as other valuable products [48–57].

Paenibacillus was separated from the Bacillus genus in 1993 with around 200 species [58].
Many strains of this genus have revealed various biological activities, with potential applications in
medical, agricultural, and industrial sectors [8,13,30–41,54,57,58]. Recently, marine chitinous wastes
including shrimp heads, crab shells, and squid pens were extensively used for the production of
chitinolytic enzymes, proteases, antidiabetic drugs, and exopolysaccharides by Paenibacillus species [4].
However, there is not much research on the conversion of marine chitinous wastes, especially squid
pens, to produce chitosanase via this genus. P. pasadenensis CS0611 and P. ehimensis MA2012 can produce
chitinase on the medium containing crab shells along with some other C/N sources such as peptone,
gelatin, sucrose, and yeast extract [39,59]. P. mucilaginosus TKU032 exhibited the highest chitosanase
productivity on the medium containing only shrimp heads as the C/N source, while P. macerans
TKU029 and Paenibacillus sp. TKU042 exhibited the best productivity using squid pens as the C/N
source [8,13,31]. Thus, utilizing marine chitinous wastes is of interest to produce a chitosanase from
Paenibacillus sp. TKU047, which was isolated using medium containing squid pen as the single
C/N source [54].

In the current study, the chitosanase productivity of Paenibacillus sp. TKU047 using several
chitinous materials, such as shrimp heads, shrimp shells, demineralized shrimp shells, demineralized
crab shells, squid pens, and commercial chitin was evaluated to find the appropriate C/N source for the
enzyme production process. Then, Paenibacillus sp. TKU047 chitosanase was purified and its property
was characterized. Furthermore, COS, produced by the hydrolysis of chitosan with Paenibacillus sp.
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TKU047 chitosanase was extracted and analyzed by MALDI-TOF mass spectrometry. The antioxidant
activity of the obtained COS was also evaluated and compared with that of commercial COSs.

2. Materials and Methods

2.1. Materials

Paenibacillus sp. TKU047 strain was earlier isolated and obtained from previous research [54].
Shrimp heads were obtained from Fwu-Sow Industry (Taichun, Taiwan). Crab shells, shrimp shells,
and squid pens were bought from Shin-Ma Frozen Food Co. (I-Lan, Taiwan). Demineralization of crab
shells and shrimp shells was carried out using an acid method. Briefly, shrimp head and crab shell were
treated with HCl solution (2 N) for two days and then rinsed with water and dried in an oven at 65 ◦C.
Water-soluble chitosan (a hydrochloride salt, average molecular weight or MW ≈ 12.5 kDa and degree
of deacetylation or DDA ≈ 76%), chitosan with 50%–70% of DDA (average MW ≈ 80 kDa), 70%–90%
of DDA (average MW ≈ 52 kDa), and 98% DDA chitosan (average MW ≈ 40 kDa) were provided by
the Microorganisms and Biochemistry Laboratory, Department of Chemistry, Tamkang University,
New Taipei, Taiwan. Chitin from shrimp shells, ≥75% DDA chitosan, 2,2-diphenyl-1-picrylhydrazyl
(DPPH), and 3,5-dinitrosalicylic acid (DNS) reagents were all bought from Sigma Co. (St. Louis,
MO, USA). Food-grade chitosan oligosaccharide (CCOS_1) and chitosan oligosaccharide X13 (CCOS_2)
were bought from Charming & Beauty Co. (Taipei, Taiwan). Other chemicals were of the highest
purity obtainable.

2.2. Chitosanase Assay

The chitosanase assay was performed as described in the previous study [8]. The chitosan
hydrolysis reaction was carried out in a glass tube with an equal volume of substrate (0.1 mL of 1% w/v
chitosan) and the sample (0.1 mL) for 30 min at 37 ◦C of incubation temperature. Then, the mixture
was added to 1.5 mL of the DNS reagent and heated at 100 ◦C for 10 min and the developed color
was measured using an ELISA plate reader to determine the chitosanase of the sample. One unit
of chitosanase activity was the amount of enzyme needed to produce 1 µmol of reducing sugar in
one minute.

2.3. Screening of Suitable C/N Source for Chitosanase Production

One percent of shrimp heads powder (SHP), shrimp shells powder (SSP), demineralized shrimp
shells powder (deSSP), demineralized crab shells powder (deCSP), squid pens powder (SPP), and chitin
powder were added to the medium containing 0.05% MgSO4.7H2O and 0.1% K2HPO4 to provide the
C/N source for the fermentation of Paenibacillus sp. TKU047. The medium was prepared in a 250 mL
flask and sterilized in an autoclave at 121 ◦C for 30 min before being used. One percent of seed solution
was added to every medium flask to start the fermentation at 37 ◦C and 150 rpm shaking speed for
5 days. After every 24 h, 1 mL of culture medium was withdrawn to examine the chitosanase activity.
To investigate the optimal concentration of C/N source for the chitosanase production, the amount
of SPP was adjusted in the range of 0.5% to 2.5% (w/v), while other components (MgSO4.7H2O and
K2HPO4) were similar to their initial concentrations as mentioned above.

2.4. Isolation of Paenibacillus sp. TKU047 Chitosanase

To isolate the chitosanase, 200 mL of the medium from the 4-day culture of Paenibacillus sp. TKU047
were collected and centrifuged at 6000 rpm for 30 min to remove the residual solids. The culture
supernatant was gently mixed with 120 g of ammonium sulfate and kept at 4 ◦C for one day. The crude
enzyme was separated from the mixture by centrifuging at 9000 rpm for 30 min and the pellet
was then dissolved in a small amount of 50 mM sodium phosphate buffer (pH 5.8). The residual
ammonium sulfate in the crude enzyme was removed by dialysis against 50 mM sodium phosphate
buffer (pH 5.8) for 24 h using a cellulose dialysis membrane (Cellu Sep T2, molecular-weight cutoff of
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6000–8000 Da, Membrane Filtration Products, Inc., Seguin, TX, USA). Next, the crude enzyme was
injected into a column containing strong cation exchange resin (Macro-Prep High S) as the stationary
phase equilibrated with 50 mM sodium phosphate buffer (pH 5.8). The elution was performed by
using a gradient of NaCl (from 0 to 0.5 M), prepared in a similar buffer. For each tube, the chitosanase
assay was performed to find the fraction which expressed the chitosanase activity. The fractions
which showed enzyme activity were then concentrated by lyophilization. The obtained enzyme
powder was dissolved in a small amount of distilled water and purification was continued by gel
filtration using a high-performance liquid chromatography (HPLC) system with KW802.5 column
(Showa Denko K. K, Tokyo, Japan). The molecular mass of the purified chitosanase was determined
using SDS-PAGE. The protein bands were stained by Protein Assay Dye Reagent from BioRad (Hercules,
CA, USA). A zymogram of chitosanase was performed on acrylamide gel containing 0.01% of chitosan.
After electrophoresing, the gel was washed with 2% Triton X-100 and then with sodium phosphate
buffer. The hydrolysis reaction of chitosanase was performed by keeping the gel in a similar buffer
at 37 ◦C for 12 h. The bands indicating chitosanase activity were visualized by 0.1% (w/v) congo
red solution.

2.5. Effects of Temperature and pH

The optimal temperature of Paenibacillus sp. TKU047 chitosanase activity was determined by
incubating 0.2 mL of the mixture of the purified chitosanase and the substrate at different temperatures
(30 ◦C–90 ◦C) for 30 min. Later on, 1.5 mL of DNS reagent were added to the mixture and heated at
100 ◦C for 10 min to estimate the amount of reducing sugar. The thermal stability of Paenibacillus sp.
TKU047 chitosanase was determined by incubating the enzyme solution at different temperatures for
60 min and then investigating the residual activity of tested enzyme solutions using the chitosanase
assay (as described above).

The optimal pH for Paenibacillus sp. TKU047 chitosanase activity was determined by adding the
enzyme into substrate solutions at different pH (3–11). The pH stability of the enzyme of Paenibacillus sp.
TKU047 chitosanase was investigated based on its residual activity after pre-treating the enzyme at
different pH points in 60 min using a buffer system, including pH 3 (glycine HCl); 4 and 5 (sodium
acetate); 6, 7, and 8 (sodium phosphate); and 9, 10, and 11 (sodium bicarbonate-carbonate). The residual
activity was performed at pH 7 and 37 ◦C in 30 min.

2.6. Effect of Divalent Metal Ions, Surfactants, and EDTA

Divalent metal ions solutions were prepared at 5 mM of the concentration, and surfactants (Triton
X-100 and SDS) and EDTA were at 10% concentration. Initially, an equal volume of each of those
chemicals and Paenibacillus sp. TKU047 chitosanase were mixed in a glass tube for 30 min and then the
residual activities of TKU047 chitosanase were then tested by chitosanase assay (as described above).

2.7. Substrate Specificity and Hydrolysis Products

Chitin, cellulose, water-soluble chitosan, 50%–70% DDA chitosan, 70%–90% DDA chitosan,
≥75% DDA chitosan, and 98% DDA chitosan were used individually to test the substrate specificity
of Paenibacillus sp. TKU047 chitosanase activity using the testing conditions as described above.
The chitosanase activity in ≥75% DDA chitosan solution was used as the control. The hydrolysis
solutions of 98% DDA chitosan with TKU047 chitosanase at 0 min, 30 min, 60 min, 120 min, and 180 min
were analyzed by thin-layer chromatography (TLC). Here, the mobile phase was a mixture of
propanol/ammonia solution/water (70/10/20, v/v/v). The hydrolysis products on the TLC plate were
visualized by spraying the plate with 10% H2SO4 in ethanol and heating it at 180 ◦C.

2.8. Preparation of COS

The crude enzyme from the ammonium sulfate precipitation step was used to prepare COS.
The crude enzyme was added to 98% DDA chitosan solution (1%, w/v) to start the hydrolysis reaction.
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The mixture was then incubated at 37 ◦C for 24 h. Then, the pH of the mixture was adjusted to neutral
(pH 7) to precipitate the residual amount of chitosan and the mixture was centrifuged at 6000 rpm for
30 min. The supernatant was collected and used to extract COS via selective precipitation method
using methanol and acetone [14]. In short, methanol was added to the supernatant in a ratio of 9/1 (v/v)
to precipitate the high molecular weight particles, which were removed by centrifuging at 9000 rpm
for 30 min. The supernatant was then concentrated by a rotary evaporator to reach 1/10 of its initial
volume. Eventually, the COS was collected by adding acetone into the supernatant (9/1, v/v) and
centrifuging (9000 rpm for 30 min) the mixture to obtain the precipitate.

The obtained COS was then analyzed by MALDI-TOF mass spectrometry (Bruker Daltonics,
Bremen, Germany) with a UV laser (337 nm) [14]. A solution of 15 mg/mL of 2,5–dihydroxybenzoic acid
in 30% aqueous ethanol was used as the matrix substance. For each spectrum, the data of 30–50 laser
shots were acquired and analyzed.

2.9. Antioxidant Activity Assay

To test for antioxidant activity, solutions of COS, CCOS_1, and CCOS_2 were prepared in a range
of concentration from 0.16 mg/mL to 20 mg/mL. Antioxidant activity was assayed as per the DPPH
radical scavenging activity method, described in a previous study [8].

2.10. Statistical Analysis

The data are shown as mean ± standard deviation of three replications. Statistical analysis was
performed by one-way ANOVA analysis using Microsoft Office Excel.

3. Results and Discussion

3.1. Screening of Suitable C/N Source for Chitosanase Production by Paenibacillus sp. TKU047

Six types of chitin sources, including five types from fishery wastes (shrimp heads powder (SHP),
shrimp shells powder (SSP), demineralized shrimp shells powder (deSSP), demineralized crab shells
powder (deCSP), and squid pens powder (SPP)) and a commercial chitin powder (CP) from Sigma Co.
(St. Louis, MO, USA) were used to test the chitosanase production ability of Paenibacillus sp. TKU047.
One gram of each chitin source was added to 100 mL of liquid medium containing MgSO4 (0.05 g)
and KH2PO4 (0.1 g) to provide the carbon and nitrogen sources for the chitosanase synthesis by the
bacterial strain. Nutrient broth (NB), a commercial medium from Himedia Co. (Mumbai, India),
was used as a control medium for the experiment. As shown in Figure 1a, Paenibacillus sp. TKU047
exhibited chitosanase activity on the culture media containing chitinous sources and non-activity on
NB (a non-chitinous medium) indicating that chitin was a key factor for chitosanase production by
Paenibacillus sp. TKU047. In some bacterial strains, chitin/chitosan is required as a chitinase/chitosanase
inducer [2,38]. Thus, the presence of chitin/chitosan in the culture medium could promote the
chitinase/chitosanase synthesis process by the bacterium. Among all chitinous sources, SPP was found
to be the most suitable supplement and Paenibacillus sp. TKU047 could express the highest chitosanase
activity (0.35 ± 0.02 U/mL on the 3rd day of the fermentation period) in this medium compared to
the activities on CP (0.15 ± 0.02 U/mL on the 5th day), SHP (0.14 ± 0.02 U/mL on the 3rd day), deCSP
(0.13 ± 0.02 U/mL on the 5th day), SSP (0.05 ± 0.02 U/mL on the 3rd day), and deSSP (0.10 ± 0.06 on
the 5th day). A similar phenomenon was observed in other reports, which showed that SPP was the
most suitable chitinous source for chitosanase production via Paenibacillus strains [13,31]. Chitin has
been a common supplement for chitinase/chitosanase production via microbial strains [4,14,36–38].
However, the cost of chitin may be a potential limitation for its use in chitinase/chitosanase production.
Therefore, chitinous materials from fishery wastes such as squid pens, shrimp heads, and shrimp shells
have been considered as an effective alternative [4,60]. Thus, by expressing a better result, SPP could
be selected as the sole C/N source for chitosanase production by Paenibacillus sp. TKU047.
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After confirming SPP as an important component in chitosanase production, the optimum
concentration of SPP was also investigated. A higher SPP concentration, in the range 0.5%–2.0% (w/v),
gave better chitosanase production results (Figure 1b). Particularly, the highest chitosanase activity
was found on the 4th day of using 2% SPP (0.60 ± 0.04 U/mL) compared to 0.5% SPP (0.11 ± 0.02 U/mL
on the 3rd day), 1% SPP (0.36 ± 0.01 U/mL on the 3rd day), and 1.5% SPP (0.54 ± 0.04 U/mL on the
4th day). Furthermore, when the SPP concentration increased to 2.5%, the chitosanase productivity
of Paenibacillus sp. TKU047 decreased and the highest activity (0.43 ± 0.03 U/mL) was observed on
the 2nd day of the fermentation period. Chitinases/chitosanases are inducible enzymes, indicating
that the enzyme synthesis is strongly affected by medium composition [32]. Hence, according to the
above-mentioned results, greater than 2% SPP concentrations may not suitable for the synthesis of
chitosanase by Paenibacillus sp. TKU047. Therefore, 2% (w/v) of SPP was selected as the optimum
concentration for producing chitosanase from Paenibacillus sp. TKU047.

3.2. Isolation of Paenibacillus sp. TKU047 Chitosanase

Isolation of the purified chitosanase was an essential step to further investigate its properties.
The supernatant from the 4-day culture of Paenibacillus sp. TKU047 was collected and the crude enzyme
was concentrated using the ammonium sulfate precipitation method. This was then purified using fast
protein liquid chromatography (FPLC, using Macro-prep High S column) and high-performance liquid
chromatography (HPLC, using KW802.5 column) methods. The summary of the purification procedure
is presented in Table 1. Only one chitosanase fraction was observed during the purification process.
The final purified chitosanase had a recovery yield of 4.87% and 80.28-folds of the specific activity.

Table 1. Purification of Paenibacillus sp. TKU047 chitosanase.

Step Total Protein
(mg)

Total Activity
(U)

Specific Activity
(U/mg)

Recovery
(%)

Purification
(Fold)

Cultural supernatant 1390.80 111.80 0.08 100.00 1.00
(NH4)2SO4 precipitation 129.64 57.96 0.45 51.84 5.56

FPLC 15.35 29.45 1.92 26.34 23.87
HPLC 0.84 5.45 6.45 4.87 80.28

The molecular weight of the purified chitosanase was determined using SDS-PAGE. As shown in
Figure 2a, the molecular weight of Paenibacillus sp. TKU047 chitosanase was nearly 23 kDa, indicating
that it could be the smallest among the other chitinases/chitosanases from Paenibacillus species, with MW
in the range of 30–70 kDa (Table 2). The enzyme activity was checked on a polyacrylamide gel containing
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0.1% (w/v) chitosan. On visualizing with congo red solution, one chitinolytic activity band could be
observed in the lane with the culture supernatant sample (Figure 2b), suggesting that Paenibacillus sp.
TKU047 secreted only one chitosanase into the SPP medium. While most of the Paenibacillus strains
produced one chitinase/chitosanase into the medium, there are several strains that produce more than
one type of chitinase/chitosanase, such as P. illinoisensis KJA-424, P. ehimensis MA2012, P. chitinolyticus
NP-306, and Paenibacillus sp. str. FPU-7 [37,59,61,62]. Here, on examining the band, one chitinolytic
activity band in the lane of purified chitosanase located exactly in the same position as that in the
lane of culture supernatant (Figure 2c), thus confirming that Paenibacillus sp. TKU047 chitosanase was
successfully isolated.
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Figure 2. SDS-PAGE and zymogram profiles of Paenibacillus sp. TKU047 chitosanase. (a) SDS-PAGE;
(b) Zymogram profile of culture supernatant; (c) Zymogram profile of purified Paenibacillus sp. TKU047
chitosanase. 1: Culture supernatant; 2: crude enzyme after (NH4)2SO4 precipitation; 3: chitosanase
fraction after running fast protein liquid chromatography (FPLC) with Macro-prep High S column;
4: purified chitosanase after running high-performance liquid chromatography (HPLC) with KW802.5
column; and M: protein markers.

Table 2. Comparison of chitinase/chitosanase produced by Paenibacillus strains.

Strain
Stability Optimum Molecular

Weight C/N Source Reference
pH Temp. pH Temp.

Paenibacillus sp. TKU047 6–9 ≤40 7 60 23 SPP This study
P. thermoaerophilus TC22-2b 4–11 ≤40 4 60 48 CC 1 [38]
P. dendritiformis 6–7 20–50 7 45 31 [63]
P. macerans TKU029 3–8 ≤50 7 60 63 SPP [13]
P. mucilaginosus TKU032 4–8 ≤70 6 70 59 SHP [8]
Paenibacillus sp. TKU042 70 SPP [31]
Paenibacillus sp. 1794 4.8 40 Chitosan and COS [30]
P. illinoisensis KJA-424 2 5 60 54 CC [37]
P. timonensis LK-DZ15 2–6 4.5 80 70 CC [64]
P. pasadenensis NCIM 5434 10 37 35 CC [36]
P. pasadenensis CS0611 4–11 ≤40 5 50 69 Crab shell and peptone [39]
P. barengoltzii CAU904 3–9 ≤55 3.5 60 67 [65]
P. elgii HOA73 3–11 7 50 68 [33]

P. ehimensis MA2012 3 35, 37, 50, 60, 65,
72, 100, and >100

Crab shell powder, gelatin, complete
fertilizer, sucrose, and yeast extract [59]

Paenibacillus sp. D1 5 50 56.56 Urea, chitin, and yeast extract [34,66]
P. chitinolyticus NP-306 4 CC and LB medium [61]

Paenibacillus sp. str. FPU-7 5 61, 78, 82, 87, 97,
122, and 153

Chitin flakes, yeast extract, bonito
extract, and peptone [62]

Paenibacillus sp. BISR-047 3–10 35–100 5 55 CC, ammonium sulfate and yeast extract [32]
1 CC: Colloidal chitin. 2 Three chitinase activity bands were observed in the culture medium (38, 54, and 63 kD).
3 Eight chitinases. 4 Thirteen bands of chitinase isozymes on SDS-PAGE. 5 Seven chitinases.
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3.3. Effects of Temperature and pH

Thermal stability of Paenibacillus sp. TKU047 chitosanase was tested by treating the enzyme
solution at different temperatures for 60 min. As shown in Figure 3a, Paenibacillus sp. TKU047
chitosanase retained the initial activity until 40 ◦C, and then significantly lost its activity at the higher
temperatures. In this study, the optimum temperature of Paenibacillus sp. TKU047 chitosanase was
observed to be 60 ◦C. Likewise, thermal stability and optimum temperature of chitinase/chitosanase from
Paenibacillus strains have been reported at various temperatures from 37 ◦C to 80 ◦C [8,13,36–39,63–65].Polymers 2020, 12, x FOR PEER REVIEW 9 of 17 
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The pH activity profile of Paenibacillus sp. TKU047 chitosanase is shown in Figure 3b. The optimum
enzyme activity was observed at pH 7. In earlier studies, the optimum pH of chitosanase or chitinase
from Paenibacillus strains such as P. illinoisensis KJA-424 [37], Paenibacillus sp. 1794 [30], P. thermoaerophilus
TC22-2b [38], Paenibacillus sp. D1 [34], P. mucilaginosus TKU032 [8], and P. pasadenensis CS0611 [39]
was commonly reported at acidic values. Nevertheless, there are some chitosanase/chitinase from
Paenibacillus strains that show the optimum pH for an activity similar to that of Paenibacillus sp. TKU047
chitosanase (pH 7) such as P. macerans TKU029, P. dendritiformis and P. elgii HOA73 [13,33,63]. In this
study, the pH stability of Paenibacillus sp. TKU047 chitosanase was found in a broad range from
pH 6 to 9.

3.4. Effects of Divalent Metal Ions, EDTA, and Surfactants

The activity of Paenibacillus sp. TKU047 chitosanase incubated with some divalent metal ions
was examined and the results are shown in Figure 4. Zn2+, Mg2+, Ba2+, and Ca2+ did not have a clear
effect on enzyme activity. Fe2+ showed a slight inhibition effect by retaining 86.79% ± 2.43% of the
initial enzyme activity, while two ions, Cu2+ and Mn2+, could enhance the activity of Paenibacillus sp.
TKU047 chitosanase (122.90% ± 2.84% and 145.16% ± 4.31%, respectively). The effect of surfactants
(Triton X-100 and SDS) on the enzyme activity was also carried on. Triton X-100 could enhance the
activity of Paenibacillus sp. TKU047 by 113.16% ± 3.26%, whereas SDS completely inhibited the enzyme
activity (reduced to 5.16% ± 1.97%). The enhancement effect of Triton X-100 may be related to the to
the capacity of surface-active reagents to increase the frequency of contact between the substrate and
the enzyme active site [67]. The negative effect of SDS on the enzyme activity may be attributed to
its capacity to alter the enzyme secondary structure [68]. EDTA showed an insignificant effect on the
activity of Paenibacillus sp. TKU047 chitosanase.



Polymers 2020, 12, 1163 9 of 16

Polymers 2020, 12, x FOR PEER REVIEW 10 of 17 

 

 

Figure 4. Effects of some chemicals on the activity of Paenibacillus sp. TKU047 chitosanase. All data 
points were the mean and standard deviation. Note: ns, **, *** were not significantly different, or 
significantly different at p < 0.01, or p < 0.001 (respectively). The activity of the enzyme incubated with 
the buffer was used as the control group. 

3.5. Substrate Specificity and Hydrolysis Products 

The activity of Paenibacillus sp. TKU047 chitosanase on different substrates was mentioned in 
Figure 5a. Among the tested substrates, TKU047 chitosanase exhibited a higher activity on high DDA 
chitosan solutions (100% ± 2.15% on >75% DDA chitosan, 101.52% ± 2.94% on 70%–90% DDA 
chitosan, and 103.66% ± 1.56% on 98% DDA chitosan) than on 50%–70% DDA chitosan solution, 
water-soluble chitosan (76% DDA) and colloidal chitin with activities 84.93% ± 1.86%, 89.27% ± 2.86% 
and 5.81% ± 1.61% (respectively) of the activity on >75% DDA chitosan, indicating the specificity of 
TKU047 chitosanase to the GlcN-GlcN bond. This phenomenon was observed earlier in a chitosanase 
from P. dendritiformis [63]. Paenibacillus sp. TKU047 chitosanase also showed insignificant chitinase 
and cellulase activities with less than 10% of its activity on chitin powder (3.17% ± 1.44%), colloidal 
chitin (5.81% ± 1.61%), and cellulose powder (6.65% ± 1.44%). The physical form of the substrate also 
affected the activity of TKU047 chitosanase. With the same source of chitosan (>75% DDA chitosan), 
the enzyme showed higher activity in the solution form (100% ± 2.15%) than that in the powder form 
(9.21% ± 1.86%).  
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3.5. Substrate Specificity and Hydrolysis Products

The activity of Paenibacillus sp. TKU047 chitosanase on different substrates was mentioned in
Figure 5a. Among the tested substrates, TKU047 chitosanase exhibited a higher activity on high
DDA chitosan solutions (100% ± 2.15% on >75% DDA chitosan, 101.52% ± 2.94% on 70%–90% DDA
chitosan, and 103.66% ± 1.56% on 98% DDA chitosan) than on 50%–70% DDA chitosan solution,
water-soluble chitosan (76% DDA) and colloidal chitin with activities 84.93% ± 1.86%, 89.27% ± 2.86%
and 5.81% ± 1.61% (respectively) of the activity on >75% DDA chitosan, indicating the specificity of
TKU047 chitosanase to the GlcN-GlcN bond. This phenomenon was observed earlier in a chitosanase
from P. dendritiformis [63]. Paenibacillus sp. TKU047 chitosanase also showed insignificant chitinase
and cellulase activities with less than 10% of its activity on chitin powder (3.17% ± 1.44%), colloidal
chitin (5.81% ± 1.61%), and cellulose powder (6.65% ± 1.44%). The physical form of the substrate also
affected the activity of TKU047 chitosanase. With the same source of chitosan (>75% DDA chitosan),
the enzyme showed higher activity in the solution form (100% ± 2.15%) than that in the powder form
(9.21% ± 1.86%).Polymers 2020, 12, x FOR PEER REVIEW 11 of 17 
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mixture of COS was analyzed using MALDI-TOF mass spectrometry, a powerful tool for the 
characterization of COS by giving the information of its degrees of polymerization (DP), as well as 
the composition units [74]. Chitosan oligomers peaks are shown in Figure 6. The peaks at 363.157 m/z, 

Figure 5. Substrates specificity of Paenibacillus sp. TKU047 chitosanase (a) and thin-layer
chromatography (TLC) profile of hydrolysis products of 98% degree of deacetylation (DDA) chitosan by
the purified enzyme (b). All data points were the mean and standard deviation. Note: ns, *** were not
significantly different, or significantly different at p < 0.001 (respectively). The activity of the enzyme on
≥75% DDA chitosan solution was used as the control group. M: (GlcN)1-4; 1-6: the hydrolysis solutions
were taken at 0 min, 30 min, 60 min, 120 min, and 180 min, respectively.
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The hydrolysis products by Paenibacillus sp. TKU047 chitosanase were determined using 98%
DDA chitosan as the substrate. As shown in Figure 5b, the enzyme split chitosan into a mixture
of GlcN oligomers with (GlcN)2, (GlcN)3, and (GlcN)4 as the primary products. Some trace spots,
located under the spot for (GlcN)4 could also be observed, suggesting the presence of GlcN oligomers
with a degree of polymerization (DP) higher than 4. The absence of GlcN product, as well as the
presence of GlcN oligomers with a DP ≥ 2 as the major products in the initial period of the reaction
time, indicated endo-type activity of the enzyme TKU047 chitosanase. This is concurrent with earlier
reports wherein some chitinases/chitosanases from the Paenibacillus genus were confirmed as the
endo-type enzymes [8,13,66].

3.6. Preparation of COS

Chitosanase can be divided into endo-type activity and exo-type activity; endo-chitosanase
is the major group responsible for chitosan oligosaccharide production [2]. After observing that
Paenibacillus sp. TKU047 chitosanase is seemingly an endo-type activity enzyme, this enzyme could
be considered a suitable tool to prepare COS via enzymatic method. To reduce the COS production
cost, Paenibacillus sp. TKU047 crude enzyme from ammonium sulfate precipitation step was used to
degrade chitosan. COS in the hydrolysis liquid of chitosan was isolated by selective precipitation
method using methanol and acetone [14]. The obtained COS appeared as a yellowish powder
with a yield of 68.44%. In previous studies, the COS production yield by the enzymatic method
varied—for example, Streptomyces griceus chitosanase was 46.3%; lipase A from Aspegillus niger was
42.5%; Trichoderma viride cellulase was 46.1%; pork pepsin was 52.2% [69]; B. cereus S1 chitosanase
was 100% [70]; a combination of chitinase and snailase was 24% [71]; Aeromonas media KLU 11.16
chitosanase was 96.14% [72]; and Bacillus pumilus BN-262 chitosanase was 40% [73]. This indicated
that the COS production yield of Paenibacillus sp. TKU047 chitosanase in this study was acceptable.
Next, the mixture of COS was analyzed using MALDI-TOF mass spectrometry, a powerful tool for the
characterization of COS by giving the information of its degrees of polymerization (DP), as well as the
composition units [74]. Chitosan oligomers peaks are shown in Figure 6. The peaks at 363.157 m/z,
524.235 m/z, and 685.294 m/z could be signs for [H(C6H11O4N)2OH + Na]+, [H(C6H11O4N)3OH + Na]+,
and [H(C6H11O4N)4OH + Na]+, which indicated for (GlcN)2, (GlcN)3, and (GlcN)4, respectively.
The peak at 828.34 m/z could be a sign for [H(C6H11O4N)5OH − (H2O) + Na]+ [74], indicating for
(GlcN)5. The mass differences between 828.34 m/z and 989.398 m/z; 989.398 m/z and 1150.465 m/z;
1150.465 m/z and 1311.545 m/z; and 1311.545 m/z and 1473.627 m/z were 161 units (approximately),
which was a sign for a GlcN unit (C6H11O4N). Thus, the peaks at 989.398 m/z, 1150.465 m/z, 1311.545 m/z,
and 1473.627 m/z could indicate (GlcN)6, (GlcN)7, (GlcN)8, and (GlcN)9, respectively. As such,
the MALDI-TOF mass spectrometry result revealed that the COS was (GlcN)n with DP from 2 to 9,
in which the major GlcN oligomers were (GlcN)2 to (GlcN)6. The DDA value and the composition
of the obtained COS and 2 commercial COSs (food-grade chitosan oligosaccharide (CCOS_1) and
chitosan oligosaccharide X13 (CCOS_2)) from Charming & Beauty Co. (Taipei, Taiwan) were compared,
as shown in Table 3. The obtained COS possessed a higher DDA value than commercial COSs
(100%, 78.5%, and 74.7%, respectively). Additionally, the composition of the obtained COS differed
from commercial COSs. Particularly, the obtained COS contained only homo-COS of GlcN with
DP = 2–9, whereas CCOS_1 and CCOS_2 were a mixture of hetero-COS and homo-COS with DP = 2–6.
This suggested that the biological activity of those COSs could be dissimilar.
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Figure 6. MALDI-TOF mass spectrometry profile of the chitosan oligosaccharide (COS) prepared from
the chitosan hydrolysis process catalyzed by Paenibacillus sp. TKU047 chitosanase.

Table 3. The characteristics of COS, CCOS_1, and CCOS_2.

Name DDA (%) Composition

COS 100 (GlcN)2–9
CCOS 1 76.5 (GlcN)2–6, (GlcNAc)2, (GlcNAc)2(GlcN)1–3, and (GlcNAc)1(GlcN)5
CCOS_2 74.7 (GlcN)2–6, (GlcNAc)2, and (GlcNAc)2(GlcN)1–3

COS: the obtained chitosan oligosaccharide from 98% DDA chitosan hydrolysis process catalyzed by Paenibacillus sp.
TKU047 chitosanase; CCOS_1: food-grade chitosan oligosaccharide; CCOS_2: chitosan oligosaccharide X13.
The DDA value and composition of COSs were analyzed from the MALDI-TOF mass spectrometry results.

3.7. Antioxidant Activity of COS

Free radicals could cause damage to DNA and protein molecules with their unstable property.
Thus, the accumulation of free radicals in the human body could be the cause of many serious
diseases, such as neurodegenerative diseases, diabetes, or cancer [75]. A suitable diet that consists
of sufficient consumption of antioxidants could defend the body from the adverse impacts of free
radicals. In the search of antioxidants for food and medical applications, COS was revealed as a
potential candidate by showing good free radical scavenging activity, as well as its natural origin.
Furthermore, the antioxidant activity of COS was strongly affected by its molecular weight and degree
of deacetylation [76]. Particularly, COS with a lower molecular weight could express higher radical
scavenging activity than that with a larger molecular weight. Some research also pointed out that
an increase in the DDA value of chitosan could increase the antioxidant activity of this material [76].
As such, it is worth investigating the radical scavenging activity of COS from the chitosan hydrolysis
process catalyzed by Paenibacillus sp. TKU047 chitosanase, which has a low molecular weight (with DP
from 2 to 9) and high DDA (contained only GlcN unit). In this research, the free radical scavenging
activity of two commercial COSs (food chitosan oligosaccharide (CCOS_1) and chitosan oligosaccharide
X13 (CCOS_2)) from Charming & Beauty Co. (Taipei, Taiwan) was also tested. As shown in Figure 7,
all scavengers were observed to be dose-dependent on DPPH radical scavenging activity. Among
the COSs, COS produced with Paenibacillus sp. TKU047 chitosanase expressed a higher activity than
that from the commercial COSs. At 2.5 mg/mL, COS showed 81.20% ± 1.62% of antioxidant activity,
whereas CCOS_1 and CCOS_2 were 18.63% ± 3.91%, and 15.96% ± 2.02%, respectively. The DPPH
radical scavenging activity IC50 value of obtained COS was 1.02 ± 0.05 mg/mL lower, approximately
15-fold lower than that of CCOS_1 (15.37 ± 0.19 mg/mL) and CCOS_2 (15.16 ± 0.39 mg/mL) (Table 4).
The lower DPPH radical scavenging activity of commercial COSs may be related to their DDA level.
It was found that the free amino group (-NH2) on the GlcN unit greatly contributed to the free radical
scavenging activity of COS [76]. As a result, there was a great agreement between the result of this
study and other reports, which suggested that COS with a higher DDA could give a better DPPH
radical scavenging activity [76–78]. Consequently, by expressing the greater free radical scavenging
activity, COS prepared from the chitosan hydrolysis process catalyzed by Paenibacillus sp. TKU047
chitosanase may be considered as an antioxidant candidate in food or medicine fields.
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Table 4. The IC50 value of DPPH radical scavenging activity of some COSs.

Scavenger IC50 Value (mg/mL)

COS 1.02 ± 0.05
CCOS_1 15.37 ± 0.19
CCOS_2 15.16 ± 0.39

All data points were the mean and standard deviation.

4. Conclusions

Chitosanase possessed the potential to be used as an efficiency tool to prepare chitosan
oligosaccharide (COS); however, the price of the enzyme was a potential limitation for this
application [2,4,60]. Thus, the current study aimed to produce a chitosanase from the reclamation
of the squid pens process by Paenibacillus sp. TKU047. A chitosanase with 23 kDa of molecular
weight, which was supposedly the smallest chitinolytic enzyme from Paenibacillus strains, was isolated
from the SPP culture medium. Additionally, the COS mixture (DP = 2–9), which was produced from
the hydrolysis of 98% DDA chitosan catalyzed by TKU047 chitosanase, revealed the excellent free
radical scavenging activity, as compared to other commercial COSs. Results of this study suggested
that Paenibacillus sp. TKU047 chitosanase could be considered as a suitable enzyme to produce
bio-activity COS.
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