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PEMer<p>Paired-End Mapper (PEMer) enables mapping of genomic structural variants at considerably enhanced sensitivity, specificity and res-olution over previous approaches.</p>

Abstract

Personal-genomics endeavors, such as the 1000 Genomes project, are generating maps of genomic
structural variants by analyzing ends of massively sequenced genome fragments. To process these
we developed Paired-End Mapper (PEMer; http://sv.gersteinlab.org/pemer). This comprises an
analysis pipeline, compatible with several next-generation sequencing platforms; simulation-based
error models, yielding confidence-values for each structural variant; and a back-end database. The
simulations demonstrated high structural variant reconstruction efficiency for PEMer's coverage-
adjusted multi-cutoff scoring-strategy and showed its relative insensitivity to base-calling errors.

Rationale
Following the sequencing of the genomes of hundreds of spe-
cies over the past years, measuring variation within individu-
als of a species - such as across human beings - has become a
center of attention in genomics [1]. While it was long assumed
that most of the variation in our genomes is due to single
nucleotide polymorphisms (SNPs), the relative importance of
another form of genomic variation has been recognized more
recently: these are structural variants (SVs), frequently
referred to as copy-number variants (CNVs), and here
defined as kilobase to megabase sized deletions, insertions,
duplications, and inversions. SVs presumably contribute to
more base-pair differences between individuals than SNPs

[2,3]. Furthermore, they may have considerable effects on
human phenotypic variation [2] by causing common 'normal'
phenotypic differences [4,5] and contributing to disease sus-
ceptibility [6-9].

A necessary prerequisite for identifying the functional impact
of SVs on the genome is the construction of a comprehensive,
high-resolution map of SVs across many individuals. How-
ever, relatively few approaches are available so far that allow
mapping SVs at high resolution and in a cost-efficient man-
ner. Previously, computational approaches have been
described that enable detection of SVs at high resolution by
either evaluating SNP genotyping information (for example,
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[10,11]), scoring high-density microarray platforms [12-15],
measuring DNA sequence read densities [16], detecting split
sequence reads [17], or comparing different human genome
assemblies [18-20]. Each of these complementary
approaches enables the identification of at least a subset of
SVs at a reasonable confidence level. However, each method
also has drawbacks in terms of overall sensitivity, effective
resolution, or efficiency.

Recent surveys have used paired-end sequence reads to
detect SVs in several individuals at high resolution [21-23],
enabling identification at high confidence and subsequent
analysis of hundreds of SV breakpoint sequences [21,22]. Sev-
eral paired-end sequence read based methods have been
described [21-25], some of which employ next-generation
DNA sequencing. One such approach is high-resolution and
massive paired-end mapping (PEM) [21]. Paired-end based
approaches, including PEM, have several advantages over
other SV-detection approaches. They allow SV-reconstruc-
tion at higher effective resolution than SNP genotyping-based
algorithms and have a higher sensitivity than present micro-
array-based approaches, which are typically to some extent
affected by cross-hybridization in repeat-rich regions. Fur-
thermore, in contrast to SNP genotyping and microarray-
based as well as read-depth-based approaches, they enable
the identification of copy-number balanced SVs, such as
inversions. Moreover, the comprehensive and high-resolu-
tion SV identification facilitated by PEM is more economical
than assembly comparison or split read analysis. PEM is pres-
ently becoming more affordable due to the ongoing develop-
ments and cost decreases in next-generation DNA
sequencing. Thus, PEM has recently been adopted for SV
mapping in personal genomics endeavors such as the 1000
Genomes project and other personal human genome
sequencing projects [23,26] as well as for the mapping of
structural alterations in cancer tissues [16].

Thus far, paired-end sequence read-based surveys have
mostly used custom approaches for SV detection, partially
with ad hoc criteria. Although experimental validations indi-
cated a reasonably successful performance of these
approaches, a suitably parameterized approach to SV calling
will be necessary to generate high confidence SV sets and to
optimize the specificity and sensitivity of SV calling. In this
regard it is evident that future studies that will utilize dense
maps of structural variation in the genome for associating SV
genotypes with phenotypic data will rely on high-confidence
methods for SV calling. We thus developed a computational
approach, Paired-End Mapper (PEMer), for mapping SVs at
high resolution with a confidence measure and then analyzing
them with a built-in database. Incorporated error models
based on extensive simulations facilitated parameterization
of PEMer and an evaluation of its performance. We bench-
marked the computational approach on different datasets to
show that it achieves SV assignments with improved sensitiv-
ity and specificity over previous paired-end sequence read

based approaches for SV identification. PEMer can process
data from several next-generation DNA sequencing plat-
forms, for example, platforms from 454 (Roche), Illumina,
and ABI. PEMer can be downloaded from [27], where instruc-
tions on how to install the framework are provided.

Results
Optimal computational detection of SVs using PEMer
The paired-end sequence reads based method PEM, as well as
the underlying strategy used for scoring PEM data, are
depicted schematically in Figure 1. In PEM, the end stretches
of randomly picked genomic DNA fragments of an individual
are sequenced and compared to a reference genome. For that
purpose, initially, random genomic DNA fragments with a
known and fairly tight size distribution are generated. For
instance, the PEM protocol from 454/Roche involves hydro-
dynamic shearing resulting in a lognormal fragment length
distribution centered at the median fragment length, or insert
size, L (for example, with L = 2.5 kb; Figure 1). In PEM, indels
relative to the reference genome are identified by relating the
distance in base-pairs between the fragment ends mapped
onto the reference genome (that is, the paired-end span) to
the known insert size distribution (Figure 1). Furthermore, by
comparing the relative orientations or positions of mapped
ends inversions or more complex SV events (see Materials
and methods) relative to the reference genome can be identi-
fied. Our approach PEMer uses an optimized pipeline for call-
ing SVs from datasets generated by several different next-
generation sequencing platforms. Therefore, PEMer imple-
ments a number of subsequent computational procedures, or
steps, which have been developed as a set of modular compo-
nents (described in detail in the Materials and methods sec-
tion; see also Figure 1). First, in the 'construct pre-processing'
step, the data are formatted into a proper structure. Second,
in the 'read-alignment' step ends are first rapidly indexed
against and then carefully aligned onto a reference genome.
Third, pairs of mapped ends are combined into paired ends in
the 'optimal paired-end placement' step. When processing
relatively short sequenced ends (for example, such as those
generated with the Solexa/Illumina or SOLiD/ABI platforms)
we recommend novel read-indexing approaches that directly
compensate for variation in the mappability of short
sequences in the context of a complex, repeat-rich reference
genome [28,29]. Fourth, in the 'outlier-identification' step
outlier paired ends are recognized. Outliers are characterized
by ends mapping onto the reference genome with a distance
that is significantly deviating from expected paired-end spans
(indicating an SV indel) or by ends matching onto different
strands of a chromosome (indicating an inversion) or in dif-
ferent order relative to each other (potentially indicating a
complex SV). Fifth, the 'outlier-clustering' step combines
paired ends that likely originated from the same SV into clus-
ters. Sixth, clusters obtained using different parameteriza-
tions - that is, by applying different cluster sizes and
according cutoffs for outlier identification - are joined in the
Genome Biology 2009, 10:R23
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Scheme depicting computational steps carried out by PEMerFigure 1
Scheme depicting computational steps carried out by PEMer. In PEM, when using the 454/Roche platform, randomly sheared genomic fragments are 
circularized and cleaved randomly into sequence stretches amenable to ultrafast sequencing (figure adapted and extended from Figure 1 in [21]). We 
subject resulting DNA sequences to PEMer for calling SVs relative to the reference genome ('R'). By default, PEMer uses the following processing steps: [1] 
construct pre-processing, [2] read-alignment, [3] optimal paired-end placement, [4] outlier-identification, [5] outlier-clustering, and [6] cluster-merging. 
Subsequently, [7] SVs (insertions, deletions, inversions, and more complex events) are displayed and stored in a back-end database for further analysis. In 
the outlier identification step, several different cutoff points Ci and Cd for the paired-end span, which are derived from the known insert-size distribution, 
are applied using a multi-cutoff strategy together with distinct minimally required paired-end cluster sizes N. After merging clusters constructed using 
different cutoff points, different PEM libraries, or different next-generation DNA sequencing platforms, an enhanced SV call resolution may be achieved.
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'cluster-merging' step. Cluster-merging further enables com-
bining data from different PEM libraries or from different
next-generation sequencing platforms. This in turn helps
increase the size range at which SVs can be detected and may
add extra confidence in SV assignments through support
from independent libraries or platforms.

Finally, PEMer reports the merged clusters, which can be dis-
played and stored. To facilitate the display, storage, and fur-
ther analysis of variants, our approach contains a special
database for handling SV data from various sources. The
database, for which a schematic is depicted in Figure S1 in
Additional data file 1, allows for a smooth connection between
called SVs, clusters of outlier paired ends, and the underlying
sequence reads. The database enables consideration of com-
plex SV assignments from base-pair resolution data - differ-
ent SVs may partially overlap in their genomic coordinates or
they may be 'embedded' within each other. As such, they may
have occurred as a consequence of subsequent, partially
intersecting de novo events affecting the same haplotype.
Accordingly, we developed a recursive data definition for SVs,
in which the coordinates of a SV may be stored either with
respect to the reference genome or with respect to one
another (Figure 2).

Parameterization and benchmarking of PEMer using 
simulations
It is critical to properly parameterize PEMer in order to opti-
mize the specificity, sensitivity, and resolution of the
approach. Since the highly non-uniform nature of the human
genome causes difficulties in deriving a parameterization
analytically, we chose to use simulations for estimating

parameters and SV-calling efficiency. Namely, we placed sets
of SVs into a known reference DNA sequence, and then used
the modified genomic sequence to simulate PEM experi-
ments. Specifically, simulations were carried out in the con-
text of the general repetitive structure of the genome, with
SVs randomly placed relative to highly repetitive elements
and segmentally duplicated regions. In our simulations, we
furthermore applied a realistic PEM fragment size distribu-
tion and a reasonable span coverage (that is, physical cover-
age, taking into account the amount of DNA sequence in the
reference genome spanned by paired ends) expected to be
sufficient for detecting most SVs. Instead of using the entire
human reference genome, we performed the simulations on a
diploid chromosome 2. (The euchromatic regions of chromo-
some 2 encompass approximately 8% of the genome; thus,
simulations required relatively little computing time.) The
genomic background was altered by randomly introducing a
set of SVs of various sizes near the expected boundary of res-
olution of PEMer. For instance, we initially chose to generate
sets of 100 heterozygous deletions, respectively, in sizes of 1,
2, 3, 4, 5, 6, and 10 kb. These are arbitrary, but suitable, SV set
sizes enabling an evaluation of the sensitivity of PEMer. In
addition, we also simulated different SV types. Finally, we
simulated PEM data generated with different library insert
size distributions and with different next-generation DNA
sequencing platforms (see below).

Three essential parameters influence the performance of
PEMer: the span coverage λ (which is proportional to the
insert size L; see Materials and methods); the minimum
number N of clustered outlier paired ends necessary for call-
ing a SV; and the cutoff C for calling outliers. Based on the
Poisson approximation, we initially estimated that for a dip-
loid genome, a span-coverage λ of 4.75× will be minimally
required to cover 95% of the heterozygous SVs within the
detection range of PEM by at least two paired ends (see sup-
plementary methods and notes in Additional data file 1). For
simplicity, we applied a rounded λ = 5× in most analyses
below. We then used PEMer to reconstruct SVs in the simu-
lated genomic DNA and evaluated its performance by apply-
ing various values for C and N. We generally applied three
distinct strategies for SV identification.

Strategy one
The 'single cutoff' strategy was implemented as the previously
most widely applied scoring approach for identifying SVs
from PEM data (for example, described in [30]). The single
cutoff applies a fixed required cluster size N of 2 and regards
paired ends as outliers if the measured paired-end span
exceeds a certain cutoff C, which is typically set at 3 standard
deviations from the median (the median usually can be inter-
changed with the mean; note, for example, that in case of the
454/Roche platform the median is essentially identical to the
mean in log-space). All outlier clusters of size N = 2 or larger
are considered as SVs, whereas unclustered outliers are dis-

Depiction of the strategy used for assigning genomic coordinates to complex SV eventsFigure 2
Depiction of the strategy used for assigning genomic coordinates to 
complex SV events. Coordinates within our database BreakDB are stored 
in a recursive fashion, if multiple SVs with partially overlapping coordinates 
occurred within a single haplotype. In particular, where a coordinate is 
typically defined with respect to the reference genome, it can also be 
defined in respect to other SVs, as indicated in the scheme depicted in the 
figure. For example, an insertion event can take place within an earlier 
insertion event, affecting the same haplotype the earlier event occurred in. 
If coordinates for the second insertion event were reported merely 
relative to the human reference genome, positional information for the SV 
would be lost. BreakDB therefore reports both coordinates within the 
ancestral ('parent') event, but can also trace back all the way to the 
reference coordinates.
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carded. The cluster-merging step is unnecessary when apply-
ing this strategy.

Strategy two
In the 'multi-cutoff' strategy different cluster sizes N from 2 to
6 were applied together with different corresponding cutoffs
C for outlier identification (Table S1 in Additional data file 1
and Figure 3). Note that, in theory, N = ∞ represents the limit;
however, in reality at λ = 5× we did not observe additional SV
calls when setting N to values greater than 6. The multi-cutoff
strategy enables an enhanced resolution compared to the sin-
gle cutoff strategy. In this regard, for a given cluster size N we
conservatively defined the optimal cutoff C as the one for
which no false positives and a maximum possible number of
reconstructed SVs were observed in our simulations.

Strategy three
The 'simplified multi-cutoff' was implemented as a compro-
mise between the single cutoff and the multi-cutoff, using
only cluster sizes N of 2, 3 and 4. During our simulations,
results for the simplified multi-cutoff were nearly identical to
the multi-cutoff strategy (Table 1), but had the benefit of a
decreased computing time (see below).

We initially assessed the SV-reconstruction capability of
PEMer for heterozygous deletions by simulating data from
the 454/Roche platform, and observed that the single cutoff
is efficient and sufficient for the reconstruction of deletions of

4-5 kb or longer (Table 1). However, the multi-cutoff strategy
was clearly superior for reconstructing SVs smaller than 4 kb.
When applying both strategies with a realistic simulation-
based sequencing error (see below) and with parameters
resulting in similar false positive call rates, respectively, 30%
additional events smaller than 4 kb and 73% additional events
smaller or equal to 2 kb were identified with the multi-cutoff
compared to the single cutoff, whereas the reconstruction
efficiency for events >4 kb was similar among both strategies.
Interestingly, the simplified multi-cutoff achieved results that
are practically the same as for the multi-cutoff (Table 1) with
a decreased computing time. This suggests the existence of a
boundary on the optimal cluster size N at a given span cover-
age.

False positives were recorded during the simulations as SV
calls of any type (deletion, insertion, inversion, or complex)
generated by outlier paired ends not resulting from a simu-
lated SV. As we describe in Additional data file 1, we further
monitored the generation of false positive calls from chimeric
PEM library inserts [21] and found that the effect of such chi-
mera on the false positive rate is negligible. Furthermore, we
determined the expected genome-wide number of false posi-
tives by scaling the observed number of false positives with
the factor 'size of the diploid genome divided by the size of the
diploid chromosome 2'. We also derived an analytical formula
for calculating numbers of expected false positive deletions
and insertions (see Materials and methods) and validated the
formula by comparison with the simulation-based results.
This enabled us to calculate E-values and P-values for both SV
types (Table S2 in Additional data file 1 and Materials and
methods). We defined as the false positive rate the number of
detected false positives scaled by the number of SVs that we
expect to be ascertainable with paired-end sequence-based
approaches operating at the size range of PEM - for example,
approximately a thousand when using the 454/Roche plat-
form [21]. Using conservative cutoffs expected to result in a
false positive rate of approximately 5%, when applying 1,000
as the scaling factor, PEMer reconstructed approximately
90% of all simulated heterozygous deletions >4 kb with λ = 5×
(see Results for all three strategies in Table 1), that is, approx-
imately 95% of the SVs expected to be ascertainable (when
relating the observed 90% to the 95% of events expected to be
ascertainable at λ = 5×; see supplementary methods and
notes in Additional data file 1). The rate of false positives can
be reduced to near zero by applying more stringent cutoffs,
which leads to a slightly diminished reconstruction efficiency
(Table S3 in Additional data file 1).

Furthermore, we also analyzed heterozygous inversions and
insertions by simulation. Specifically, we found that at 5×
span coverage heterozygous inversions can be recovered with
high reconstruction efficiency (>95%; Table S4 in Additional
data file 1) and highly significant E-values (based on simula-
tions; Table S2 in Additional data file 1). On the other hand,
heterozygous insertions were reconstructed with poor effi-

Numbers of false positive SV calls in relation to the cutoff used for defining outliersFigure 3
Numbers of false positive SV calls in relation to the cutoff used for defining 
outliers. Cutoff values for defining outlier paired ends are given in terms of 
standard deviations (SDs) from the median of the expected distribution of 
paired-end spans (which in turn is derived from the insert size). PEM data 
generated with the 454/Roche platform were simulated applying a median 
insert size L = 2.5 kb and a span-coverage of λ = 5× of the diploid 
chromosome 2. To arrive at λ = 5×, only optimally (uniquely) placed 
paired ends were considered when estimating λ ('effective span coverage'). 
Here, the genome-wide count of false positives is put in relation to 
outlier-identification cutoffs for various required cluster sizes N ('clustered 
paired ends') of 2 up to 7. 'False positives' refers to the number of false 
positives identified on chromosome 2.
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ciency (<10%) and at a small size-range when using a 2.5 kb
insert size (Table S5 in Additional data file 1). Note, however,
that when using a larger insert size of 10 kb, we observed a
marked improvement of the reconstruction efficiency for
insertions - to up to 70% - without reduction in the portion of
reconstructed deletions (Table S6 in Additional data file 1).
Note further that with a large insert size PEM becomes more
cost-efficient, as longer DNA stretches are covered per
sequenced base-pair.

We would like to stress that in most of our simulations, we
conservatively assumed heterozygosity of SVs - that is, we
assumed single instances of SVs per diploid genome. How-
ever, a large portion of SVs is homozygous [21,22]. As
homozygous SVs display two instances per diploid chromo-
some set, they are usually covered by more paired ends and,
thus, are more easily ascertainable than heterozygous SVs. To
exemplify the higher sensitivity of PEM towards homozygous
SVs, we simulated the reconstruction of homozygous dele-
tions (Table S7 in Additional data file 1). Specifically, at a false
positive rate of approximately 5%, more than 97% of the sim-
ulated homozygous deletions >4 kb were identified with λ =
5×. Furthermore, we observed an increased sensitivity in
detecting SVs <4 kb (compare, for example, Table 1 and Table
S7 in Additional data file 1). Finally, owing to the higher fre-
quency at which homozygous SVs tend to be spanned by
paired ends relative to heterozygous SVs, homozygous SVs
are usually reconstructed with more highly significant E-val-
ues (see Table S2 in Additional data file 1; i.e. more highly sig-
nificant E-values are achieved for SVs with a high number of
spanned paired ends).

Finally, thus far we have focused on simulations of data from
the 454/Roche next-generation sequencing platform. In the
past months, PEM protocols have been developed by short-
read-based next-generation sequencing platforms, including
the Solexa/Illumina as well as the SOLiD/ABI platform. In
order to assess the SV reconstruction efficiency for PEM data
produced with a short read generating platform, we examined
the SV-mapping capabilities of the Solexa/Illumina platform
at 5× span coverage. Specifically, we applied a realistic
paired-end insert size distribution centered at 250 bp and
reasonable cutoffs for outlier identification (Table S8 in Addi-
tional data file 1) and observed a reconstruction efficiency for
heterozygous deletions that is comparable to the rate at which
SVs are identified by the 454/Roche platform (Table S9 in
Additional data file 1).

Sensitivity to sequencing errors
We also investigated the effect of sequencing errors on SV
calling by reconstructing SVs using two sets of reads, with and
without sequencing errors, introduced at a rate reflective of
the respective next-generation sequencing platform. To this
end, we have included specific error models for different
sequencing platforms in our simulations (see Materials and
methods). Notably, when testing the effect of sequencing
errors on data from the 454/Roche platform, we found that
sequencing errors only slightly affected the effective span cov-
erage of PEM by decreasing it by 1.3%. Interestingly, when
assessing the reconstruction efficiency using heterozygous
deletions as an example, we found that sequencing errors had
a negligible effect on SV calling for most SV sizes (Table 1).
Nevertheless, a somewhat more pronounced effect was
observed for short (<5,000 bp) SVs, for which, in general,
more reads were required to enable SV assignments. Thus,

Table 1

Results of simulations indicating the reconstruction efficiency of PEMer for heterozygous deletions of different sizes

SV size Single cutoff Multi-cutoff Simplified multi-cutoff Multi-cutoff* Simplified multi-cutoff*

1000 3 (4) 3 (4) 3 (4) 3 (4) 3 (4)

2000 12 (13) 23 (26) 21 (23) 11 (13) 6 (6)

3000 52 (57) 61 (68) 61 (68) 49 (52) 44 (46)

4000 84 (85) 85 (86) 85 (86) 80 (82) 80 (82)

5000 91 (93) 91 (93) 91 (93) 91 (93) 91 (93)

6000 92 (92) 92 (92) 92 (92) 92 (92) 92 (92)

10000 88 (91) 88 (91) 88 (91) 88 (91) 88 (91)

Total 422 (435) 443 (460) 441 (457) 414 (427) 404 (414)

False positives (chromosome 2) 31 (31) 31 (31) 26 (31) 5 (4) 2 (1)

Each row displays statistics for reconstructed heterozygous deletions of a particular size, derived from simulations of 454/Roche based PEM data. 
Columns show numbers of identified SVs for each reconstruction strategy. Numbers in parentheses correspond to simulated SV reconstructions 
without sequencing error. All SVs were reconstructed at an effective span coverage λ = 5× (where, λ was assessed after optimal paired-end 
placement) of a simulated diploid chromosome 2. Note that for the single cutoff strategy events ≥ 5 kb were reconstructed at a level near the 
theoretical maximum of 95% derived from the Poisson approximation (see supplementary methods and notes in Additional data file 1). However, the 
multi-cutoff and simplified multi-cutoff strategies outperformed the single cutoff strategy in detecting SVs < 4 kb. *We also applied alternative - that 
is, optimal - cutoff parameters, for which the sensitivity is similar to the single cutoff, but for which a false positive rate of approximately 5% was 
observed.
Genome Biology 2009, 10:R23
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SVs with a size at the margin of PEMer's detection range
appear generally (slightly) more sensitive to sequencing
errors. We further observed that sequencing errors at a level
typically occurring in 454 Sequencing have little influence on
the overall false positive rate (Table 1).

Some genome studies analyze genomes at a span coverage
considerably higher than 5×, with values of λ at 25× or higher.
When expanding our simulations to allow for parameteriza-
tion of PEMer at λ = 25× (Table S1 in Additional data file 1),
we found that at such a span coverage deletions down to 3 kb
are efficiently reconstructed in PEM datasets generated by
the 454/Roche platform: in particular, 97% of all SVs of 3 kb
in size are called at λ = 25×, whereas only 49% are called at 5×
(Table S3 in Additional data file 1; Figure 4). Thus, the sensi-
tivity in detecting smaller deletions generally increases signif-
icantly at high span coverage. We note that when using high

span coverages, generally large values of N should be used.
For example, at λ = 25×, N = 5 represents a suitable minimum
cluster size (Table S1 in Additional data file 1), whereas
smaller values of N lead to numerous false positives. Thus,
notable gains in sensitivity and resolution can be achieved at
high span coverage at the cost of a linear increase in sequenc-
ing costs.

Modular design, alignment algorithms, and time 
complexity of PEMer
The sheer complexity and size of next-generation sequencing
data sets impose challenges on procedures applied for map-
ping, storage, and analysis of the data [31], particularly in the
light of novel ongoing large-scale human genome sequencing
projects (for example, the 1000 Genomes project). Thus, we
have put a lot of effort into optimizing PEMer, and carefully
evaluated its time complexity. In particular, we found that the
run time scales approximately linearly with the number of
reads. Furthermore, the approach can be easily parallelized
by processing bundles of sequencing reads on separate nodes
of a computing cluster. If a genome as large and complex as
the human genome is analyzed, read-alignment represents
the time-limiting step of PEMer, taking approximately two-
thirds of the computing time. To take this into account and to
increase the flexibility of PEMer for next-generation sequenc-
ing technologies, PEMer has been developed in a highly mod-
ular fashion. For example, 454 Sequencing data can be
rapidly mapped against the genome using two alternative
indexing algorithms, that is, Megablast [32] or BLAT [33];
then high-quality alignments are constructed using the
Smith-Waterman algorithm (see Materials and methods). By
default, Megablast is used for indexing 454/Roche data, since
we found Megablast to be slightly more sensitive than BLAT
when using several parameter sets, albeit at the cost of a slight
increase in computing time (Table S10 in Additional data file
1). On the other hand, Solexa/Illumina and SOLiD/ABI data
are by default indexed using the fast MAQ algorithm [28] (see
Materials and methods).

To exemplify the applicability of PEMer for processing large
datasets we recorded basic timing data in the course of
processing PEM data within the 1000 Genomes project
(Table S11 in Additional data file 1). Specifically, PEMer
required approximately 28,000 CPU hours for processing 74
million paired-end reads generated with the 454/Roche plat-
form using a median fragment size of 2.5 kb. In this case, a
large fraction of 454/Roche-specific linker sequences had
already been mapped prior to PEMer analysis, leading to a
considerable decrease in computing time, as linker-mapping
is responsible for approximately a quarter of the overall com-
puting time. To achieve a realistic estimate, we thus only con-
sidered the previously unmapped reads and estimated that
16,000 CPU hours would be required to map 10 million reads,
the equivalent of approximately 4.5× span coverage of a dip-
loid human genome. On a large-scale computing cluster with
approximately 400 CPUs, application of PEMer to map SVs

SV reconstruction efficiency in relation to the span coverage λFigure 4
SV reconstruction efficiency in relation to the span coverage λ. We used 
simulations to generate heterozygous deletions 1-10 kb in size (median 
PEM insert size 2.5 kb; 454/Roche platform). Paired-end data were 
simulated with different span coverages λ; only optimally (uniquely) placed 
paired ends were considered when estimating λ. (a) Reconstruction 
efficiency for values of λ from 1× to 5×. (b) Reconstruction efficiency for 
values of λ from 5× to 25×.
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in a single individual is thus normally completed in approxi-
mately 2 days.

Benchmarking PEMer on previously published paired-
end datasets
Finally, we applied PEMer on previously published paired-
end datasets [21] from a presumably European female
(NA15510) and an African female (NA18505) to evaluate
whether the approach indeed allows for an increased effi-
ciency in SV calling. We therefore estimated optimized cutoffs
and applied the simplified multi-cutoff strategy to search for
additional SVs not previously reported using a stringent cut-
off expected to result in 0% false positives (based on simula-
tions). Our analysis revealed 18 SV indel events overlooked
previously [21], which are summarized in Table S12 in Addi-
tional data file 1: that is, 16 in NA18505 and 2 in NA15510, an
individual that had been sequenced at relatively low (approx-
imately 2×) span coverage. We analyzed all novel SVs manu-
ally on the UCSC browser, and found that out of these 18, 15
(83%) overlapped with previously identified SVs listed in the
Database of Genomic Variants [34]. Furthermore, the high
resolution of our SV calls allowed us to infer plausible SV for-
mation mechanisms for 11 (61%) SVs (Table S12 in Additional
data file 1), including all three that did not intersect with var-
iants listed in the Database of Genomic Variants. In particu-
lar, we inferred that five SVs were likely formed by
retrotransposition [35]. Furthermore, in six instances satel-
lite DNA expansions appear to have caused SV formation. For
the remaining SVs we were not able to discriminate between
possible formation mechanisms [21,22] owing to the lack of
high-resolution breakpoint data. Furthermore, as expected,
all novel SV calls were near the expected boundary of resolu-
tion of PEMer. This led, for example, to an increase of 30% in
the rate at which deletions <4 kb were detected compared to
a previous study using the 454/Roche platform [21], indicat-
ing a gain in sensitivity and resolution at the margin of previ-
ous PEM-based scoring approaches.

Discussion
We have developed a computational approach, PEMer, which
facilitates the identification of SVs from large-scale PEM
data. PEMer enables processing data from several widely
applied next-generation sequencing platforms. We parame-
terized PEMer with a newly developed simulation framework,
and demonstrated using simulations and real datasets that
this results in an improved SV-calling performance at the
margin of previous paired-end-based approaches. Thus far,
surveys mapping small SVs systematically across several indi-
viduals have been lacking despite an abundance of SVs at this
size range. In particular, when re-scoring a recently published
dataset with PEMer, we were able to report 18 additional SVs
beyond the detection range of previous computational
approaches for scoring PEM data. We provided independent
evidence for all 18 SVs using data-mining and sequence anal-
ysis, suggesting a low false positive rate in SV calls.

We note that the herein described simulations were carried
out using reasonable parameter settings. Realizing the utility
of simulations to parameterize SV-calling methods, we
decided to make available our simulation software to the
community in conjunction with PEMer. We realize that our
simulation software may also be useful in distinct contexts
where paired ends are being used successfully, such as for
transcript analysis [36,37] or the detection of gene fusions
caused by recurrent translocations in cancer [38].

Our study also has certain limits, as discussed below.

Segmental duplications
With regard to the simulations, we did not specifically gener-
ate SVs with breakpoints embedded in long stretches of repet-
itive sequence - such as segmental duplications that may
induce SV formation through non-allelic homologous recom-
bination. Specifically, a portion of SVs formed through non-
allelic homologous recombination is likely to be overlooked
by PEMer due to the relatively short length of sequenced end
stretches (for example, approximately 110 bp for the 454/
Roche platform and <40 bp for the Solexa/Illumina or
SOLiD/ABI platforms), which hampers unambiguous
genomic alignments. In this regard, note that all presently
available SV-detection approaches (including microarray-
based approaches) are limited in terms of detecting SVs
embedded in segmental duplications, and that the true extent
of such SVs is thus unknown.

Single nucleotide polymorphisms
The simulations currently do not consider the presence of
SNPs in the sample genome. Similar to base-calling errors,
SNPs, which, on average, affect 1 in a 1,000 bases, may lead to
read misalignment, particularly in repetitive regions with
diminished mappability such as segmental duplications.
Note, however, that the catalogue of known SNPs is presently
incomplete in these genomic regions. Note further that the
optimal paired-end placement step can, to some extent, com-
pensate for both base-calling and SNP-based misalignment
errors (see supplementary methods and notes in Additional
data file 1).

Insertions versus deletions
Due to the insert size distributions commonly used in PEM,
the size range at which insertions can be identified is consid-
erably smaller than for deletions and inversions. Particularly,
large insertions (for example, events ≥ 3 kb when using a
median insert size of 2.5 kb) may be missed when merely ana-
lyzing significant deviations from the mean paired-end span.
Note that this problem can, in part, be compensated for by
selecting a range of insert size distributions (see, for example,
Table S6 in Additional data file 1) and by reconstructing large
SVs as mated insertions [21]. For personal-genomics efforts
such as the 1000 Genomes project it will thus make sense to
generate more than one paired-end library per sample, with
one library optimally involving a relatively large insert size
Genome Biology 2009, 10:R23
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(that is, 10 kb or larger). Note that these libraries can be ana-
lyzed at fairly low additional costs, as relatively small num-
bers of paired ends are required to achieve sufficient span
coverage when using large insert sizes.

Genome expectation statistics
We estimated the likelihood for covering a genomic element
using the Poisson-approximation, assuming that SVs and
paired ends are uniformly distributed in the genome. Fur-
thermore, our simulations also assumed a uniform distribu-
tion of SVs in the genome. We realize that, in the future,
concepts applied in this study may be extended by using more
sophisticated models of genome expectation statistics such as
the 'genome structure correction' used in the recently pub-
lished Encode consortium paper [39], which considers the
distribution of gaps, repeats, and SVs in the reference
genome.

Specifically in relation to present limits, we would like to
emphasize the design of PEMer as a modular tool, for which
specific parts can be fairly easily optimized and improved.
Examples for possible improvements include the considera-
tion of novel approaches for compensating for the variation in
the mappabilty of reads within the reference genome [29],
and an improvement of the overall computing time when
processing large datasets. For example, in relation to the cur-
rent read-alignment step, we realize that a considerable
amount of time may be saved by applying novel, time-effi-
cient sequence alignment approaches geared towards the spe-
cific read lengths applied in the study.

Interestingly, the influence of sequencing errors on SV calling
is minor - for example, when compared to the influence of
base-calling errors on SNP-assignments. In the future, next-
generation sequencing technologies that allow for longer
DNA sequence reads than presently feasible will increase the
sensitivity of PEMer in repeat-rich regions by ensuring that
ends are mapped onto the correct location in the genome.

Lastly, while our paper was in preparation, Lee et al. [40]
published an alternative approach for SV detection based on
paired-end sequence reads. In contrast to PEMer, the
approach by Lee et al. has been developed for processing
Sanger dideoxy sequencing reads, rather than next-genera-
tion sequencing reads. While it is likely that both approaches
or concepts thereof will be applied for SV detection in the
future, a preliminary comparison of both approaches indi-
cates a higher overlap with previously reported SVs for
PEMer calls compared to calls by the Lee et al. approach (see
supplementary methods and notes in Additional data file 1).
One possible explanation for this observation may be a higher
specificity of SV calls generated by PEMer compared to the
approach by Lee and colleagues.

In conclusion, PEMer facilitates SV detection from large-
scale next-generation DNA sequencing datasets on a normal

computing cluster. We would like to point out that early ver-
sions of PEMer have already been used extensively in studies
focusing on several individual genomes (1000 Genomes
project and [21]). Recognizing the increased usage of paired-
end sequencing technologies for personal genomics [23,26]
and for high-resolution SV surveys [21,22], we decided to
make the code of PEMer, together with executables and a
proper documentation, available to the community over the
world-wide web.

Materials and methods
Components and modules included in PEMer
PEMer consists of the following modular components, which
are by default executed in the order given below.

Construct pre-processing
Initially, PEM data are formatted into a proper structure. For
example, when processing data from the 454/Roche plat-
form, the standard 44 bp linker sequence
(GTTGGAACCGAAAGGGTTTGAATTCAAACCCTTTCGGT-
TCCAAC) from the 454/Roche paired-end protocol is identi-
fied (for example, at a minimum sequence identity of 90%)
and fragments split into paired ends using the linker as a
seed. PEM data generated with the Solexa/Illumina or
SOLID/ABI platforms are pre-processed and initially aligned
to the reference genome using MAQ [28].

Read-alignment
In this step, both ends are independently aligned with the ref-
erence genome. When using 454 data, by default, a computa-
tional approach that combines efficient initial heuristic
genome alignment (that is, using Megablast [32] by default
with parameters: '-p 80 -s 11 -W 11', or, alternatively, using
BLAT [33] with parameters '-fastmap') and comprehensive
optimal realignment (that is, using the Smith-Waterman
algorithm [41]) is used. As mentioned above, MAQ [28]
(default parameters) is normally used for processing Solexa/
Illumina or SOLiD/ABI data. In principle, any sequence
alignment algorithm can be plugged into PEMer for read
alignment.

Optimal paired-end placement
In this step, when processing data from the 454/Roche plat-
form, an adapted version of the placement algorithm [30] is
implemented to enable the identification of most plausible
paired-end alignments. This is particularly important in cases
where alignments are ambiguous due to the repetitive nature
of the human genome. In brief, the placement algorithm exe-
cutes a cost function that penalizes outlier paired-end assign-
ments, if one or both ends display high sequence similarity to
a different genomic locus and if placing the end(s) into the
alternative locus would result in a non-outlier paired end (see
supplementary methods and notes in Additional data file 1).
When processing Solexa/Illumina or SOLiD/ABI paired-end
data, PEMer by default omits the abovementioned placement
Genome Biology 2009, 10:R23
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algorithm, and instead considers paired ends as optimally
placed if each end unambiguously aligns against the reference
genome with a MAQ [28] 'mapping quality' of at least 20. This
score-cutoff [26] ensures unambiguous optimal placement of
short reads onto the reference genome.

Outlier identification
Paired ends are considered as outliers if they map with a rel-
ative orientation of ends, or genomic position, consistent with
structurally altered genomic regions - for example, if they fall
outside the expected range of paired-end spans. Paired ends
falling beyond the expected range of spans are identified
based on a cutoff C expressed in terms of standard deviations
from the median L and the according cutoff points Ci and Cd

(Figure 1). The cutoff points are usually derived from simula-
tions and depend on the span coverage λ, the cluster size N,
and the distribution of paired-end spans. Alternatively, the
cutoff points may be derived from experimental controls, or
may be estimated directly from the sample data. Note that
PEMer by default discards outlier paired ends in which both
ends map to different chromosomes (that is, putative translo-
cations).

Outlier clustering
Outliers are categorized into SVs if a cluster of N (or more)
independent paired ends is consistent with a single SV.
PEMer evaluates whether all paired ends in a cluster are
indicative of the same event. In other words, a simple inter-
section of paired ends may be insufficient - for example, if two
intersecting paired ends indicate deletions with significantly
different predicted deletion sizes. (Thus, a window for the
proper clustering of paired ends is defined in PEMer, as
described below in the section 'Estimating E-values and P-
values'.) Deletions are identified from ≥ N overlapping dis-
cordant paired ends with a paired-end span >Cd (with the
condition that both putative breakpoints are spanned). Inser-
tions may be identified from ≥ N overlapping discordant
paired ends exhibiting a paired-end span <Ci. Inversions are
identified using ≥ N paired ends that are discordant in terms
of orientation relative to the reference genome and are con-
sistent with a single inversion breakpoint - that is, in such a
way that all paired ends span a single, common breakpoint
interval. In addition to those simple SV events, more complex
events [21] may be identified by PEMer: mated insertions are
identified from ≥ N unpaired SVs that lie in nearby genomic
regions and have ≥ N paired ends indicating a connection
with a (common) distal genomic region <100 kb in size.
Mated insertions may involve tandem duplications, or trans-
locations. Unmated insertions are predicted from ≥ N paired
ends that support a rearrangement of a genomic region in
which loci change relative order without changing their rela-
tive orientation (that is, both ends map to the same DNA
strand).

Cluster merging
Clusters consistent with the same SV are merged into a single
cluster. This step is necessary when SVs are searched in par-
allel with distinct cutoffs and cluster sizes (for example, when
using the multi-cutoff or simplified multi-cutoff strategy, or
when results from paired-end datasets generated with differ-
ent insert sizes or different next-generation sequencing plat-
forms are combined).

Simulation of PEM experiments
We performed simulations with a diploid chromosome,
which enabled evaluation of both the efficiency of SV recon-
struction and the false positive rate of PEMer. In particular,
we used human chromosome 2, the chromosome with the
largest determined length as well as an average repeat content
and gene density. While we regard the selection of chromo-
some 2 as a reasonable pick to save computational processing
time during the simulations, future studies may use other
chromosomes or entire genomes in haploid or diploid form to
parameterize PEMer. SV events were randomly generated,
that is, distributed uniformly on the chromosome as
described above. When simulating the reconstruction of het-
erozygous SVs, no events were introduced on the second copy
of chromosome 2, which was included only to monitor the
false positive rate. For example, when simulating PEM data
generated by the 454/Roche platform, first, random shearing
of the sample genome was carried out by randomly picking
DNA fragment lengths from a given lognormal distribution
with reasonable values for median (that is, 7.8 in log-space)
and standard deviation (0.29 in log-space), which both were
obtained from a typical PEM experiment. Second, fragment
centers were uniformly placed along the chromosomes.
Third, DNA fragment circularization, random cleavage and
linker read isolation were simulated by first generating read
lengths from the length distribution of sequences resulting
from a typical 454 run (that is, the Roche GS-FLX-system),
then by placing 'centers' for the 44 bp linker sequence uni-
formly onto the read, then by placing the linker sequence onto
that center, and, finally, by assigning sequences of DNA frag-
ment ends to the read ends not occupied by the linker. To
achieve the expected topology of paired ends in the circulated
DNA (Figure 1) the 5'-end of the fragment was assigned to the
3'-end of the read and vice versa. Fourth, the resulting frag-
ments, which were in principle undistinguishable from real
genomic fragments generated by the PEM method indicated
in Figure 1, were subjected to PEMer for SV detection.

Finally, simulation parameters can be easily adapted to plat-
forms generating short PEM end tags (see Tables S8 and S9
in Additional data file 1 for an example involving the simula-
tion of Solexa/Illumina data).

Error models for next-generation DNA sequencing
Optionally, error models may be applied in our simulations to
consider typical next-generation sequencing errors. For
example, our simulations enable considering the major two
Genome Biology 2009, 10:R23
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causes of errors in 454 Sequencing, that is, insertion of nucle-
otides and homopolymer errors. In the error model we
assumed that signals observed from a homopolymer of length
n follow a Gaussian distribution with mean n and the stand-
ard deviation being proportional to the square root of n with
coefficient 0.17, while the background follows a lognormal
distribution with mean 0.2 and standard deviation 0.1 (Fig-
ure S2 in Additional data file 1) [42,43]. We used intersection
points of the curves as cutoff points for calling a particular
DNA sequence for a given signal. For instance, signals in the
range 0.56 to 1.43 were called as a single sequenced nucle-
otide (Figure S2 in Additional data file 1), rather than a
homopolymer (that is, dimer). Nucleotide flow was simulated
in the following order: T, A, C, G. For every nucleotide
sequenced (including homopolymers and single nucleotides)
the observed signal was generated either from a background
distribution - in cases where the flowed nucleotide was differ-
ent from the nucleotide to be sequenced - or otherwise from
the corresponding Gaussian distribution. The overall
sequencing error rate was 2.5%.

For the Solexa sequencing error we approximated the average
substitution rate of the Solexa/Illumina platform [44] using a
simple model involving a fourth degree polynomial. The pol-
ynomial was used to assign substitution probabilities at each
base position during the simulation. If at a given sequenced
position a substitution was assigned by the simulation proce-
dure, a randomly picked, different nucleotide was inserted at
the position in question. The average sequencing error rate
was 1.5%.

While our simulations were designed for optimizing the
parameters of PEMer and, thus, for improving the resolution
over earlier approaches, we realize that future studies may
aim for broader and more realistic simulations of PEM-based
studies. To facilitate future simulations involving PEM data
generation and scoring, we have made the code of our simu-
lation scripts available to the public together with PEMer.

Development of a specialized breakpoint database
To allow storage, display and manipulation of SV data as well
as consistency between different sets of SVs, we implemented
a database module for our approach. In particular, a web-
accessible database, BreakDB, was developed, which holds a
variety of data along with each SV entry. A diagram of the
BreakDB schematic, illustrating the database tables and their
relationships, is depicted in Figure S1 in Additional data file 1.
Data inserted into BreakDB can easily be manipulated for
subsequent analyses of the SV data - for instance, high-reso-
lution breakpoint information (i.e. the genomic coordinates
of breakpoint-junctions), the expected overall coverage of SVs
in a particular genome estimated based on the Poisson
approximation [45] (see Additional data file 1), and results of
breakpoint junction analyses by BLASTN [46] can be added
to a SV entry and mined once becoming available. Therefore,
the database has a versioning system, so that all changes to an

event are archived and are viewable within the application.
BreakDB contains information such as the coordinates, flank-
ing and inserted sequences (in case breakpoints are known),
potentially the suggested molecular mechanism leading to SV
formation, and supporting evidence for the SV entry. With
more SVs identified at base-pair resolution, their representa-
tion in databases becomes challenging as the coordinates of
independently occurred SV events that subsequently affected
the same locus may overlap in a complex fashion. To deal with
such scenarios, subsequent SV events - for example, an inser-
tion of genomic DNA followed by inversion and deletion of
parts of the sequence - can be defined recursively in BreakDB
(Figure 2). Thus, a SV event can be defined with respect to the
current version of the reference genome (build36), or, in case
of complex embedded SVs, with respect to another SV. Peri-
odically, as a SV collection becomes stabilized, a release is
generated and displayed as consistent, static pages.

Estimating E-values and P-values
PEMer computes E-values and P-values for the different
types of SVs identified in PEM datasets. Specifically, given a
certain span coverage we can estimate the total number of
optimally placed paired ends. Let us assume the span cover-
age is calculated as λ = NL/G, where N = number of optimally
placed paired ends, L = median insert size, and G = diploid
genome size; thus, rearranging N = λG /L. Now, let us intro-
duce a set Y of discordant paired ends with Nh elements and a
span beyond a cutoff H indicative of deletions, that is, all
paired ends with a span larger than a cutoff expressed in
terms of standard deviations SD from the mean of the distri-
bution of spans. Note that as for H > 2 × SD the frequency of
occurrence of the span lengths decreases faster than expo-
nentially, effectively all spans in the set Y are approximately
of length H.

Consider consequently placing Nh paired ends randomly onto
the genome and checking whether the n-th newly placed
paired end forms a proper cluster with the already placed n-1
paired ends. The probability to cluster will be:

P(n) =(n-1)Wh/(0.5 G)

where Wh is the effective window size applied for clustering
long paired ends (i.e., paired-ends indicative of deletions), (n-
1)Wh represents the number of nucleotides where the n-th
paired end may fall in order to form a proper cluster with any
previously placed paired end, and 0.5 G is the non-redundant
length of the genome (that is, the size of the haploid genome).
Note that since all paired ends are effectively of given size H,
Wh/2 is simply the maximum separation between the ends of
two pairs so that that they still cluster. We further assume
that Y covers the genome sparsely, thereby neglecting the
effect of window overlap from different paired ends. Thus, the
total number of clusters will be:
Genome Biology 2009, 10:R23
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where Eh is the expected number of false positive deletions, or
an E-value in relation to the number of randomly clustered
'long' discordant paired ends of set Y. Similarly, one can gen-
eralize the equation for calculating the number of false posi-
tives for k (2 or more) overlapping paired ends:

By using similar reasoning, one can estimate that the
expected number Es of false positive insertions is:

where Ns is the number of 'short' discordant paired ends at
cutoff S indicative of insertions and Ws is the effective window
size applied for clustering short paired ends (i.e., such indic-
ative of insertions).

PEMer detects SVs by clustering long and short events sepa-
rately and is flexible in terms of defining Wh and Ws, which
are used to cluster paired ends based on compatibility in sizes
and locations of ends. Thus, the values Wh and Ws are intro-
duced to simplify the clustering procedure and to obtain an
analytical description of the false positive rate. We estimated
that when clustering two paired ends the window sizes corre-
spond roughly to the cutoff used for clustering Wh ~H and
Ws~ S. By comparison with simulated data we also found that
the effective Wh doubles when tripling the minimum required
number of paired ends in a cluster while Ws gets twice longer
when doubling the minimum required number of paired ends
in a cluster; therefore, we obtain the general dependency Wh~
(k + 1)H/3 and Ws ~ kS/2. Thus, the amount of false positives
is estimated as:

and

In order to calculate P-values (P; the chance that a given event

with a given cutoff occurred at random), we need to convert

the number of randomly generated events E into the proba-

bility that an event will happen at least once. Assuming the

number of false positives in a given experiment follows a Pois-

son distribution with mean E, we can use the known analyti-

cal expression P = 1 - exp(-E), with  for

clusters of 'long' paired ends and  for clus-

ters of 'short' paired ends. Here, Nq is the quantile of events

corresponding to the 'shortest'/'longest' paired end of length

Q in the cluster defining a deletion/insertion.

Examples of E-values for identified SVs are given in Table S2
in Additional data file 1. We usually operate with E-values
rather than with P-values, as they can be more intuitively
understood. For E < 0.01, P and E are nearly identical.
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