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Introduction: Diffusion tensor imaging (DTI) can be used to map disease

progression in amyotrophic lateral sclerosis (ALS) and therefore is a promising

candidate for a biomarker in ALS. To this end, longitudinal study protocols

need to be optimized and validated regarding group sizes and time intervals

between visits. The objective of this study was to assess the influences of

sample size, the schedule of follow-up measurements, and measurement

uncertainties on the statistical power to optimize longitudinal DTI study

protocols in ALS.

Patients and methods: To estimate the measurement uncertainty of a tract-

of–interest-based DTI approach, longitudinal test-retest measurements were

applied first to a normal data set. Then, DTI data sets of 80 patients with ALS

and 50 healthy participants were analyzed in the simulation of longitudinal

trajectories, that is, longitudinal fractional anisotropy (FA) values for follow-up

sessions were simulated for synthetic patient and control groups with different

rates of FA decrease in the corticospinal tract. Monte Carlo simulations of

synthetic longitudinal study groups were used to estimate the statistical

power and thus the potentially needed sample sizes for a various number

of scans at one visit, different time intervals between baseline and follow-up

measurements, and measurement uncertainties.

Results: From the simulation for different longitudinal FA decrease rates, it

was found that two scans per session increased the statistical power in the

investigated settings unless sample sizes were sufficiently large and time

intervals were appropriately long. The positive effect of a second scan per

session on the statistical power was particularly pronounced for FA values with

high measurement uncertainty, for which the third scan per session increased

the statistical power even further.

Conclusion: With more than one scan per session, the statistical power of

longitudinal DTI studies can be increased in patients with ALS. Consequently,
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sufficient statistical power can be achieved even with limited sample sizes.

An improved longitudinal DTI study protocol contributes to the detection of

small changes in diffusion metrics and thereby supports DTI as an applicable

and reliable non-invasive biomarker in ALS.

KEYWORDS

Amyotrophic Lateral Sclerosis, Diffusion Tensor Imaging, longitudinal design,
statistical power, study optimization

Introduction

During the last decade, magnetic resonance imaging
(MRI)-based parameters have gained increasing interest as a
progression marker in neurodegenerative diseases (Agosta et al.,
2015). Amyotrophic Lateral Sclerosis (ALS) is characterized by
progressive motor neuron degeneration of both the upper motor
neurons of the cerebral cortex and the lower motor neurons in
the brainstem and spinal cord, leading to progressive immobility
and breathing difficulties, and eventually died after an average
of 3 years (van Es et al., 2017). In clinical trials, objective
biomarkers, for example, based upon neuroimaging are needed
to monitor the progression of the disease and thus improve
the chances of identifying effective treatments for ALS (van
den Berg et al., 2019). A promising and robust approach is the
measurement of white matter (WM) degeneration by the use of
diffusion tensor imaging (DTI) (Kassubek and Müller, 2020). In
addition to the voxel-wise analysis of the whole brain (Müller
et al., 2016), a tract-of-interest (TOI)-based approach can be
used to analyze specific cerebral WM pathways that are involved
in the progression of ALS (Kassubek et al., 2014). Longitudinally,
the spread of pathology is reflected by tract-specific alterations
in DTI metrics (Kassubek et al., 2018), which correlates with the
clinical severity of the disease (Baldaranov et al., 2017).

Longitudinal MRI examinations of the brain are time-
consuming, costly, and can be a burden for patients with
ALS (especially in advanced disease stages). Thus, a careful
design of such studies is mandatory. One of the most crucial
variables in the conceptualization of a longitudinal study is
the sample size as samples that are too small might lead
to non-significant results of true effects (Blain et al., 2007,
Alruwaili et al., 2019). Another essential aspect is the schedule
of follow-up measurements, that is, the number of follow-
ups and the time intervals between them. On one hand, it
must be taken into consideration when the effect, that is, a
change in diffusion metrics, can be measured at the earliest
(Kalra et al., 2020), and on the other hand, the timing of
follow-up measurements can be substantial for the validity of
the results (Müller et al., 2021a). Confounding factors such as
general and subject-specific noise cause diffusion metrics to be
subject to measurement errors (Müller et al., 2013). A higher

measurement error results in higher measurement uncertainty,
that is, the measured value probably does not directly reflect
the true value. Then, the measurement uncertainties affect
the test-retest reliability of DTI metrics, that is, the ability to
obtain similar values from different acquisitions of the same
subject (Vollmar et al., 2010; Koller et al., 2021). The presence
of high measurement errors can potentially bias the temporal
association of variables in longitudinal studies (Saccenti et al.,
2020). Especially in patients with burdening neurodegenerative
diseases, more subject-specific measurement artifacts are to be
expected compared to healthy subjects. All these aspects might
be a reason why previously reported post-hoc effect sizes of
longitudinal FA changes in patients with ALS were only limited
(Kassubek et al., 2018). This indicates that DTI study protocols
may be improved to increase the reliability of DTI metrics that
might potentially serve as technical biomarkers in studies.

The objective of this study was to evaluate the effects
of measurement uncertainty and scheduling of follow-up
measurements on statistical power and sample size in a
longitudinal study of patients with ALS. The approach is based
on fractional anisotropy (FA) along the corticospinal tract (CST)
which represents neuropathological ALS stage one (Kassubek
et al., 2018) and is a robust and sensitive DTI-based parameter
for disease progression (Kocar et al., 2021). This study aimed
to establish a basis for the optimization of study protocols for
longitudinal ALS imaging studies that are robust to different
longitudinal FA decrease rates.

Methods

Participants

A total of 80 patients (58.5± 13.9 years, 48 male/32 female)
with clinically definite or probable sporadic ALS according to
the revised version of the El Escorial World Federation of
Neurology criteria (Brooks et al., 2000) were included in the
study. All patients underwent standardized clinical-neurological
and routine laboratory examinations. None of the patients had
any history of neurological or psychiatric disorders apart from
ALS. The severity of disability as measured with the revised ALS
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functional rating scale (ALS-FRS-R) (Cedarbaum et al., 1999)
was 40± 5 (range 23–48). For analysis at the group level, 50 age-
and sex-matched healthy controls (54.3 ± 9.8 years, 32 male/18
female) were analyzed. For test-retest measurements, 14 healthy
subjects (age 36.3 ± 11.2 years, 6 male/8 female) participated.
All healthy controls had no history of any medical condition and
were medication-free.

All patients and healthy controls gave written consent for
the MRI protocol according to the institutional guidelines. The
study was approved by the Ethical Committee of the University
of Ulm, Germany (reference # 19/12), and written consent was
obtained from each participant.

Magnetic resonance imaging data
acquisition and processing

Test-retest measurements of 14 healthy subjects were
acquired on the same 1.5 T MRI scanner (Magnetom Symphony,
Siemens Medical, Erlangen, Germany) with 151 ± 112 days
in-between both scanning sessions. Since the reliability of
diffusion metrics is affected by the number of GD (Teipel et al.,
2011), each scanning session consisted of two DTI sequences
with different protocols: Protocol A consisted of 52 gradient
directions (GD) including four b0 directions (b = 1,000 s/mm2,
voxel size 2.0 mm × 2.0 mm × 2.8 mm, 128 × 128 × 64
matrix, TE = 95 ms, TR = 8,000 ms) and protocol B consisted
of 62 GD including two b0 directions (b = 1,000 s/mm2, voxel
size 2.5 mm × 2.5 mm × 2.5 mm, 128 × 128 × 64 matrix,
TE = 102 ms, TR = 8,700 ms). Between both sequences, the
participants remained in the scanner. The ratio of the number
of GD and b0 direction additionally influences the reliability
of the diffusion metrics (Zhu et al., 2009). Optimization of the
test-retest protocols was not performed in this respect, since the
objective was not to minimize the error but to estimate the error
from protocols commonly used in ALS studies (Kassubek et al.,
2014; Müller et al., 2016; Behler et al., 2022; Münch et al., 2022).

The signal-to-noise ratio (SNR) may be lowered in patients
with neurodegenerative diseases due to subject-related factors
(Müller et al., 2013). Therefore, all 80 patients with ALS
and a healthy control group (50 subjects) underwent protocol
C at a 3.0 T MRI scanner (Allegra, Siemens Medical,
Erlangen, Germany), as this has a higher SNR compared
to a 1.5-T MRI scanner. Protocol C consisted of 49 GD
including one b0 direction (b = 1,000 s/mm2, voxel size
2.2 mm× 2.2 mm× 2.2 mm, 96× 128× 52 matrix, TE = 85 ms,
TR = 7,600 ms).

Diffusion tensor imaging analysis
For DTI data post-processing, the software Tensor Imaging

and Fiber Tracking (TIFT) (Müller et al., 2007) was used. First,
all DTI data sets were checked for eddy current distortions,
underwent quality control (Müller et al., 2011), and were

resampled to an isotropic 1 mm grid. This was followed by a
non-linear spatial normalization to the Montreal Neurological
Institute (MNI) stereotaxic standard space (Brett et al., 2002)
by using study-specific DTI templates as described previously
in detail (Müller et al., 2012). Baseline and follow-up DTI data
sets of the test-retest group were aligned using a halfway linear
registration (Menke et al., 2014) before MNI normalization.
FA maps were calculated from each data set and, finally,
smoothed with a Gaussian filter with an 8 mm full width-at-half-
maximum.

Fiber tracking
An averaged data set of MNI transformed controls’ data was

used for the identification of the CST by a seed-to-target TOI-
based approach (Kassubek and Müller, 2020). A deterministic
streamline fiber tracking approach (Müller et al., 2009) was used
at which the FA threshold was set at 0.2 (Kunimatsu et al., 2004)
and the Eigenvector scalar product threshold was set at 0.9.
The seed regions had a radius of 5 mm and the target regions
had a radius of 10 mm. In a final step, the technique of tract-
wise fractional anisotropy statistics (TFAS) was applied to select
FA values underlying the fiber tracks for arithmetic averaging.
Bihemispheric mean FA values of fiber tracts were averaged and
corrected for age (Behler et al., 2021). An age correction of the
FA maps of the test-retest group was not performed since this
group was only used to determine the measurement uncertainty
which could be assumed to be independent of age and gender.

Simulation of longitudinal trajectories

For the single subject i, the FA value FAt,i of a follow-up
measurement at time t after the baseline measurement (t = 0)
can be calculated based on a linear relationship with a subject-
specific rate of FA change βi:

FAt,i = FA0,i + βi · t (1)

However, FA values, like any other measured value, are not
without measurement error. The measured FA value F̂At,i is
composed of the real value and a measurement error εt , which
differs for each measurement:

F̂At,i = FAt,i + εt (2)

For the simulation of longitudinal FA values (Figure 1A),
this results in:

F̂At,i = F̂A0,i−ε0 + βi · t + εt (3)

The measurement errors, that is, the measurement
uncertainties, ε0 and εt, of the baseline and the follow-
up measurement at time t originate from a normal
distribution (Table 1).
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FIGURE 1

Schematic workflow of statistical power calculations. In a first step, (A) subject-specific longitudinal fractional anisotropy (FA) values in the
corticospinal tract (CST) were simulated. Therefore, synthetic baseline values for patients and healthy controls were generated from real subject
data distributions. The calculation of synthetic “measured” follow-up FA values incorporated a predefined FA decrease and measurement
uncertainty. In a second step, (B) longitudinal trajectories were generated for n subjects per group and the statistical power was calculated from
2,000 Monte Carlo resampled data sets. This procedure was performed for different time intervals between baseline and follow-up sessions,
measurement uncertainties, longitudinal FA decrease rates, and sample sizes.
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TABLE 1 Description of the distributions used for longitudinal group data simulations.

Variables generated in simulation Distribution Basis for distribution parameters

“Measured” baseline FA values (group- and
subject-specific)

F̂A0,i ∼ N
(
µpatients, σpatients

)
µpatients and σpatients from 80 patients with ALS

F̂A0,i ∼ N (µcontrols, σcontrols) µcontrols and σcontrols from 50 healthy controls

Measurement uncertainty
(measurement-specific)

εi ∼ N (0, SEM) SEM from 14 test-retest normal data sets

Longitudinal FA decrease (subject-specific) βi ∼N (µβi , σβi ) Specification of µβi and σβi based on previous studies
(Cardenas-Blanco et al., 2016; Baldaranov et al., 2017;

Kassubek et al., 2018; Kalra et al., 2020)

All random variables are normally distributed with mean µ and standard deviation σ.

To extend this approach to n subjects, a between-subject
variability of the intercept F̂A0,i and slope βi is considered, that
is, these are subject-specific Gaussian random effects (Table 1).

Reliability analysis

To assess the measurement reliability of the FA values in the
CST, the intraclass correlation coefficient (ICC) was calculated
from the test-retest data sets of the healthy subjects with the
following specifications: two-way mixed effect, single rater, that
is, MRI scanner, and absolute agreement (Koo and Li, 2016).
ICC values < 0.50 indicate poor reliability, values between 0.50–
0.75 indicate moderate reliability, values between 0.75–0.90
indicate good reliability, and values > 0.90 indicate excellent
reliability. The 95% confidence intervals (CI) were considered
for this assessment.

The standard errors ε of a FA value (Table 1) were estimated
using the standard error of the mean (SEM) from the ICC (Weir,
2005):

SEM =
TSS(
k− 1

) ·√ICC · (1− ICC) (4)

with TSS as the total “within-samples” sum of squares and k as
the number of measurements.

Statistical power calculations

The statistical power was evaluated for the comparison
of longitudinal FA decreases between a group of patients
and a group of healthy controls using a Monte Carlo
simulation approach (Figure 1B) for different study designs.
The simulations of FA values at the follow-up session were
based on subject-specific longitudinal FA decrease rates only in
patients with ALS since the annual longitudinal FA decrease for
healthy controls was set to null. The FA decrease group mean
in patients with ALS was specified based on measurements in
previous studies:

- to 0.05% representing a group with a slow longitudinal FA
decrease (Baldaranov et al., 2017).

- to 2.00% representing a group of patients with
intermediate longitudinal FA decrease rates (Kassubek
et al., 2018; Kalra et al., 2020).

- to 3.50% representing a group with a fast longitudinal FA
decrease (Cardenas-Blanco et al., 2016).

It has to be noted, in general, however, that the speed of
deterioration of a technical measurement like MRI/DTI not
necessarily has to be associated with the speed of progression at
the clinical level, because, in complex diseases like ALS, many
(individual) factors may influence the clinical disease course.
Since the simulation was based on subject-specific trajectories,
the coefficient of variation of those mean FA decrease rates was
set to 67% in patients with ALS.

The algorithm to calculate the statistical power for a given
sample size per group n and a given effect size, that is, mean
longitudinal FA decrease rate in the patients with ALS, at a
significance level of 0.05 is as follows:

Step 1: The time interval between the baseline and the
follow-up session, the number of scans per session m, and the
magnitude of the measurement uncertainty were specified. The
time intervals chosen between baseline and follow-up sessions
varied from 30 to 180 days, which are typical intervals in
longitudinal studies (Baldaranov et al., 2017; Kassubek et al.,
2018; Kalra et al., 2020).

Step 2: Based on cross-sectional data estimated from studies
with real subjects (Figure 1A), synthetic “measured” baseline
FA values F̂A0,i were generated for each subject from a normal
distribution (Table 1) and m measurement repetitions were
simulated by resampling using the normal distribution of the
measurement uncertainty [equation (2)].

Step 3: A longitudinal FA decrease rate βi was assigned to
each subject (Table 1) and longitudinal FA values (m scans at
one follow-up session t days after the baseline session) were
calculated for each subject according to [equation (3)].

Step 4: The group comparison of longitudinal FA change
was analyzed with a two-sided independent t-test and the
p-value was calculated.

Step 5: Steps 2–4 were iterated 2,000 times and the number
of significant iterations was obtained. Statistical power was
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estimated as the proportion of iterations with statistically
significant results out of all iterations (Figure 1B).

Results

Simulation input

The test-retest reliability of the FA of the CST was
determined for two different DTI protocols (1.5 T scanner)
and ranged from good to excellent with an ICC of 0.91
[CI: (0.74, 0.97)] for protocol A and an ICC of 0.97 [CI:
(0.91, 0.99)] for protocol B. According to equation (4), the
standard error ε of a FA value was calculated to be 0.00134
for protocol A and 0.00054 for protocol B, respectively. The
analysis showed that DTI protocols on the same scanner could
lead to different magnitudes of measurement uncertainty of FA
values in the CST. In the following, the standard error ε of
protocol A is referred to as “high measurement uncertainty”
and that of protocol B as “low measurement uncertainty,” since
the latter provided more reliable values. As the magnitude of
the measurement uncertainty directly affects the correlation
structure of longitudinal data, the simulations and calculation
of statistical power were performed for both measurement error
magnitudes, that is, a low and high measurement uncertainty.

The tract-based group analysis of cross-sectional data
showed a mean FA value of 0.326 (SEM, 0.002) with a standard
deviation of 0.018 for the CST for patients with ALS and a mean
FA value of 0.339 (SEM, 0.003) with a standard deviation of
0.023 for healthy controls.

Monte Carlo statistical power estimate

Overall, for both measurement uncertainties, it was shown
that multiple repeated scans per session led to an increase of
the statistical power in detecting longitudinal changes in the FA
in the CST under otherwise identical conditions, that is, time
interval and group size.

From the simulation of a 0.5% longitudinal FA decrease
in the CST per year (slow longitudinal FA decrease), it was
shown at the analyzed time intervals of 60, 120, and 180 days
(Figure 2A) that a second scan per session resulted in increased
statistical power across both measurement uncertainties and all
time intervals. Due to the lower change per year, the third scan
per session led to a further increase in the statistical power
which was similar to the increase due to a second scan for high
measurement uncertainty.

In the simulations with 2.0–3.5% longitudinal FA decrease,
shorter time intervals were also analyzed, since effects should be
observable after shorter time intervals with a more pronounced
longitudinal decrease. In the simulation with an average annual
FA decrease of 2.0% (Figure 2B), the statistical power of 0.8

could not be achieved with either low or high measurement
uncertainty for a time interval of 30 days and one scan per
session for less than 35 subjects per group. The second scan
increased the statistical power so that a statistical power of
0.8 could be reached with 20 subjects per group (with a given
low measurement uncertainty). A subsequent, third scan per
session led to further improvement of the statistical power
for both measurement uncertainties. For measurements with
low measurement uncertainty, the third scan did not further
increase the statistical power. This positive effect of the third
scan per session was lower the higher the time intervals between
the baseline and the follow-up session were. Thus, with a 90-day
interval between baseline and follow-up, the third measurement
did not provide any additional advantage over a two-time
repeated scan. The analysis of the sample sizes per group which
was needed to reach an effect size of 0.8 showed that, for FA
values with high measurement uncertainty, the second scan per
session resulted in a reduction of the required sample size per
group by about 30–45% (Figure 3).

In the simulation with a longitudinal FA decrease of 3.5%
per year in the CST (“fast FA progressors”) (Figure 2C), it
was shown that, with 90-days between baseline and follow-
up measurement, a statistical power of more than 0.8 could
already be achieved with 12 subjects per group, as well as for FA
values with high measurement uncertainty. Repeated scans per
session resulted in an increase of the statistical power in case of
high measurement uncertainties and/or shorter time intervals
(30 days). For a low measurement uncertainty, however, this
improvement could not be demonstrated already at follow-
up measurements 90-days after baseline. For measurements
subject to high measurement uncertainty, the third scan brought
no further advantage after 90-days, as compared to two
scans per session.

Discussion

This study investigated how the potential of the DTI-
based metric FA as a non-invasive progression marker may
be further optimized to monitor longitudinal changes in the
FA during the disease progression of ALS. The influences of
sample size, scheduling of baseline and follow-up sessions, and
measurement uncertainty on the statistical power were assessed
for longitudinal FA studies in the CST. Follow-up FA values
were simulated for patients with ALS and healthy controls based
on real baseline data distributions. Based on these synthetic
longitudinal FA values, it could be demonstrated that a second
scan at each session substantially increased the statistical power
of such studies, especially for uncertain measurements with a
limited SNR, for example, due to subject-related factors (Müller
et al., 2013). The application of these results will strengthen
the reliability of the FA values, in line with SNR improvement
by signal-averaging during individual scans (Farrell et al., 2007;
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FIGURE 2

Statistical power for longitudinal diffusion tensor imaging studies in amyotrophic lateral sclerosis. Calculations were performed for (A) 0.5%, (B)
2.0%, and (C) 3.5% change per year of the fractional anisotropy in the corticospinal tract. Longitudinal simulations for a patient and a healthy
control group were performed for different sample sizes per group, two magnitudes of measurement uncertainty, one to three scans per
session, and time intervals t between baseline and the follow-up session.

Seo et al., 2019). Vice versa, the increased statistical power of a
DTI protocol means that lower sample sizes suffice to measure
small effects and/or effects after a short time, respectively. With
repeated scans per session, longitudinal FA changes in the CST
could be detected already after short time intervals. This can
be useful to identify even small alterations in cerebral WM
pathways (Bede and Hardiman, 2018; Müller et al., 2021b) or
potentially even small treatment effects if studied in a given
therapeutic intervention. From longitudinal simulations of MRI
correlates of fast disease progression, it was shown that DTI can
detect alterations in the CST with satisfactory statistical power

even after a short time. This provides the opportunity to use DTI
to differentiate between ALS variants with different progression
rates (Baek et al., 2020; Kalra et al., 2020).

As additional scans are a burden for patients with
neurodegenerative diseases, reliability analyses are often
performed on healthy participants. Patients with ALS might
present with reduced or restricted mobility, leading to
suboptimal positioning within the scanner and/or discomfort.
Breathing difficulties further interfere with lying supine in
the MRI scanner. This may result in a decreased SNR and,
therefore, decreased reliability of diffusion metrics. Therefore,
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FIGURE 3

Sample size per group to reach a statistical power of 0.8 with
different decrease rates in fractional anisotropy (FA). FA values
were either subject to (A) low or (B) high measurement
uncertainty. Statistical power calculations were performed for
60, 90, and 120 days between baseline and follow-up sessions
and one to three scans per session.

measurement uncertainty of FA values determined for healthy
subjects in this study might underestimate those in patients
with ALS. Thus, it may be concluded that repeated scans at
one visit are beneficial especially at an advanced disease stage
to achieve sufficient statistical power even with small sample
sizes. Of course, repeated scans per session can also be an
additional burden, especially for patients in later disease stages,
and it may be assumed that repeated scans per session are
possible at baseline but might be declined by the patient at
later follow-ups. However, even then the repeated scans at
baseline have a high value for the longitudinal analysis, since the
data may be automatically weighted. Therefore, time intervals
between multiple follow-ups no longer bias the results (Müller
et al., 2021a). Since several uncertainties of measurements
might occur in a clinical study, depending on patient condition
including disease progression, one possible improvement could
be to scan subjects two times during one visit.

A separate analysis of data from 1.5 to 3.0 T MRI acquisition
protocols showed that similar FA values could be obtained in
patients with ALS at different field strengths (Kassubek et al.,
2014). Therefore, measurement uncertainties acquired from 1.5
T scanner data could be used together with group data obtained
at a 3.0 T scanner: 3.0 T data show a higher SNR compared
to 1.5 T data, thus 1.5 T data were only used for uncertainty
estimation in this study and simulations at the group level
were performed on data recorded on a 3.0 T scanner. The
reliability analysis of two different 1.5 T scanner protocols
showed that the ICC of the FA in the CST, obtained by a tract-
based approach, was in the same order of magnitude as reported
for a 3.0 T scanner (Lewis et al., 2020). This finding is not
surprising, since the reliability of diffusion metrics is not affected
by the field strength alone (Vollmar et al., 2010) but also by
the number of GD (Teipel et al., 2011), DTI data processing
pipelines (Thieleking et al., 2021), and the MRI scanner itself
(Palacios et al., 2017). Although field strength is only one of
the several factors affecting test-retest reliability, scanners with
different field strengths in multicenter studies lead to increased
inter-site variability in diffusion metrics. This has an additional
negative impact on the statistical power of longitudinal studies
due to larger variability between subjects from different sites.
Since multicenter studies are often required in rare diseases
such as ALS, this limitation can be addressed with robust
harmonization methods that reduce inter-site variability while
preserving biological variability (Pinto et al., 2020). An approach
using linear correction for scanner effects in multicenter
longitudinal studies showed better estimates accounting for the
within-subject variability (Venkatraman et al., 2015); an analysis
approach for harmonizing multicenter DTI data have been
reported previously (Müller et al., 2016; Kalra et al., 2020). Since
the measurement uncertainty may differ between sites, it could
be assumed that the acquisition of multiple scans per visit also
might have a positive effect on the harmonization of multicenter
studies and their evaluations.

This study is not without limitations. The sample size
of the test-retest cohort was limited, and these DTI data
sets were acquired on a different MRI scanner than those
of the groups providing basic information for longitudinal
simulation. To strengthen the power of such simulations, test-
retest measurements on the scanner of the planned study would
be ideal. This study focused on longitudinal alterations in FA
in the CST because the CST alterations are to be robustly
found early in the disease process of ALS (Menke et al., 2017;
Bede and Hardiman, 2018; Kassubek et al., 2018; Baek et al.,
2020). The reliability of other tract systems might be different
from those of the CST (Marenco et al., 2006; Luque Laguna
et al., 2020), leading to a limited transferability of results for
optimal time intervals and sample sizes to other WM pathways.
For the simulation, the same magnitude of time-independent
measurement uncertainty was used for patients and healthy
subjects, but this might not completely represent reality, since
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it can be assumed that the quality of the patient data sets
might be worse than that of the healthy subjects and thus, the
measurement uncertainty would be higher for patients. Also,
increasing disease severity during the course could further affect
the quality and in that way the measurement uncertainty.

In summary, this study demonstrated that the statistical
power of longitudinal DTI studies in ALS can be substantially
increased by multiple scans of the same subject per session,
especially in limited sample sizes. Such optimized study
protocols can help to establish FA as an imaging biomarker
in ALS, especially to monitor disease progression not only in
the natural history but also under future disease-modifying
therapeutic approaches.
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