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Abstract
Single-cell sequencing provides a new way to explore the evolutionary history of cells. Compared to traditional bulk 
sequencing, where a population of heterogeneous cells is pooled to form a single observation, single-cell sequencing 
isolates and amplifies genetic material from individual cells, thereby preserving the information about the origin of 
the sequences. However, single-cell data are more error-prone than bulk sequencing data due to the limited genomic 
material available per cell. Here, we present error and mutation models for evolutionary inference of single-cell data 
within a mature and extensible Bayesian framework, BEAST2. Our framework enables integration with biologically 
informative models such as relaxed molecular clocks and population dynamic models. Our simulations show that 
modeling errors increase the accuracy of relative divergence times and substitution parameters. We reconstruct 
the phylogenetic history of a colorectal cancer patient and a healthy patient from single-cell DNA sequencing 
data. We find that the estimated times of terminal splitting events are shifted forward in time compared to models 
which ignore errors. We observed that not accounting for errors can overestimate the phylogenetic diversity in sin
gle-cell DNA sequencing data. We estimate that 30–50% of the apparent diversity can be attributed to error. Our 
work enables a full Bayesian approach capable of accounting for errors in the data within the integrative 
Bayesian software framework BEAST2.
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Introduction
The growth of cancer cells can be viewed as an evolutionary 
process where mutations accumulate along cell lineages over 
time. Within each cell, single-nucleotide variants (SNVs) act 
as markers for the evolutionary process. By sampling and se
quencing cells, we can reconstruct the possible evolutionary 
histories of these cell lineages. This can provide insight into 
the timing of events and modes of evolution.

Currently, there are two main methods for obtaining 
genomic sequences, bulk sequencing, and single-cell se
quencing. Bulk sequencing data are traditionally used in 
genomic studies. By pooling the genetic material from 
many cells to form a single observation, greater coverage 
and thus genetic signal is retained. However, in the context 
of cancer phylogenetics, the analysis of bulk data poses 
challenges. Firstly, the intermixing of tumor and normal 
cells affects the genomic signal. Secondly, the pooled sam
ple may be heterogeneous and thus contain a mixture of 
different genomic variants (de Bruin et al. 2014; 
Dagogo-Jack and Shaw 2018; Liu et al. 2018).

In contrast, single-cell sequencing isolates and amplifies 
the genetic material within a single cell (Kuipers et al. 

2017a). The isolation step alleviates the mixture problem. 
However, errors are more problematic for single-cell se
quencing due to insufficient coverage caused by the lim
ited amount of genetic material. The main sources of 
errors in single-cell sequencing include: cell doublets, 
where two cells are sequenced as one by mistake; allelic 
dropout (ADO), where one of the alleles fails to be ampli
fied; and sequencing error, where a base is erroneously 
read as a different base by the sequencing machine 
(Kuipers et al. 2017a; Woodworth et al. 2017; 
Lähnemann et al. 2020). Error models proposed to address 
these issues include models based on false positives and 
false negatives (Jahn et al. 2016; Ross and Markowetz 
2016; Zafar et al. 2017, 2019), models of allelic dropout 
and sequencing errors (Kozlov et al. 2022), and models 
of read count errors (Satas et al. 2020).

To enable easy integration with molecular clock and 
phylogeography models that are commonly used in other 
areas of phylogenetics (Meijer et al. 2012; Malmstrøm et al. 
2016; Kearns et al. 2018), we implemented two error mod
els within a mature Bayesian evolutionary framework, 
BEAST2 (Bouckaert et al. 2019). Our motivation is to 
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enable inference and quantify the uncertainty of both the 
evolutionary history and model parameters for single-cell 
phylogenetics. Our paper implements: (i) a model for false 
positive and false negative errors (Jahn et al. 2016; Ross and 
Markowetz 2016; Zafar et al. 2017, 2019) and (ii) a model 
for ADO and sequencing errors (Kozlov et al. 2022).

We show that our implementation is well calibrated 
(Dawid 1982) and demonstrate these models on real and 
simulated single-cell DNA data. Our simulation studies 
show that not accounting for errors leads to inaccurate es
timation of timing and substitution parameters when data 
is error-prone. Our results suggest that using a model that 
is not error-aware can significantly overestimate the num
ber of substitutions and hence the evolutionary time scale. 
Analysis of empirical single-cell datasets suggests 30–50% 
of the phylogenetic diversity can be attributed to errors. 
Moreover, we show error models are feasible on real data
sets, with no additional runtime costs compared to the 
equivalent non-error version of these models. Finally, we 
should note that these methods, while developed with 
cancer analysis in mind, are also applicable to non-cancer 
single-cell phylogenetics, such as somatic cell evolution.

Related Work
For bulk sequencing, there are many tools that estimate 
the clonal compositions in each bulk sample (Popic et al. 
2015; Jiang et al. 2016; Miura et al. 2018) and infer their clo
nal history (Cooper et al. 2015; Alves et al. 2019; Heide et al. 
2019). These clone inference tools are most applicable to 
bulk sequencing samples that contain a mixture of clones, 
and phylogenetic reconstruction is performed on the iden
tified clones. However, with the recent availability of 
single-cell technology, variations between cells can be 
studied more directly (Schwartz and Schäffer 2017). This 
has led to the development of tools for single-cell 
phylogenetics.

As errors present a key challenge to the analysis of 
single-cell data, there is a need for models that account 
for errors introduced during the sequencing process, miss
ing data, coverage discrepancies (Lee et al. 2020), and the 
ability to quantify uncertainty (Lähnemann et al. 2020).

Early models are based on false positive and false nega
tive errors where the input is a mutation matrix in binary 
format as in OncoNEM (Ross and Markowetz 2016), SCITE 
(Jahn et al. 2016), SiFit (Zafar et al. 2017), or ternary format 
as in SiFit (Zafar et al. 2017). OncoNEM (Ross and 
Markowetz 2016) is a maximum-likelihood (ML) method 
and uses a heuristic search to optimize the likelihood. 
SCITE (Jahn et al. 2016) is a Bayesian method that uses 
Markov chain Monte Carlo (MCMC) to sample the poster
ior but can also be operated in ML mode. Both OncoNEM 
and SCITE make the infinite sites assumption where a mu
tation can occur only once at a site. This assumption may 
be violated on real data, such as by parallel driver muta
tions (Tarabichi et al. 2021). Besides this, OncoNEM has 
been shown to be computationally slow, with low phylo
genetic accuracy in the presence of ADO (Kozlov et al. 

2022). The infSCITE model (Kuipers et al. 2017b) extends 
SCITE to account for cell doublet errors and test for the in
finite sites assumption. SiFit relaxes the infinite sites as
sumption and additionally accounts for loss of 
heterozygosity where a single allele is deleted. As deletion 
events commonly occur across a large region of the 
chromosome, this could violate the site independence as
sumption made by the SiFit model.

SCARLET (Satas et al. 2020) implements a read count 
model which accounts for false positives and false nega
tives. This is done by correcting read counts at each site 
using copy-number variation (CNV) output from another 
software. Empirical studies have shown ADO is the most 
significant contributor of errors in single-cell DNA sequen
cing (Wang and Navin 2015). CellPhy (Kozlov et al. 2022) 
explicitly models both ADO and sequencing error on dip
loid genotypes. Unlike models based on false positives and 
false negatives where different error types are absorbed 
into the false positive and false negative parameters, 
CellPhy is a more realistic model of the errors arising 
from the sequencing process. Furthermore, CellPhy has 
been shown to produce the most accurate phylogenetic 
estimates, followed by SiFit and infSCITE on simulated 
NGS datasets with ADO, amplification, and doublet errors 
(Kozlov et al. 2022). Both SCARLET and CellPhy make im
portant advances in using data that is closer to the ob
served sequencing data than previous methods.

Besides CellPhy, which uses the ML phylogenetic frame
work RAxML (Stamatakis 2014), other methods are only 
available as standalone implementations. The advantage 
of our work is that it enables easy integration with a wide 
range of population and clock models. In doing so, making 
these models available for single-cell phylogenetics. This in
cludes relaxed clock models (Drummond et al. 2006), 
population growth models such as Bayesian skyline plots 
(Drummond et al. 2005), and phylogeography models 
such as structured coalescent (Vaughan et al. 2014) and iso
lation migration models (Nielsen and Wakeley 2001).

In this paper, we implement error models for binary 
SNV data and diploid nucleotide SNV data. The binary 
model accounts for false positive and false negative errors 
(Jahn et al. 2016; Ross and Markowetz 2016; Zafar et al. 
2017, 2019). The nucleotide model accounts for ADO 
and sequencing errors (Kozlov et al. 2022). First, we inves
tigate how errors impact the time scale of evolutionary 
trees inferred from single-cell data. Then, we perform pre
liminary analyses on real single-cell data to show error 
models can be used with population growth and molecu
lar clock models. The next section describes the evolution
ary models used in this study.

Materials and Methods
We implement two sets of models: (i) the binary model, which 
handles mutation presence–absence data and (ii) the GT16 
model, which handles diploid nucleotide genotypes.

The mutation process is modeled as a substitution pro
cess evolving along the branches of a tree τ, with mutation 
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rates defined by the substitution rate matrix Q. Errors are 
modeled as a noisy process on tip sequences of the tree, 
where the true genotype is obfuscated according to error 
probabilities. To perform inference on data, we sample the 
posterior distribution of trees and the model parameters 
using Markov chain Monte Carlo (MCMC).

Software and Input format
Our software is available at www.github.com/bioDS/beast- 
phylonco. It accepts input files in Nexus, FASTA, and VCF 
format via a conversion script available at www.github. 
com/bioDS/vcf2fasta.

Binary Substitution Model
The presence or the absence of mutation is represented as 
a binary state Γ = {1, 0}. The rate matrix Q has a single 
parameter, λ which is the rate of back-mutation 1→ 0, 
relative to a mutation rate of 1. 

The elements of the rate matrix Q are:

Q =

0 1
0
1

− 1 1
λ − λ

􏼒 􏼓
.

The equilibrium frequencies are:

π0 = λ/(λ+ 1),

π1 = 1/(λ+ 1).

For data sampled at a single time point, the mutation rate 
is in units of substitutions per site. Data sampled at mul
tiple time points are required to estimate the mutation 
rate, which typically has units of substitutions per site 
per year. Alternatively, if we have prior information on 
the mutation rate, such as from empirical experiments, 
we can also fix the model’s mutation rate to the empirical 
value.

Binary Error Model
To account for false positive and false negative errors, we 
implement the binary error model described in (Jahn 
et al. 2016; Ross and Markowetz 2016; Zafar et al. 2017). 
Let α be the false positive probability and β be the false 
negative probability. P(x | y) is the conditional error prob
ability of observing noisy data x, given that the true state 
is y. For the binary error model, these error probabilities 
are:

P(0 | 0) = 1 − α,

P(1 | 0) = α,

P(0 | 1) = β,

P(1 | 1) = 1 − β.

(1) 

GT16 Substitution Model
To model diploid nucleotide sequences, we implement 
the GT16 substitution and error model described in Kozlov 
et al. (2022). The GT16 substitution model is an extension 
of the four-state general time-reversible nucleotide GTR mod
el (Tavaré 1986) to diploid genotypes: Γ = {AA, AC, 
AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT}.

Let a, b, c, d be alleles chosen from nucleotides N=
{A, C, G, T} and rab be the rate of going from allele a to allele b. 

The elements of the rate matrix Q are:

Qaa→ab = rab · πab,

Qaa→ba = rab · πba,

Qab→aa = rab · πaa,

Qab→bb = rab · πbb.

Other non-diagonal entries not listed above have a rate of 
zero. The diagonals are the sum of the in-going rates:

Qaa→aa = −
􏽘

b,c∈N∖a

Qaa→bc,

Qab→ab = −
􏽘

c,d∈N c≠a or d≠b

Qab→cd.

The relative rates of the Q matrix are:

rAC = rCA = α,

rAG = rGA = β,

rAT = rTA = γ,

rCG = rGC = κ,

rCT = rTC = λ,

rGT = rTG = μ.

The equilibrium frequencies are: π= (πAA, πAC , πAG, πAT , 
πCA, πCC , πCG, πCT , πGA, πGC , πGG, πGT , πTA, πTC , πTG, πTT).

GT16 Error Model
The GT16 error model for diploid nucleotides described in 
(Kozlov et al. 2022) accounts for amplification errors and biases 
in single-cell sequencing. This model has two parameters, the 
combined amplification and sequencing error ϵ, and allelic 
dropout error δ. The error probabilities P(x | y) for genotypes 
with alleles a, b, c derived in Kozlov et al. (2022) are given 
below:

P(aa | aa) = 1 − ϵ + (1/2) · δϵ,

P(ab | aa) = (1 − δ)(1/6) · ϵ,

P(bb | aa) = (1/6) · δϵ,

P(aa | ab) = (1/2) · δ+ (1/6) · ϵ − (1/3) · δ,

P(cc | ab) = (1/6) · δϵ,

P(ac | ab) = (1 − δ)(1/6) · ϵ,

P(ab | ab) = (1 − δ)(1 − ϵ).

(2) 
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Here, we assume that P(ba | aa) = P(ab | aa) and 
P(cb | ab) = P(ac | ab). Other combinations not listed above 
have zero probability. These genotypes can be easily adapted 
to unphased data by encoding heterozygous states as ambigu
ities P(ab∗) = P(ab)+ P(ba), where ab∗ represents ab with
out phasing information. Our implementation can handle 
both phased and unphased data.

Likelihood Calculation
Our input data is a SNV matrix D with n sites and m cells. The 
cell evolutionary tree τ is a rooted binary tree with m cells at 
the leaves, and branch lengths t1, t2, . . . t2(m− 1). These 
branch lengths are scaled to units of substitutions per site 
for data sampled at a single time point or years where mul
tiple time points are available. Figure 1 shows an example tree 
with cells a, b, c, d sampled at different time points.

The likelihood P(D | τ, M, θ) is the conditional probability 
of observing data D, given a tree τ, a substitution model M 
with rate matrix Q and model parameters θ. Assuming each 
site i evolves independently, this likelihood can be written as:

P(D | τ, M, θ) =
􏽙n

i=1

P(Di | τ, M, θ).

This can be calculated using Felsenstein’s peeling algorithm 
(Felsenstein 1981) by recursively traversing the tree. The like
lihood at the root node g, P(Di | τ, M, θ) is calculated by 
multiplying the equilibrium frequency πx of genotype x at 
site i with its partial likelihood Lg

i (x) summed over all possible 
genotypes x ∈ Γ:

P(Di | τ, M, θ) =
􏽘

x∈Γ
πx · L

g
i (x).

The partial likelihood Lg
i (x) for an internal node g at site i with 

child nodes e and f and corresponding branch lengths te and tf 

is:

Lg
i (x) =

􏽘

y∈Γ
Pxy(te) · Le

i (y) ·
􏽘

z∈Γ
Pxz(tf ) · L

f
i (z), 

where Pxy(t) = [eQt]xy is the probability of going from geno
type x to genotype y after branch length t and Q is the rate 
matrix of the substitution model.

Without an error model, the likelihood vector of a leaf 
node c with observed genotype x at site i is:

Lc
i (x) =

1 if y = x and y ∈ Γ,
0 if y ≠ x and y ∈ Γ.

􏼚

To incorporate errors, we replace the leaf likelihood vec
tors with the conditional error probabilities P(x | y) in 
the error model. For example, using an error model the 
leaf node c with observed genotype x at site i is updated 
to be:

Lc
i (x) = {P(x | y), ∀ y ∈ Γ}.

In the binary error model, the leaf likelihood vector Lc
i (x) 

for node c is filled using Equation (1) based on its observed 
genotype x at site i:

Lc
i (x) =

(1 − α, β) if x = 0,
(α, 1 − β) if x = 1.

􏼚

These leaf likelihoods collapse to the non-error version 
when α = 0 and β = 0. For brevity, we only fully write 
out the likelihood of the binary model. The likelihood of 
leaf nodes for the GT16 error model can be derived similarly 
using equation (2) and is available in our implementation.

Results
Evaluation on Simulated Datasets
First, we evaluated our implementations using a well- 
calibrated study (Dawid 1982) to test the reliability of 
the inference when simulating directly from the model. 
Following the well-calibrated criterion for credible inter
vals, we expect 95% of the credible interval to cover the 
true value 95% of the time. Next, we simulated sequences 
with errors and compared the inference performance with 
and without modeling the error. Then, we compared the 
runtime and convergence efficiency of each error model 
with the baseline non-error substitution model. Lastly, 
we performed experiments on data simulated with high le
vels of errors to test the robustness of our methods.

Simulation 1: Binary Data
We performed a well-calibrated study for the binary model 
using binary sequences with errors. First, we generated 
trees using a Yule model, then binary sequences were si
mulated along the branches of the tree, and errors were 
applied at the tips. Using the sequence data, we jointly es
timate the model parameters, tree topology, and branch 
times using the binary model.

Simulation parameters: We generated 100 trees with 30 
leaves from a Yule model, where each tree has a birthrate 
drawn from Normal(μ = 7.0, σ = 1.0). Sequences of 

FIG. 1. Example of an evolutionary tree with four cells at the leaves 
a, b, c, d.
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length 400 were simulated using the binary model with rate 
λ ∼ Lognormal(μ = − 1), false positive probability α ∼ 
Beta(1, 50) and false negative probability β ∼ Beta(1, 50).

Supplementary figure S1, Supplementary Material
shows the estimates for the model parameters, tree length, 
and tree height compared to the true simulated values. 
The estimated 95% highest posterior density (HPD) inter
vals are shown as bars, where blue indicates the estimate 
covers the true value, and red indicates otherwise. Our si
mulations show that the true value of each parameter falls 
within the estimated 95% HPD interval 91–99% of the 
time. Supplementary figure S2, Supplementary Material
shows the estimated trees are, on average, 2–5 subtree 
prune and regraft (SPR) moves away from the true tree.

Simulation 2: Binary Data Error vs. No Error
To compare the effects of inference with and without error 
modeling, we used the data from Simulation 1, then per
formed inference with and without the binary error model. 
We compared the coverage for each parameter with and 
without an error model, that is, how often the estimated 
95% HPD covers the true value.

Supplementary figure S1, Supplementary Material
shows the estimated parameters with the binary error 
model, and supplementary figure S3, Supplementary 
Material shows the estimated parameters without using 
an error model. Supplementary table S1, Supplementary 
Material shows the coverage of each parameter. The cover
age of tree length drops from 95% when the error model is 
used to 39% when no error model is used. Similarly, the 

coverage of the substitution parameter λ drops from 
91% to 53%. Furthermore, the tree length tends to be over
estimated when no error model is used. This suggests that 
both the tree length and substitution parameters are sig
nificantly biased when errors present in the data are not 
modeled. Figure 2 shows a comparison of the estimated 
tree length and tree height for these two model configura
tions. Other parameters such as birthrate and tree height 
are less biased, with a coverage of 92% and 84% respective
ly when no error model is used.

Simulation 3: Diploid Nucleotide Phased Data
We performed a well-calibrated study for the GT16 model 
using phased sequence data with errors. First, we simulated 
trees using a coalescent model. Sequences were simulated 
down branches of the tree using the GT16 substitution 
model, and then errors were applied at the tips. Using these 
sequences as input, we estimated the tree and model para
meters using the GT16 model. The priors on the error prob
abilities were chosen based on experimental studies for 
allelic dropout (Huang et al. 2015), amplification and se
quencing errors (Gawad et al. 2016; Ross et al. 2013).

Simulation parameters: We generated 100 trees with 
16 leaves from a coalescent model, where the population 
size is drawn from θ ∼ LogNormal(μ = − 2.0, σ = 1.0). 
Sequences of length 200 were simulated using the GT16 
model with genotype frequencies π ∼ Dirichlet(3, 
3, . . . , 3), and relative rates r ∼ Dirichlet(1, 2, 1, 1, 2, 1). 
Errors were simulated using ϵ ∼ Beta(α = 2, β = 18), 
and δ ∼ Beta(α = 1.5, β = 4.5).

FIG. 2. Comparison of branch 
lengths with and without the 
binary error model on simu
lated binary data. Estimated 
branch lengths using the binary 
error model (left) and without 
using the error model (right). 
Tree length estimates higher 
than 10, and tree height esti
mates higher than 1 are trun
cated on this plot. 
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Supplementary figures S4–S9, Supplementary Material
show the 95% HPD estimated for each model parameter 
and tree branch lengths. The true value of each parameter 
falls within the 95% HPD interval 91–99% of the time. This 
shows we are able to accurately estimate the substitution, 
error, population parameters, and branch lengths for 
phased data. Next, we computed the accuracy of tree top
ology by comparing the estimated tree with the true tree. 
Supplementary figure S10, Supplementary Material shows 
the average distance from the estimated trees to the true 
tree. On average, estimated trees are 2–6 SPR moves away 
from the true tree.

Simulation 4: Diploid Nucleotide Unphased Data
We performed a well-calibrated study for the GT16 model 
using unphased sequencing data. For unphased data, we 
used the data generated from Simulation 3, with phasing 
information removed from the sequences. Phasing infor
mation was removed by mapping a heterozygous ab to 
both states ab and ba.

Supplementary figures S11–S15, Supplementary 
Material show the estimated model parameters compared 
to the true simulated values. For each parameter, the esti
mated 95% HPD interval covers the true value 94–99% of 
the time, which confirms our implementation is well- 
calibrated. On average, the estimated trees are 2–6 SPR 
moves away from the true tree, supplementary figure 
S16, Supplementary Material. We note that the sum of 
the paired heterozygous frequencies (πab + πba) are iden
tifiable, but the individual frequencies (πab, πba) are non- 
identifiable as the data are unphased.

Simulation 5: Diploid Nucleotide Data Error vs. No Error
To compare the effects of inference with and without error 
modeling for diploid nucleotide data, we used the data 
from Simulation 3, then performed inference with and 
without the GT16 error model.

Supplementary table S2, Supplementary Material shows 
the coverage of each parameter with and without an error 
model. Supplementary figures S17–S21, Supplementary 
Material show the estimated model parameters when an 
error model is not used. We observe a similar trend to 
Simulation 2, where the tree length and substitution para
meters are significantly biased without an error model. 
Although the tree height estimated without an error mod
el are less biased, the tree lengths are overestimated. These 
differences in the tree heights and tree lengths are high
lighted in figure 3.

Simulation 6: Timing Experiments
We measured the runtime and convergence of the error 
model compared with the baseline non-error implementa
tion in our framework. Both error models are comparable 
in computational runtime efficiency with their baseline 
non-error substitution models. Runtime comparisons 
are shown in supplementary figures S24 and S25, 
Supplementary Material. The GT16 model takes approxi
mately an hour to reach convergence on simulated data
sets with 20 taxa and 500 sites (convergence is measured 
as the time till the minimum effective sample size is greater 
than 200). On a similar-sized dataset, the binary model 
takes less than five minutes to converge. Timing experi
ments were done on an Intel Xeon E3-12xx v2 virtual 

FIG. 3. Comparison of branch 
lengths with and without the 
GT16 error model on simu
lated phased nucleotide data. 
Estimated branch lengths using 
the GT16 error model (left) 
and without using the error 
model (right). Tree length esti
mates higher than 10, and tree 
height estimates higher than 3 
are truncated on this plot.
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machine with 16 processors at 2.7 MHz and 32 GB RAM 
hosted by Nectar Research Cloud.

Simulation 7: Performance on Data with High Levels of Error
Lastly, we performed experiments on extended error 
ranges based on empirical studies (Ross et al. 2013; 
Huang et al. 2015; Gawad et al. 2016) to test the robustness 
of our method. We used the same simulation parameters 
as simulations 1 and 3, but with varying levels of error cho
sen from an extended range: α ∈ [0.001, 0.1], β ∈ 
[0.1, 0.6] for binary data and δ ∈ [0.1, 0.8], ϵ ∈ 
[0.001, 0.1] for diploid genotype data. The priors on the er
ror parameters are α ∼ Beta(1, 20) and β ∼ Beta(3, 3) for 
binary data and δ ∼ Beta(1.5, 4.5) and ϵ ∼ Beta(2, 18) 
for diploid nucleotide data. Our results in the 
supplementary materials, Supplementary Material confirm 
our methods are robust to high levels of error.

Evaluation on Single-cell Datasets
We analyzed two public datasets from previously published 
studies; L86, a colorectal cancer dataset (Leung et al. 2017), 
and E15, a healthy neurons dataset (Evrony et al. 2015). 
Preprocessed SNVs from CellPhy (Kozlov et al. 2022) were 
used for both L86 and E15.

Colorectal Cancer Dataset (L86)
L86 contains 86 cells sequenced from a colorectal cancer 
patient with metastatic spread. The cells were sampled 
from the primary tumor (colorectal), the secondary meta
static tumor (liver), and matched normal tissue. We used 
the GT16 model with a relaxed clock to allow for different 
molecular clock rates in cancer and non-cancer lineages 
and a coalescent skyline tree prior, which allows changes 
in population sizes through time.

Model parameters: We used a GT16 substitution model 
with priors of frequencies π ∼ Dirichlet(3, 3, . . . , 3), rela
tive rates r ∼ Dirichlet(1, 2, 1, 1, 2, 1), and GT16 error 
model with allelic dropout δ ∼ Beta(1.5, 4.5) and sequen
cing error ϵ ∼ Beta(2, 18). A relaxed clock with a 
Lognormal prior, and Skyline coalescent tree prior with 

θ1 ∼ Lognormal(μ = − 2.3, σ = 1.8). We performed two 
independent repeats of the MCMC chains.

We found that the tree height is similar for both error 
and non-error models, but the relative ages of terminal 
branches are shorter for the error model. Figure 4 shows 
the tree length, treeness (Lanyon 1988; Phillips and 
Penny 2003), and gamma statistics (Pybus and Harvey 
2000) of the tree distributions under different experimen
tal setups: with and without error modeling, and with and 
without an outgroup constraint. The trees estimated using 
an error model are more tree-like than ones estimated 
without an error model. For the default setup without 
an outgroup, the 95% HPD estimate for tree length is 
(4.79, 5.85) with the error model and (7.00, 8.19) without 
the error model. The error parameters estimates are δ ∼ 
(0.62, 0.66) and ϵ ∼ (7 · 10− 6, 1 · 10− 3). The error esti
mates are comparable to the estimates reported by 
CellPhy (Kozlov et al. 2022) which are δ ∼ 0.63 and 
ϵ ∼ 0.00.

Figure 5 summarizes the estimated tree with the error 
model (top) compared to without an error model (bot
tom). The tips of the tree are colored by cell type. The trees 
show most cells group together by their cell type, which 
suggests there is signal in the data. However, there is 
some intermixing of metastatic tumor cells inside the pri
mary tumor clade and missorted normal cells as previously 
identified by Leung et al. (2017) and Kozlov et al. (2022). 
We also note that the most recent common ancestor 
(MRCA) of the normal clade is younger than the MRCA 
of the two tumor clades for both analyses. This is not 
what we intuitively expected because we believe the nor
mal ancestral cell should be the ancestor of both tumor 
and normal cells. Although surprising, this observation is 
in agreement with the trees estimated by ML algorithms 
in Kozlov et al. (2022). We believe this issue is closely re
lated to the phylogenetic rooting problem for heteroge
neous data (Tian and Kubatko 2017). Methods by Tian 
and Kubatko (2017), Mai et al. (2017) and Drummond 
et al. (2006) have provided some partial solutions to the 
rooting problem, but further research efforts are required 
to better understand the effects on tree topology.

FIG. 4. Tree length, treeness, and gamma statistics of tree distributions estimated from the L86 dataset. The distributions of each metric is colored 
by the model used: GT16 error model (red) and GT16 model without error (blue). Two pairs of experiments are shown; L86, which has no tree 
topology constraints, and L86 outgroup, which has the tree topology constrained to normal cells in the outgroup.
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We also investigated whether constraining the tree top
ology to have all tumor cells as the ingroup produces dif
ferent estimates. We repeat the analyses with an outgroup 
constraint to the tree topology, setting the normal and 
missorted samples as the outgroup. Supplementary 
figure S22, Supplementary Material shows the outgroup 

constrained summary tree for L86. In this outgroup con
strained tree, the age of the MRCA of the normal group 
is also younger than the MRCA of the primary or metastat
ic tumors for the error model. The age of the MRCA of the 
normal group is indistinguishable from the MRCA of the 
primary or metastatic tumors for the model without error.
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FIG. 5. Maximum clade credibil
ity trees for the L86 dataset 
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using the GT16 model with an 
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Healthy Neurons Dataset (E15)
E15 contains 15 neurons and a blood cell taken from the 
heart region sequenced from a healthy patient.

Model parameters: We used a GT16 substitution with fre
quencies prior π ∼ Dirichlet(3, 3, . . . , 3) and relative rates 
r ∼ Dirichlet(1, 2, 1, 1, 2, 1), GT16 error model with allelic 
dropout error δ ∼ Beta(1.5, 4.5), and sequencing error 
ϵ ∼ Beta(2, 18), with a relaxed clock and Skyline coalescent 
tree prior with θ1 ∼ Lognormal(μ = − 2.3, σ = 1.8). We 
performed two independent repeats of the MCMC chains.

We observed that the trees estimated using the error 
model are more tree-like than ones estimated without an 
error model, as shown by the tree metrics in figure 6. The 
95% HPD estimates of tree length are (1.37, 7.14) with 
the error model, and (7.60, 13.41) without the error model. 
We note the tree height for the error model (0.20, 0.80) is 
lower than that of the non-error model (0.54, 1.01). The es
timated interval for the error parameters are δ ∼ 
(0.86, 0.92) and ϵ ∼ (0.03, 0.17). To test the sensitivity of 
the error priors, we reran our experiments with adjusted 
priors ϵ, δ ∼ Beta(1, 10) and ϵ, δ ∼ Beta(1, 20). We found 
the error estimates were similar regardless of these adjust
ments on the error parameter priors.

Figure 7 shows a summary of the estimated trees with 
the GT16 error model (top) and without an error model 
(bottom). The tips of the tree are colored by cell types. 
We expect the blood cell to be placed as an outgroup; how
ever, the estimated trees placed the blood cell inside a clade 
of neuron cells. To investigate if adding an outgroup con
straint to the tree topology can help direct the likelihood 
in the correct direction, we repeated the analyses with 
the blood cell as the outgroup. The estimated trees are 
shown in supplementary figure S23, Supplementary 
Material. Besides the correct placement of the outgroup 
enforced by the outgroup constraint, we did not observe 
any substantial topological discrepancies between the out
group and non-outgroup analyses.

Discussion
We demonstrated that incorporating error parameters can 
affect the relative ages of single-cell datasets. We showed 

that models incorporating sequencing error could increase 
the accuracy of tree branches and model parameters 
inferred from noisy data. Additionally, we find that using er
ror models is just as fast as the baseline non-error 
substitution models in our framework. Future work to 
support multi-threading and add compatibility with 
the Beagle high-performance library (Ayres et al. 2012) would 
further increase the computational speed of these models.

From both simulated and real single-cell data, we ob
served that using an error model tends to shorten the 
total tree length, as errors explain a portion of the gen
etic variability within the data. For empirical single-cell 
data, cells of the same type tend to be placed in the 
same clade. We believe relaxed clock and local clock 
models are more suited to heterogeneous data as they 
allow for changes in mutation rates. The datasets we ex
plored in this paper are sampled at a single time point, 
so there is no calibration information to allow the mu
tation rate and time to be disambiguated. Using time 
sampled data or empirical mutation rate calibrations 
would improve current analyses and allow node ages 
to be converted to real time (Drummond et al. 2002, 
2003).

Although the effect of filtering strategies in the context 
of macroevolution shows stringent filtering of sites often 
leads to worse phylogenetic inference (Tan et al. 2015). 
The effect of filtering strategies on noisy data such as 
single-cell phylogenies is yet to be systematically explored. 
We believe the error parameters in these models can pro
vide increased flexibility, allowing key features of the se
quencing and filtering process to be accounted for 
during evolutionary inference.

Lastly, incorporating cell biology knowledge during meth
od development would improve the biological significance 
of model assumptions; and improving the interpretability 
of tree summarization metrics would enable single-cell phy
logenies to be examined in more detail.

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.

FIG. 6. Tree length, treeness, and gamma statistics of tree distributions estimated from the E15 dataset. The distributions of each metric is colored 
by the model used: GT16 error model (red) and GT16 model without error (blue). Two pairs of experiments are shown; E15, which has no tree 
topology constraints, and E15 outgroup, which has the tree topology constrained with the heart cell as the outgroup.
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