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Abstract

Background: A transcriptional regulatory module (TRM) is a set of genes that is regulated by a
common set of transcription factors (TFs). By organizing the genome into TRMs, a living cell can
coordinate the activities of many genes and carry out complex functions. Therefore, identifying
TRMs is helpful for understanding gene regulation.

Results: Integrating gene expression and ChlIP-chip data, we develop a method, called MOdule
Finding Algorithm (MOFA), for reconstructing TRMs of the yeast cell cycle. MOFA identified 87
TRMs, which together contain 336 distinct genes regulated by 40 TFs. Using various kinds of data,
we validated the biological relevance of the identified TRMs. Our analysis shows that different
combinations of a fairly small number of TFs are responsible for regulating a large number of genes
involved in different cell cycle phases and that there may exist crosstalk between the cell cycle and
other cellular processes. MOFA is capable of finding many novel TF-target gene relationships and
can determine whether a TF is an activator or/and a repressor. Finally, MOFA refines some clusters
proposed by previous studies and provides a better understanding of how the complex expression
program of the cell cycle is regulated.

Conclusion: MOFA was developed to reconstruct TRMs of the yeast cell cycle. Many of these
TRMs are in agreement with previous studies. Further, MOFA inferred many interesting modules
and novel TF combinations. We believe that computational analysis of multiple types of data will be
a powerful approach to studying complex biological systems when more and more genomic
resources such as genome-wide protein activity data and protein-protein interaction data become
available.

Background

A transcriptional regulatory module (TRM) is a set of
genes that is regulated by a common set of TFs. By organ-
izing the genome into TRMs, a living cell can coordinate
the activities of many genes and carry out complex func-
tions. Therefore, identifying TRMs is useful for under-

standing cellular responses to internal and external
signals. The advances of high-throughput genomic tools
such as DNA microarray [1,2] and chromatin immuno-
precipitation-DNA chip (ChIP-chip) [3,4] have made the
computational reconstruction of TRMs of a eukaryotic cell
possible.
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Genome-wide gene expression analysis has been used to
investigate TRMs controlling a variety of cellular processes
in yeast [5-9]. Clustering and motif-discovering algo-
rithms have been applied to gene expression data to find
sets of co-regulated genes and have identified plausible
binding motifs of their TFs [7,10,11]. Such approaches
have also been expanded to incorporate previous knowl-
edge about the genes, such as cellular functions [12] or
promoter sequence motifs [13]. Moreover, some research-
ers used model-based approaches such as random
Boolean networks [14] and Bayesian networks [15,16] to
infer regulatory network architectures. However, this
approach provides only indirect evidence of genetic regu-
latory interactions and does not identify the relevant TFs.
On the other hand, the ChIP-chip technique was devel-
oped to identify physical interactions between TFs and
DNA regions. Using ChIP-chip data, Simon et al. [17]
investigated how the yeast cell-cycle gene-expression pro-
gram is regulated by each of the nine major transcrip-
tional activators. Lee et al. [18] constructed a network of
TF-gene interactions and Harbison et al. [19] constructed
an initial map of yeast's transcriptional regulatory code.
However, ChIP-chip data alone cannot tell whether a TF is
an activator or a repressor and, most importantly, ChIP-
chip data are noisy and, depending on the chosen p-value
cutoff, include many false positive or false negative TF-
DNA binding relationships.

Since gene expression and ChIP-chip data provide com-
plementary information, some researchers [20-22] have
integrated both types of data in their studies. However,
most previous studies except the GRAM algorithm [21]
assumed that a gene is regulated by a TF only if the p-value
of TF-gene binding in the ChIP-chip data is < 0.001, thus
suffering a false negative rate of ~24% in determining TF-
gene binding [19].

In order to reduce the high false negative rate, we develop
a method, called Temporal Relationship Identification
Algorithm (TRIA), that uses the information provided by
gene expression data to alleviate the effect of using a strin-
gent threshold in determining TF-gene binding. A TF-gene
pair is said to have a positively (negatively) temporal rela-
tionship if the gene's expression profile is positively (neg-
atively) correlated with the TF's regulatory profile possibly
with time lags (see Methods). TRIA identifies TF-gene
pairs with a temporal relationship. We define that a TF
binds to a specific gene if (1) the p-value for the TF to bind
the gene is < 0.001 in the ChIP-chip data or (2) 0.001 <p
< 0.01 and the TF-gene pair has a temporal relationship.
That is, we allow the p-value cutoff to be relaxed to 0.01 if
the TF-gene pair has a temporal relationship. Our
approach is different from the GRAM algorithm [21],
which relied on sets of co-expressed gene to relax the strin-
gent p-value cutoff.
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From the above procedure, we derive a binding score
matrix. Then we develop the MOdule Finding Algorithm
(MOFA) that combines this binding score matrix with the
gene expression matrix to reconstruct TRMs of the yeast
cell cycle (see Methods). For each of the five cell cycle
phases (M/G1, G1, S, §/G2 and G2/M), MOFA exhaus-
tively searches for all possible TF combinations and find
their target genes. Once the set of target genes to which a
common set of TFs bind is inferred, MOFA identifies a
subset of these target genes whose gene expression profiles
are positively correlated possibly with time lags. That is,
the genes of a module not only share a common set of TFs
but also have positively (time-shifted) correlated expres-
sion profiles. Our gene module is more general than that
of GRAM algorithm [21], which only searched co-
expressed genes to form a module. MOFA reconstructs 87
TRMs. We then validate the biological relevance of each
inferred TRM using existing experimental data, enrich-
ment for genes in the same MIPS functional category [23],
known DNA-binding motifs [7], etc.

Results

By integrating the gene expression and ChIP-chip data,
MOFA identified 87 TRMs, which together contain 336
distinct genes regulated by 40 distinct TFs (see Figure 1
and Additional file 1). In the literature [7,23-25], 139 of
the 336 genes and 30 of the 40 TFs are known to be
involved in the cell cycle.

Validation of the identified modules

Analysis of the identified modules suggests that MOFA
identifies biologically relevant groups of genes. First, 83 of
the 87 modules contain genes that are known to be
involved in the cell cycle (see Additional file 1). Second,
51% (44/87) identified module includes groups of genes
that function in the same cellular process: each of these
modules contains at least one over-represented MIPS
functional category with adjusted p-value < 0.05 (after the
Bonferroni correction for multiple tests) using the cumu-
lative hypergeometric distribution (see Additional file 2).
Third, the modules are generally accurate in assigning TFs
to sets of genes whose functions are consistent with the
TFs' known roles. We found that the regulatory functions
of the 71% (120/169 counting multiplicity) TFs are con-
sistent with one of their modules' over-represented MIPS
functional categories with adjusted p-value < 0.05 (see Fig-
ure 1). As an example, Digl and Ste12 are known to regu-
late mating and pseudohyphal growth [26] and M/G1 is
the critical phase for these processes. All five genes (FUS1,
GPA1, KAR4, SST2, TEC1) of the {Stel2, Digl} module
are important for mating, pseudophyphal growth, or phe-
romone response. Fourth, 33% (188/568 counting multi-
plicity) genes are known by previous studies to be
regulated by at least one of the TFs that we assigned to the
module (see Additional file 1). Fifth, the genes of a mod-
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The 87 TRMs identified in this study. Each rectangle stands for a module and the ovals in a rectangle indicate the TFs that
regulate the module. TF name is colored blue if its function is consistent with one of the module's over-represented MIPS func-
tional categories with adjusted p-value < 0.05 (after the Bonferroni correction for multiple tests) using the cumulative hyperge-
ometric distribution or black if not. Two ovals are connected by a line if previous studies indicated that the two TFs interact
with each other physically (forming a protein complex), functionally (in the same cellular process) or statistically (co-occur-
rence) [19-22,24]. An oval is colored red (green) if the TF is identified as an activator (repressor). The periphery of a rectangle
is colored purple if this module implicates important TF combinations or is discussed in the text.

ule usually have the same binding motifs of the important
cell cycle TFs such as SCB (bound by SBF), MCB (bound
by MBEF), SFF (bound by SFF), ECB (bound by Mcm1) and
SWI5 (bound by Ace2 and Swi5). We found that in the
majority of cases (36/45) in which a module is controlled
by at least one of the important cell cycle TFs (SBF, MBF,
SFF, Mcm1, Ace2 and Swi5), there always exist genes that
have the known binding motifs of the corresponding TFs
(see Additional file 1). Finally, in most cases in which a
module is controlled by more than one TF, there is evi-
dence that these TFs may interact physically or function-
ally (see Figure 1). About 59% (70/118) of the TF
interactions that we identified have been experimentally
proven or identified by computational algorithms [19-
22,24]. Taken together, these results provide evidence that
MOFA identifies not only sets of biologically related
genes, but also TFs that individually or cooperatively con-
trol these genes.

Identification of important cell cycle TFs and their
combinations

MOFA identified 40 TFs that regulate genes of the yeast
cell cycle and Figure 2 shows the cell cycle phases in which
these TFs carry out their regulatory functions. Table 1 lists
these 40 TFs according to the number of target genes. The
nine well-known cell cycle TFs (Ace2, Fkh1, Fkh2, Mbp1,
Mcm1, Ndd1, Swi4, Swi5, and Swi6) are ranked within
the top 14, suggesting the effectiveness of MOFA to find
important cell cycle TFs. Moreover, we found another 21
TFs (Abfl, Cin5, Cst6, Digl, Gal4, Gat3, Hap4, Hirl, Hir2,
Hir3, Ixrl, Msn4, Rapl, Rlm1, Skn7, Stb1, Stel2, Tecl,
Ume6, Yap5, and Yox1) that are relative to the cell cycle
process, consistent with the previous studies [23-25]. The
remaining 10 TFs (Datl, Hap1, Nrgl, Pdr1, Phdl, Pho4,
Rebl, Smpl, Sutl, and Yap6) are putative cell cycle related
TFs. Among them, Hap1 is more plausible than the others
to be related to the cell cycle process since the number of
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Figure 2
The cell cycle phases in which each of the 40 identified TFs carries out its regulatory function. Nine well-known
cell cycle TFs are colored red and another 21 TFs that are also involved in the cell cycle [23-25] are colored blue.
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Table I: The number of genes regulated by each of the 40 TFs in each cell cycle phase.

TF All phases M/GI Gl S SIG2 G2/M
Swi4 78 5 45 9 9 10
Swié 74 5 50 7 5 7
Fkh2 67 14 5 15 33
Mbpl 57 5 47 5

Fkhl 53 17 5 18 13
NddlI 50 12 5 33
Abfl 34 10 5 10 9
Swi5s 34 24 10

Cin5 33 8 7 18
Hapl 30 9 5 5 Il
Stbl 24 24

Mcml 22 7 15
Yap5 22 5 17

Ace2 21 6 10 5
Gat3 20 5 15

Pdrl 17 5 12

Yox| 16 5 Il
Msn4 15 5 10

Rebl 15 8 7
Smpl 15 8 7

Datl 13 5 8

Sutl 13 5 8
Tecl 13 5 8

Rim| 12 7 5

Stel2 12 5 7

Ume6 Il 6 5
Yapé Il Il
Rap | 10 5 5

Gal4 6 6

Hirl 6 6

Hir2 6 6

Hir3 6 6

Csté 5 5

Digl 5 5

Hap4 5 5

Ixrl 5 5
Nrgl 5 5
Phd| 5 5
Pho4 5 5

Skn7 5 5

Nine well-known cell cycle TFs are bold-faced and another 2| TFs that are also involved in the cell cycle [23-25] are in italic type. The TFs are

ordered by the number of their target genes in all phases.

cell cycle genes that it regulates is much larger than that of
the others (see Table 1). Actually, it has been shown that
Hap1 (also called Apel AP endonuclease) regulates APE1
[27]. Apel is a dual function enzyme and its cell cycle-
dependent expression might affect both DNA repair and
the activity of various transcription factors as a function of
the cell cycle [27]. This evidence validates that MOFA has
the ability to find novel TFs which may play a role in the
cell cycle or are involved in other cellular processes that
have crosstalk with the cell cycle process.

TF combinations and their target genes that are important
for each cell cycle phase are also found. We found that dif-

ferent combinations of a fairly small number of TFs are
responsible for regulating a large number of genes in dif-
ferent cell cycle phases. Detailed discussions of the TF
combinations and their target genes in each specific cell
cycle phase are given below.

The MIGI phase

Ace2 and Swi5 have been shown to control certain genes
expressed in M/G1 [28]. We successfully found that
{Ace2, Swi5} and {Swi5} regulate, respectively, modules
2 and 13 in M/G1. Both Ace2 and Swi5 were found to reg-
ulate EGT2, whose product is involved in cell wall biogen-
esis and cytokinesis. Swi5 also regulates PCL9, whose

Page 5 of 15

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:421

product is the only cyclin known to act in M/G1 [29] and
SIC1, whose product is a cyclin regulator that inhibits the
Cdc28-Clb kinase activity. Furthermore, Swi5 regulates
several Y' genes, which are a subgroup of a larger group of
sub-telomeric genes that share DNA sequence similarity
and whose expression peaks in early G1 [7].

It is known that in the absence of Ndd1 and Fkh2, Mcm1
participates in the regulation of genes essential for cellular
functions specific to late mitosis and early G1 [30,31].
Indeed, we found that {Mcm1} regulates module 8 in M/
G1. It regulates CDC46, which encodes a protein involved
in pre-replication complex formation and AGA2, which
involves in mating. In addition, Yox1 was recently charac-
terized as a binding partner of Mcm1 in M/G1 [30]. We
found that {Yox1}, acting as a repressor, regulates module
15 in M/G1. Three genes CDC46, PIG1 and YORO66W are
found to be regulated by both Mcm1 and Yox1, confirm-
ing that Yox1 and Mcm1 may co-regulate a group of
genes.

In addition, some cell-wall genes are known to be under
the control of the M-phase regulator Mcm1 or the G1-
phase regulator SBF. The M/G1 phase is a crucial time for
cell wall synthesis because the bud separates from the
mother right after the M/G1 phase. We successfully found
TF combinations {Mcm1} and {Swi4, Swi6}, whose com-
mon target genes include SWI4, which encodes a late G1
TF, and UTR2, which is involved in cell-wall organization
and polarized growth. The dual regulation of SWI4 by
Mcm1 and Swi4 has been shown previously [31].

We identified {Digl, Ste12} to regulate module 3 in M/
G1. The genes of this module include FUS1, GPA1, KAR4,
SST2, and TEC1, which are important for mating or pseu-
dohyphal growth. Digl and Stel2 are known to regulate
mating and pseudohyphal growth [26], supporting the
biological relevance of our finding. We also found novel
TF combinations. For example, {Dat1, Gat3, Msn4, Pdr1,
Yap5} is identified to regulate a group of genes that are
similar to sub-telomerically encoded proteins.

The GI phase

Previous molecular and genetic analysis suggested that
SBF and MBF are important activators of genes essential
for cellular functions specific to late G1 [17,32]. Our
result confirms this model: 10 out of the 36 modules in
G1 are regulated by MBF or SBF. SBF regulates BUDY,
EXG1 (both of module 8), GAS1, MNN1, OCH1 and PSA1
(all of module 22). These genes are involved in the mor-
phological changes associated with cell budding. MBF
controls PDS5, RAD51, RNR1 (all of module 3), DUN1,
IRR1 and RAD27 (all of module 19). These genes are
involved in DNA replication and repair. Moreover, the tar-
gets of SBF and MBF also include key cell cycle regulators.
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Both SBF and MBF were found to regulate CLN1, CLBG
(both of module 2) and PCL1 (of module 6). In addition,
SBF regulates PCL2 (of module 14) and MBF regulates
CLB6 (of module 2).

We found that Stb1 together with SBF (Swi4+Swi6) or
MBF (Mbp1+Swi6) regulates modules 2, 4 and 6 in G1. It
has been known that Stb1 binds to Swi6 in vitro and is
thought to interact with Swi6, a subunit of both SBF and
MBEF, to regulate transcription in vivo [33]. Also, consistent
with our results, Kato et al. [22] claimed the presence of
the complexes Stb1+Swi6+Swi4 and Stb1+Swi6+Mbp1.
Moreover, we found that {Ste12, Swi4, Swi6} regulates
module 14 in G1, which is also consistent with the result
of [22].

We found that Fkh1/Fkh2 combines with MBF/SBF to reg-
ulate modules 3, 4, 8 and 10 in G1. It is known that Fkh1
and Fkh2 regulate genes expressed in G2/M and also genes
expressed in other cell cycle phases [17], supporting our
result. We also found some novel TF combinations. For
example, {Datl, Gat3, Msn4, Pdr1, Yap5}, which is also
found in M/G1, {Gat3, Hap4, Pdr1, Yap5}, {Datl, Hapl,
Yap5}, {Gat3, Rapl, Yap5}, {Gal4, Yap5} and {Msn4}
are all identified to regulate genes whose products are sim-
ilar to sub-telomerically encoded proteins. All these genes
share DNA sequence similarity and are found in Y' ele-
ments, which are located at chromosomes ends [7].

The S phase

We found that {Fkh2} regulates various genes that encode
proteins associated with chromatin structure including
histone genes HHF1 and HHT1 (both of module 6). We
found that {Fkh1} regulates TEL2 (of module 5), a tel-
omere length regulator, and ARP7 (of module 5), a subu-
nit of the chromatin remodeling Swi/Snf complex.
Histone genes can be found in the {Fkh1}, {Fkh2},
{Swi4, Swi6} and {Mbp1l, Swid} modules, suggesting
that SBF, Fkh1 and Fkh2 probably regulate histone genes.
Our result is consistent with a few genomic studies
[18,34] that indicated the involvement of SBF and Fkh1/
Fkh2 in regulating S phase genes. In addition, we success-
fully identified {Hirl, Hir2, Hir3} to regulate six histone
genes (HTA1, HTB1, HHT1, HHF1, HHT2, HHF2) of
module 1 in the S phase, supported by existing experi-
mental results [35]. In summary, we suggest that SBF and
Fkh1/Fkh2 are activators and Hirl, Hir2 and Hir3 are
repressors of histone genes.

The SIG2 and G2/M phases

Simon et al. [17] and Lee et al. [18] indicated the involve-
ment of SBF and Fkh1/Fkh2 in regulating S/G2 genes. We
confirmed that Fkh1, Fkh2, Swi4 and Swi6 are important
TFs in this phase since five out of the eight modules in S/
G2 are regulated by at least one of these TFs. Fkh2, Swi4
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and Swi6 are identified to regulate SIM1, which is
involved in cell cycle control, and Fkh1 is identified to reg-
ulate CLB4, which encodes an S/G2 cyclin.

Previous studies have demonstrated that Mcm1 collabo-
rates with Ndd1 and Fkh1/Fkh2 to regulate genes neces-
sary for both entry into and exit from mitosis [36,37]. We
successfully identified this TF combination to regulate
module 1 in G2/M. Four of the seven genes identified in
this module have an SFF (bound by Ndd1+Fkh1/Fkh2) or
ECB (bound by Mcm1) motif (see Additional file 1). The
Mcm1+Ndd1+Fkh1/Fkh2 protein complex regulates tran-
scription of CLB2 (of module 1), whose product is neces-
sary to enter mitosis. Furthermore, SBF and MBF regulate
SWEI (of module 13 in G1) and GIN4 (of module 13 in
G1). Swel is a protein kinase that regulates the G2/M tran-
sition by inhibition of Cdc28-Clb2 kinase activity and
Gin4 regulates Swel [38]. The Mcm1+Ndd1+Fkh1/Fkh2
protein complex also sets the stage for exit from mitosis at
several levels [17]. First, they regulate two key M/G1 TFs:
SWI5 (of module 3) and ACE2 (of module 1). Second,
they regulate CDC20 (of module 1), an activator of the
anaphase promoting complex (APC). Finally, these activa-
tors regulate SPO12 (of module 3), which encodes a pro-
tein that regulates the mitotic exit.

It has been suggested that Fkh2 has a more prominent role
than Fkh1 in G2/M transcription [36]. Our analysis agrees
with this suggestion since the number of G2/M genes reg-
ulated by Fkh2 is much larger than that of Fkh1 (see Table
1). We also found novel TF combinations. For example,
we found that SFF instead of combining with MCM1 can
also combine with Swi6 or Yox1 to regulate G2/M genes
and {Cin5, Nrgl, Yap6} is identified to regulate a group
of genes with unknown functions.

Discussion

Relationships between two TFs of a module

The relationships between two TFs that regulate the same
module fall into three categories. First, both TFs bind
DNA in the same promoter region but do not interact with
each other. Different TFs may regulate the target gene to
execute different functions in different cellular processes.
Indeed, we found that TFs in this category usually regulate
genes that are required for multiple cellular processes. For
example, we found that {Stel2, Swi4, Swi6} regulates
module 14 in G1. Since Stel2 and SBF (Swi4+Swi6) are
both DNA-binding TFs and there is no evidence that Ste12
interacts with SBF, the relationship between Stel2 and
SBF belongs to this category. Stel2 is a regulator of the
mating or pseudohyphal growth pathway and SBF is an
important regulator in the G1 phase. This indicates that
there may exist crosstalk between these two cellular proc-
esses. That is, the TF combination {Stel2, Swi4, Swi6}
probably regulates genes needed for the G1 phase and
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also independently needed for mating, confirming the
results of [22]. Second, both TFs bind DNA and interact
with each other. For example, we found that {Fkh2,
Ndd1, Mcm1} regulates module 3 in G2/M. Both Mcm1
and Fkh2 bind DNA and these two proteins together
recruit Ndd1 to form a protein complex to control the
transcription of G2/M genes [36]. Third, only one TF
binds DNA and the other TF regulates the target genes
through binding to the DNA-binding TF. For example,
{Mbp1, Swi6} and {Swi4, Swi6} are found to regulate,
respectively, modules 19 and 22 in GI1. MBF
(Mbp1+Swi6) functions in DNA replication, and SBF
(Swi4+Swi6) predominantly controls the expression of
budding and cell-wall genes [4]. Since Swi6 is a non-DNA-
binding cofactor of Swi4 and Mbpl1, the relationship
between Swi6 and Swi4/Mbp1 falls into the third cate-

gory.

Advantages of MOFA

MOFA has two features that make it more powerful than
current methods. First, it can reduce false negatives in
determining binding events in the ChIP-chip data. Most
researchers except for Bar-Joseph et al. [21] have chosen a
relatively stringent p-value threshold (0.001) to determine
binding in order to reduce false positives at the expense of
false negatives [18-20,22]. In comparison, MOFA allows
the p-value cutoff to be relaxed to 0.01 if a TF-gene pair has
a temporal relationship. (Our approach is different from
the GRAM algorithm [21], which relied on sets of co-
expressed gene to relax the stringent p-value cutoff.) As an
example, consider Swi5, a well-characterized cell cycle TF
in M/G1. The {Swi5} module we inferred contains 18
genes that have similar expression patterns (see Addi-
tional file 4). Four of these genes (YOR264W, PST1, SIC1
and YHB1) would not have been identified as Swi5 targets
using the stringent p-value threshold (0.001). Previous
studies identified these four genes as true targets of Swi5
[7,18]. This attests to the ability of MOFA to lower the rate
of false negatives without substantially increasing the rate
of false positives. Overall, 87 of the 988 unique TF-gene
interactions discovered by MOFA would not have been
detected using the current ChIP-chip data with the strin-
gent p-value cutoff (0.001). In addition, 312 of the 988
unique TF-gene interactions are supported by gene expres-
sion data. That is, each of the 312 TF-gene pairs is identi-
fied to have a temporal relationship (see Additional file

1).

Second, MOFA can determine the role of a TF in regulat-
ing genes of a module. A TF is said to be an activator
(repressor) of a module if the p-value of observing TF-gene
pairs of the module having a positively (negatively) tem-
poral relationship is < 0.001. The p-value is the probabil-
ity that an observation would be made by chance, and is
calculated using the cumulative binomial distribution
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[39]. We found nine activators (Abfl, Ace2, Fkh1, Fkh2,
Ndd1, Rebl, Stb1l, Swi4 and Swi5) and six repressors
(Abf1, Dat1, Fkh1, Fkh2, Reb1 and Yox1), consistent with
the results of previous studies [40-52]. Interestingly, four
TFs (Abf1, Fkh1, Fkh2 and Reb1) are capable of being acti-
vators and repressors to regulate different modules. Table
2 provides the detailed discussion of how we assign the
regulatory roles of TFs and the known experimental evi-
dence that supports our findings.

MOFA is more powerful than GRAM algorithm [21] in
two ways. First, MOFA has the ability to assign a TF to be
an activator or/and a repressor (see Table 2). On the con-
trary, GRAM algorithm cannot find any repressors or acti-
vators that are correlated with its target genes with time
lags since GRAM algorithm regards a TF to be an activator
only when the expression profiles of the TF and the genes
in the corresponding module are co-expressed. For exam-
ple, GRAM algorithm found only two (Fkh1 and Fkh2) of
the nine activators and none of the six repressors that are
found by MOFA (see Table 2). Second, MOFA is more
powerful than GRAM algorithm to find out co-regulated
genes that are not co-expressed. While GRAM algorithm
assumed that the genes of a module are co-expressed,
MOFA allows the genes of a module to be positively cor-
related with time lags. Since it is known that co-regulated
genes may not be co-expressed [53,54], the relaxation of
co-expressed assumption of GRAM algorithm makes
MOFA have a better ability to reconstruct gene modules

http://www.biomedcentral.com/1471-2105/7/421

with biological relevance. For example, MOFA identified
four genes (YOR264W, PST1, SIC1 and YHB1) as Swib tar-
gets ({Swi5} module in M/G1) which is supported by pre-
vious studies [7,18]. However, none of them was found by
GRAM algorithm.

Parameter settings of MOFA

The choices of both the relaxed p-value and time-lag
parameter have biological meanings. Two previous papers
[18,19] used a statistical error model to assign a p-value of
the binding relationship of a TF-gene pair. They found
that if p £0.001, the binding relationship of a TF-gene pair
is of high confidence and can usually be confirmed by
gene-specific PCR. If p > 0.01, the binding relationship of
a TF-gene pair is of low confidence and cannot be con-
firmed by gene-specific PCR most of the time. However, if
0.001 <p £0.01, the binding relationship of a TF-gene pair
is ambiguous and can be confirmed by gene-specific PCR
in some cases but not in the other cases. Our aim is to
solve this ambiguity. This is why we choose 0.01 to be the
relaxed p-value. We say that an ambiguous binding rela-
tionship of a TF-gene pair is plausible if 0.001 <p < 0.01
and if this TF-gene pair has a temporal relationship. As to
the time-lag parameter, its value is chosen to make the
maximal time lag approximately equal to two consecutive
cell cycle phases because Simon et al. [17] found cases
where a cell cycle TF that expresses in one phase of the cell
cycle can regulate genes that function in the next phase.

Table 2: Identifying regulatory roles of TFs. MOFA can determine the regulatory role of a TF in regulating genes of a module.

TF Phase (Module Number)

Abfl  S/G2 (4) Activator
Abfl  GI (23) Repressor
Fkhl  S/G2 (I); G2/M (1) Activator
Fkhl  GI (3) Repressor
Fkh2  S/IG2 (1) (2) 3); G2/M (1) (3) (4) (5) (7) (13)  Activator
Fkh2  GI (3) Repressor
Rebl  G2/M (18) Activator
Rebl  GI (30) Repressor
Ace2 M/GI (2) Activator
Nddl  S/G2 (2); G2/M (1) (7) Activator
Stbl GI (33) Activator
Swi4 Gl (13) (22) (34) Activator
Swi5  M/GI (13) Activator
Datl  M/GI (1); GI (1) (7) Repressor
Yox|I M/GI (I5) Repressor

Regulatory Role

P-value Evidence from Literature
6% 105 [40]
0.001 [41
3x 108 | x 107 [37]
3x 105 [42]

3x1083x107,3%x105 1 x1076x  [37]
10-% 3 x 105, 9 x 105 6 x 10% 3 x 10->

3x [0S [42]
2 x 104 [43]
2% 105 [44-46]
9 x 105 [28,47]
3% 105 | x 107; 6 x 10 [48,49]
2% 101! [33,50]
6% 109 | x 1062 x [0-4 [51]
6 x 08 [28,47]
3% 1053 x 1073 x 10 [52]
3 x 07 [30]

A TF is said to be an activator/repressor of a module if the P-value of observing TF-gene pairs of the module having positively/negatively (time-

shifted) correlated profiles is < 0.001. The P-value is the probability that an observation would be made by chance, and is calculated using the

S N! X N-x
cumulative binomial distribution [39]: P(x > no) = z —)l (l - p) where N is the total number of genes in a module, n0 is
X):

x!(N;

x=n,

the number of genes that have temporal relationships with the TF, and p is the probability of observing an arbitrary gene in the genome that has a

temporal relationship with the TF.
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Increasing the value of the relaxed p-value or the time-lag
parameter may introduce some false positive binding rela-
tionships of TF-gene pairs into the binding score matrix.
On the other hand, decreasing the value of the relaxed p-
value or the time-lag parameter may fail to rescue some
false negative binding relationships of TF-gene pairs. A
binding score matrix is used to construct an original TRM
and MOFA refines the TRM by identifying a subset of
these co-regulated genes in a TRM whose gene expression
profiles are highly positively correlated possibly with time
lags. MOFA can filter out false positives to some extent
because the expression profiles of false positives are
unlikely by chance to be similar to those of the highly pos-
itively time-delayed correlated genes identified by MOFA.
As to the false negative problem, MOFA cannot alleviate
the harmful effect since these plausible binding relation-
ships of TF-genes pairs are not included in the first place.
That is, false negative problem is a more serious issue than
the false positive problem in MOFA. Therefore, if users
have no idea about the appropriate values of the relaxed
p-value and the time-lag parameter, they should first try
larger values since MOFA has the ability to reduce this
kind of noises.

Refining clusters from Spellman et al

Spellman et al. [7] used a hierarchical clustering algorithm
to group together co-expressed genes and searched the
promoters of these genes for consensus binding motifs.
They tried to use these clusters to understand the tran-
scriptional mechanisms of cell cycle regulation. Their
approach has some drawbacks. First, co-expressed genes
are not necessarily co-regulated. Second, even if the genes
in a cluster are co-regulated, the relevant TFs still cannot
be easily identified by the consensus binding motifs.

MOFA can refine clusters in [7] and provide a better
understanding of how the cell regulates the complex
expression program of the yeast cell cycle. For example,
MOFA reassigned genes of the MCM cluster in [7] to sev-
eral modules. As shown in Figure 3A, these modules differ
not only in the set of TFs regulating the modules, but also
in the different cell cycle phases to which they belong. Our
results confirm previous findings that Mcm1 collaborates
with Yox1 to regulate genes in M/G1 (e.g. YOR0O66W and
CDC46) [30] and collaborates with Ndd1 and Fkh1/Fkh2
to regulate genes in G2/M (e.g. SPO12 and KIN3) [36]. In
addition, MOFA provides regulation information of the Y'
cluster in [7]. The Y' cluster contains genes that share DNA
sequence similarity and are found in Y' elements, which
are located at chromosome ends. Spellman et al. [7] did
not figure out how these genes are regulated. As shown in
Figure 3B, MOFA reassigned genes of the Y' cluster to three
modules and identified several possible regulators (Dat1,
Gal4, Gat3, Hapl, Hap4, Msn4, Pdrl, Rapl and Yap5),
providing information for future experiments.

http://www.biomedcentral.com/1471-2105/7/421

Conclusion

We develop a method, called MOdule Finding Algorithm
(MOFA), for reconstructing TRMs of the yeast cell cycle by
integrating gene expression data and ChIP-chip data.
MOFA identified 87 TRMs, which together contain 336
distinct genes regulated by 40 TFs. From the literature
[7,23-25], 139 of the 336 genes and 30 of the 40 TFs are
known to be involved in the cell cycle. The biological rel-
evance of each inferred TRM was validated by using exist-
ing experimental data, enrichment for genes in the same
MIPS functional category [23], known DNA-binding
motifs [ 7], etc. Our analysis shows that different combina-
tions of a fairly small number of TFs are responsible for
regulating a large number of genes involved in different
cell cycle phases and that there may exist crosstalk
between the cell cycle and other cellular processes.
Besides, MOFA is capable of finding many novel TF-target
gene relationships that could not be identified by using
the current ChIP-chip data with the stringent p-value cut-
off (0.001) or the conventional correlation analysis that
only checks the co-expressed relationship. In addition,
MOFA can determine the relationships between TFs that
regulating the same module and the regulatory roles of
these TFs. We found nine activators and six repressors,
consistent with the results of previous studies [40-52].
Finally, MOFA refines some clusters proposed by previous
studies and provides a better understanding of how the
complex expression program of the cell cycle is regulated.

We believe that computational analysis of multiple types
of data will be a powerful approach to studying complex
biological systems when more and more genomic
resources such as genome-wide protein activity data and
protein-protein interaction data become available.

Methods

Data sets

We use the ChIP-chip data in [19] and the gene expression
data (o factor) of the yeast cell cycle in [7]. Spellman et al.
[7] used Fourier transform to identify 800 putative cell
cycle genes (113 genes in M/G1, 300 in G1, 71 in §, 121
in §/G2 and 195 in G2/M). By integrating both types of
data, our algorithm tries to reconstruct TRMs for each of
the five cell cycle phases.

Identifying temporal relationships of TF-gene pairs

A cell cycle TF and its binding target are said to have a pos-
itively (negatively) temporal relationship if the target
gene's expression profile is positively (negatively) corre-
lated with the TF's regulatory profile possibly with time
lags. It is known that TF binding affects gene expression in
anonlinear fashion: below some level it has no effect, and
above some level the effect may saturate. This type of
behavior can be modeled using a sigmoid function. There-
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G2/M Module 3 regs Fkh2
Mem
Nddl
YILOSIW
SUR7Y
SWI5
YLROR4C
Y LR190W
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SPOI12
KIN3

M/GT Module 15 regs Yoxl
YORO66OW
MOM3
Y OROGAW CRC46
MOM3 H5T4
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Figure 3
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Gl Module | regs Datl, Gat3

Msand, Pdrl
Yap3
YLR46TW
YLR464W
Y cluster YPR20IW
Y LE464W YGRIGEW
YPR203W YPR202W
YPR202W
YLR46TW Gl Module 12 regs Gard, Rapl
YELD76C Yaps
YELO75C YLR46TW
YMLIZOC YELOTGC
YELOT6C-A YELOTC
YORIDOW YMNL339C
Y ER1E9W YELOTAC-A
YBLITIC
YBL113C Gl Module 18 regs: Gal4, Yap3
YBLIZC YERS9W
YER190W YBLILIC
YBLI13C
YBLI12C
YERI190W
YGR296W

Refining clusters from Spellman et al.. (A) Refining the MCM cluster in [7]. The modules identified by MOFA differ not
only in the set of TFs regulating the modules, but also in the different cell cycle phases to which they belong, providing a better
understanding of how the cell regulates the complex expression program of the yeast cell cycle. Our results confirm previous
findings that Mcm| collaborates with Yox| to regulate genes in M/GI (e.g. YOR066W and CDC46) [30] and collaborates with
Ndd| and Fkh1/Fkh2 to regulate genes in G2/M (e.g. SPO12 and KIN3) [36]. (B) Refining the Y' cluster in [7]. The Y' cluster
contains genes that share DNA sequence similarity and are found in Y' elements, which are located at chromosome ends.
Spellman et al. [7] did not figure out how these genes are regulated. MOFA reassigns genes in the Y' cluster to three modules
and identifies several possible regulators (Datl, Gal4, Gat3, Hap|, Hap4, Msn4, Pdrl, Rap| and Yap5), providing information

for future experiments.

fore, we define the regulatory profile of a TF as a sigmoid
function like previous studies [55-57].

Temporal Relationship Identification Algorithm (TRIA) is
developed to identify TF-gene pairs that have a temporal
relationship. Let ¥ = (x;,..., xy) be the gene expression

time profile of cell cycle TF x and y = (y;,..., y5) be the

expression profile of gene y. The regulatory profile RP( X )
= (f (%), f (xn)) of TF x is defined as a sigmoid function,

which is justified by some previous studies [55-57]
1

f(‘xl):m 121/2/"'11\]

where x is the sample mean and s is the sample standard

deviation of x . Compute the correlation between y and

RP( x ) with a lag of k time points [58,59]:

Nk Nk Nk
r(k)=[ S (i —7)(f(xi)—ﬁ))/[\/2 (i -7 -\/2 (fl)-m) J k=01,...L

i i=1 i=1

7 N—k
Vé[ Y ik ]/N—k),
i=1

N-k
m= [ Z f(x;) ]%N_k) and L is the maximal time lag
i=1

where

of the TF's regulatory profile considered. The value of L is
chosen to make the maximal time lag approximately
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ChIP-chip data

l

TRIA «—— (Gene expression matrix E
MOFA Binding score matrix B
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h 4

SP:=M/Gl, G1, S, S/G2 or G2Z/M .
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TF combinations to find
possible g and M

A candidate module M L2
> regulated by g —» Compute EC score

yes

Eliminate the gene v

in M whllch‘ ha.s the EC(MPEC(SP);
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expression profile

1ze of M>> min_size

yes

4

Discard the candidate m

~>min_size
module M no
ves
Y
Output module M and the
TF combination R
o ,

Figure 4
Flowchart of MOFA.

equal to two consecutive cell cycle phases because Simon  Then we test the null hypothesis H: r(k) = 0 and the alter-

et al. [17] found cases where a cell cycle TF that expresses  pative hypothesis H,: r(k) # 0 by the bootstrap method
in one phase of the cell cycle can regulate genes that func- (see Additional file 3) and get a p-value p(k). The time-

tion in the next phase. lagged correlation (TIC) of y and RP( X ) is defined as 7(j)
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MOFA (E, B, z, min_size)
{
For SP=M/GI1, G1, S, S/G2 or G2/M

{
Search all possible R’s in SP

http://www.biomedcentral.com/1471-2105/7/421

Record a particular R and the corresponding C(R,z) if #(C(R,z)) 2 min_size

Sort recorded R’s according to their sizes and denote the sorting result as R's

For i=1,2,---
{

IfEC(C,=C (]i’i, z)) < EC(SP), iteratively eliminate genes in C; starting from the

one with the most dissimilar expression profile, say 4, until

EC(C, 2 C\{h}) > EC(SP)

Output the TF combination IAQI. and module M (fll.) 2C if #(M (ﬁi )) Zmin_size

Mark all genes in M (I%i) so that they are not considered for R C Iéi

Figure 5

The pseudocode of MOFA. In this study, we set the binding score z = 2. This means that a TF is regarded as binding to a
gene if (1) the p-value for the TF to bind the gene is < 0.001 in the ChIP-chip data or (2) 0.001<p < 0.0l and the TF-gene pair
have a temporal relationship. Moreover, we require that the number of genes in a module must be > 5. This value is the same

as that in GRAM algorithm [21] for comparison purpose.

that has the smallest p-value (i.e., TIC(y , RP(x)) = r(j) if
p(j) <p(k) VEk #j). Note that -1 < TIC(y , RP( X)) < 1. Two
possible temporal relationships between y and RP(X)
can be identified by TRIA: y and RP( X ) are (1) positively
correlated with a lag of j time points if TIC(y, RP( X)) =
() > 0 &p(j) < Prireshoia a0d (2) negatively correlated with
alag of j time points if TIC(y , RP( X)) =1(j) < 0 &P rpreshold-
The prpeshoid 1S chosen to ensure that we have at most a 5%
false discovery rate (FDR) [60].

Two observations motivated us to develop TRIA to detect
the temporal relationship between a cell cycle TF and its
regulatory targets. First, it has been shown that at least in
a few instances, the expression levels of TFs and their tar-
get genes were correlated [2,59,61-65]. Although this may
not be true for TFs which are mainly regulated at the post-
transcriptional level [66,67], it is not a serious problem
for many cell cycle TFs whose expression levels signifi-
cantly varies with times indicating that they are also under
highly transcriptional control [39,55,56,59,63,68]. Sec-
ond, the expression relationship between a TF and its reg-
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ulatory targets may not be simultaneous but after some
time lags [39,53,57,59,63-65,69,70].

TRIA was used to find regulatory targets of cell cycle TFs
and its effectiveness was validated by statistically testing
for the expression coherence, enrichment of functional
groups and conserved binding motifs [71]. We found that
when only cell cycle TFs are concerned, TRIA performed
better than some pervious algorithms [72,73]. This may
result from the fact that the previous algorithms are
designed for all kinds of TFs but TRIA is specially designed
for cell cycle TFs.

The MOdule Finding Algorithm (MOFA)
Before describing MOFA, we define some terms.

Definition |

Let E = [e;] be the gene expression matrix whose rows cor-
respond to genes and columns correspond to time points,
so that e;; is the expression level of gene i at time point j.

Definition 2

Let B = [b;] be the binding score matrix whose rows corre-
spond to genes and columns correspond to TFs, so that b;;
denotes the binding score of TF j to bind gene i. We set b;;
= 4 if the p-value for TF j to bind gene i is < 0.001 in the
ChIP-chip data and TF j and gene i are found to have a
temporal relationship; b;= 3 if p <0.001 but no temporal
relationship; b;= 2 if 0.001 <p < 0.01 and a temporal rela-
tionship; b;= 1 if 0.001 <p < 0.01 but no temporal rela-
tionship; and b;= 0if p > 0.01.

Definition 3

Let R be a set of TFs and C(R, z) be the set of target genes
to which all the TFs in R bind with a score > z. In addition,
let SP be the set of all genes in a specific cell cycle phase
(113 genes in M/G1, 300in G1, 71in §, 121 in S/G2 and
195 in G2/M).

Definition 4

The expression coherence score (EC(A)) for a set A is
defined as the fraction of gene-gene pairs in A whose gene
expression profiles are positively correlated possibly with
time lags: 0 < EC(A) < 1. Note that the higher the EC(A) is,
the more plausible the genes in A are co-regulated.

Remark

The EC(A) is a generalization of the expression correlation
score used in [13,20]. Compared to theirs, our measure
can in addition find co-regulated genes whose gene
expression profiles are positively correlated with time lags.
As shown in [53,54], co-regulated genes are not necessar-
ily co-expressed. Since each gene may have a different
response time to the same transcriptional regulatory
mechanism in transcribing DNA to RNA, the RNA profiles

http://www.biomedcentral.com/1471-2105/7/421

of co-regulated genes may not be co-expressed but rather
postivley correlated with time lags.

MOFA performs in two steps (see Figure 4). First, for a spe-
cific cell cycle phase (M/G1, G1, S, S/G2 or G2/M), it
exhaustively searches all possible R 's in order to find C(R,
z)'s. A particular R and the corresponding C(R, z) are
recorded if C(R, z) contains more than a certain number
of genes. MOFA then sorts the recorded R 's according to

their sizes, denoting the sorting result as R's, so that the
first R is the one with the largest number of members.
Second, if EC(C( R, z)) < EC(SP), MOFA iteratively elimi-
nates genes of the set C( R, z) starting from the one with
the most dissimilar expression profile until EC( C ( R, z))

> EC(SP), where C ( R, z) is the set of the remaining genes
and SP is the set of all genes in a specific cell cycle phase.
That is, MOFA tries to identify a subset of co-regulated
genes whose gene expression profiles are highly positively
correlated possibly with time lags compared to that of the
set of all genes in the specific cell cycle phase. Finally,

MOFA outputs a module M (R) 2 C(R, z) if C(R, 2)
contains more than a certain number of genes, say five.

The above procedure goes over all R'sin the specific cell
cycle phase. We provide the pseudocode of MOFA in Fig-
ure 5.
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