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Abstract
Pairwise correlations are currently a popular way to estimate a large-scale network (> 1000

nodes) from functional magnetic resonance imaging data. However, this approach gener-

ally results in a poor representation of the true underlying network. The reason is that pair-

wise correlations cannot distinguish between direct and indirect connectivity. As a result,

pairwise correlation networks can lead to fallacious conclusions; for example, one may con-

clude that a network is a small-world when it is not. In a simulation study and an application

to resting-state fMRI data, we compare the performance of pairwise correlations in large-

scale networks (2000 nodes) against three other methods that are designed to filter out indi-

rect connections. Recovery methods are evaluated in four simulated network topologies

(small world or not, scale-free or not) in scenarios where the number of observations is very

small compared to the number of nodes. Simulations clearly show that pairwise correlation

networks are fragmented into separate unconnected components with excessive connect-

edness within components. This often leads to erroneous estimates of network metrics, like

small-world structures or low betweenness centrality, and produces too many low-degree

nodes. We conclude that using partial correlations, informed by a sparseness penalty,

results in more accurate networks and corresponding metrics than pairwise correlation net-

works. However, even with these methods, the presence of hubs in the generating network

can be problematic if the number of observations is too small. Additionally, we show for rest-

ing-state fMRI that partial correlations are more robust than correlations to different parcella-

tion sets and to different lengths of time-series.

Introduction
In recent years, the use of network science for investigating connectivity in the brain from func-
tional magnetic resonance imaging (fMRI) has brought about some amazing results [1–3]. For
instance, the functional brain network appears to have a scale-free connectivity structure [4],
which implies the existence of a small number of hubs (i.e., nodes with disproportionally
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numerous connections); intelligence seems to correlate negatively with average pathlength (i.e.,
average number of steps of shortest paths between each node pair) in the functional brain net-
work [5]; and children and young-adults have similar small-world brains [6]. Small-world net-
works exhibit high local clustering (i.e., interconnectedness in neighborhoods of nodes) and
low average pathlengths compared to equidimensional random networks [7].

Functional brain networks are frequently inferred from pairwise correlations, assuming
they identify true functional connectivity if they pass some threshold [2–4, 8, 9]. A pairwise
correlation that exceeds this threshold may arise from a direct connection; however, it may
also be spurious. As illustrated in Fig 1, correlations may result from indirect connections. This
may lead to an excess of triangles (completely connected triples of nodes) in the network (e.g.,
[10, 11]). This observation has important ramifications for the validity of network analyses in
fMRI data, because triangles of connected nodes feature in network metrics, such as small-
worldness. If using pairwise correlations leads to spurious relationships, these may negatively
affect subsequent network analyses and substantive conclusions (e.g., erroneously concluding
that the network has a small-world topology, or that its connectivity structure is scale-free
when it is not).

The correlation (or the unscaled version, the covariance) can be considered as a function of
the partial correlations (partial covariances). Consider the network in Fig 2 and suppose that
this is the true underlying network. Here is a path from 1 to 5 as 1 − 2 − 3 − 4 − 5. For Gaussian
variables the covariance is a function of the product of partial covariances γ12 γ23 γ34 γ45 [12,
13]. Because of this the correlation between nodes 1 and 5 is nonzero. It also follows that partial-
ling out (i.e., conditioning on) any or all of the nodes in the path is sufficient to obtain the cor-
rect interpretation that there is no direct connection between nodes 1 and 5. In general, there is
no knowledge of which paths there are, and so it seems best to condition on all other nodes.

For networks with small (up to 50) numbers of regions, several inference methods have
been proposed and compared in small-world-type networks, suggesting superior performance

Fig 1. Illustration of pairwise vs partial correlation networks. Thicker edges represent stronger absolute correlations. Left: true network of partial
correlations (blue), with 8 connections, no triangles. Middle: associated pairwise correlation network, with erroneous direct connections (red) that form 84
triangles. Right: pruned network of 8 strongest pairwise correlations, with two isolated nodes (yellow) and two erroneous connections (red) that form 2
triangles (2-3-8 and 3-7-8). Comparing the true partial correlation network on the left with the pruned pairwise correlation network on the right, which consists
of the same number of edges as the underlying network, three differences stand out. Firstly, indirect connections may appear as direct connections (i.e.,
nodes 2–8 and nodes 3–7). This results in an excessive number of triangles, affecting network measures such as small-worldness. Secondly, while the true
network is connected (i.e., there exists a path between each pair of nodes), pruned pairwise correlation networks tend to consist of isolated (groups of) nodes
(i.e., nodes 1 and 9). Thirdly, the number of connections of a node may differ from the true number of connections (e.g., node 3 has four instead of three
edges). In larger networks, hub nodes may emerge erroneously.

doi:10.1371/journal.pone.0129074.g001
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of methods that involve the estimation of partial correlations [14]. Pairwise correlation per-
formed a little less well in typical scenario’s, which was attributed to the ability of partial corre-
lation methods to distinguish direct connections [14]. In all scenario’s that were investigated in
[14], the number of observations n (at least 50 observations) was equal to or larger than the
number of regions p (at most 50 regions). Also for the case in which the number of observa-
tions n is larger than the number of regions p (i.e., p< n), novel modeling and inference meth-
ods to obtain a network connectivity structure have been proposed in recent studies [15–20].
This case thus receives considerable attention in the literature. In contrast, the question of how
the methods fare in the case where the number of regions is large (thousands of regions), yet
the number of observations is smaller than the number of regions (i.e., n< p) has not been sys-
tematically addressed so far in the context of brain networks. Nevertheless, pairwise correlation
is commonly being used to infer large-scale fMRI networks from small sample sizes [2–4, 8, 9].
In this paper we address the need of a systematic comparison of the performance of methods
to determine a large-scale functional brain network. We consider partial correlations as an
alternative to pairwise correlation [21]. Computing partial correlations directly requires more
observations than number of regions, which is not feasible for large-scale networks. Therefore,
we consider three different estimators for partial correlations, the graphical lasso [22], ridge
regression [23], and the shrinkage estimator [24, 25]. Additional methods that were considered
by [14] and developed for the p< n case, like causal inference methods, are not included here,
because they are not suitable if the number of nodes exceeds the number of observations.

To investigate the accuracy of pairwise and partial correlation estimators on large-scale net-
works we created four different network topologies: a random network [26], a small-world net-
work [7], a network with hubs [27], and a small-world network with hubs [28]. We
hypothesize that using pairwise correlations results in a poor representation of the true net-
work, i.e., metrics, like small-worldness, betweenness centrality, and other metrics will be inac-
curate. Furthermore, we hypothesize that partial correlations will provide a reasonable
representation of the true large-scale network, and consequently many network metrics will be

Fig 2. Exemplary network with path from node 1 to 5, showing partial covariances γij.

doi:10.1371/journal.pone.0129074.g002
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accurate. Additionally, we compare networks based on pairwise and partial correlations from
fMRI resting-state data of different sample sizes and spatial resolutions.

Materials and Methods
In this paper, we analyzed simulated data and fMRI resting-state data (deposited at Data
Archiving and Networked Services—DANS, http://persistent-identifier.nl/?identifier = urn:
nbn:nl:ui:13-okb6-1d). We generated and analyzed all networks using R [29]. As explained in
the following sections, we used partial and pairwise correlations in order to generate the data,
and again in the subsequent inference of the network topologies. This might evoke the impres-
sion that we adapted the data generation process to one of the inference methods. However,
the opposite is true. We generated the data based on network theory. In particular, the connec-
tions in a network can be described as a set of conditional independence relations. For Gauss-
ian data, these independence relations are represented in the partial correlation matrix of a
network, while the observed correlations between activity of pairs of nodes are captured in the
correlation matrix of a network [13]. Our choice of the inference methods includes the com-
monly used method of pairwise correlations, and three other partial correlation methods,
which are more suitable based on network theory.

Inference of Networks
To infer a network structure, that is, to determine the connections in the network, we require
an estimate of the values of the edges. Such an estimate can be obtained by computing pairwise
correlations or partial correlations. Pairwise correlations can always be computed for Gaussian
data. This is, however, not true for the partial correlations.

If the number of observations is larger than the number of regions (nodes) in the required
network (i.e., p< n), then the sample covariance matrix can be used to compute the partial
correlations [13]. Let Yi denote the p-variate vector for all regions of volume (time point)
i = 1,2,. . .,n, and let �Y denote the average over the time points. Then the sample covariance
matrix S, from which the correlations and partial correlations are computed, equals [13]

S ¼ 1

ðn� 1Þ
Xn

i¼1

ðYi � �Y ÞðYi � �Y Þ0 ð1Þ

The partial variances, covariances, and correlations can be obtained from the concentration
matrix Γ, which is the inverse of S. The partial correlations are computed by multiplying the
off-diagonal elements of Γ with −1 and dividing by the square root of the respective diagonal
elements of Γ, that is, the partial correlation between nodes i and j equals

�gijffiffiffiffiffiffiffiffigiigjj
p : ð2Þ

The step of inverting matrix S requires that the matrix S be positive definite, that is, that the
rank of the space implied by S is the same as its dimension p, which holds if n> p [13]. If, how-
ever, the number of time points n is smaller than the number of regions p, n< p, then we can-
not use S directly and we need to add information about the structure of S, the true covariance
matrix representing the network. The methods to compute partial correlations when p< n
commonly impose information about the sparsity (low number of edges) in the network. We
selected the following three different methods to do so.

Partial Correlation by Shrinkage Estimation. The shrinkage estimator ŜS is obtained by
a linear combination of the maximum likelihood (ML) estimate S of the covariance matrix and
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a specified target matrix T, as follows

ŜS ¼ ð1� lsÞSþ lsT ð3Þ
T here is a matrix with the variances in S on the diagonal and 0 on the off-diagonal. The param-
eter 0� λs � 1 is estimated from the data. See Schäfer and Strimmer [24] for more details, also
for the function pcor.shrink in R to compute the shrinkage estimate.

Partial Correlations by Moore-Penrose Inverse (Ridge Regression). AMoore-Penrose
inverse of a covariance matrix S is defined by [30]

Sþ ¼ lim
l!0

ðS0Sþ lrIÞ�1S0 ð4Þ

where I is the identity matrix, and λr � 0 is the regularization parameter. We used the function
ginv in R to calculate the Moore-Penrose inverse. The equivalent ridge regression version
which also includes adjusted degrees of freedom can be found in Hoerl and Kennard [23].

Partial Correlations by Graphical Lasso Inverse. The graphical lasso estimate of the
inverse covariance matrix S−1 is defined as the maximum of the penalized log-likelihood func-
tion

log jS�1j � trðSS�1Þ � lljjS�1jj1 ð5Þ

where S is the sample covariance matrix, jAj is the determinant of matrix A, tr denotes the
trace of a matrix, and jjAjj1 = ∑ijjaijj is the sum of the absolute values of the matrix A [22]. Max-
imization is performed among symmetric, positive definite matrices. We used the R-package
glasso [31] to estimate the partial correlations. For each data-set, the parameter λl � 0 was
determined separately in such a way that the method resulted in networks with a predefined set
of proportion of edges, as described in the next section.

Selection of Connections
The four methods above result in full networks, in which each possible connection has a certain
estimated weight (strength). From these full networks, we selected the connections with the
largest absolute weights, and other connections were removed (i.e., their weight was set to 0).
From each of the full networks, we arrived at three pruned networks, differing in the number
of selected connections: (a) a network with the same proportion of edges as the generating
network (e.g., if the generating network consisted of 10000 edges, we selected the 10000 con-
nections with the strongest absolute estimated weights), (b) a network with 20% too few
connections (e.g., if the generating network consisted of 10000 edges, we selected the 8000 con-
nections with the strongest absolute estimated weights), and (c) a network with 20% too many
connections (e.g., if the generating network consisted of 10000 edges, we selected the 12000
connections with the strongest absolute estimated weights). This procedure ensures that com-
paring connectivity for each of the four methods is based only on differences in the estimators
and is not confounded by selection procedures.

Network Characteristics
R and the contributed packages igraph [32] and qgraph [33] were used to calculate the follow-
ing network characteristics of interest and to graphically display networks. Average path
length, that is, the average number of steps of the shortest paths between each node pair, was
calculated with function average.path.length in igraph. Average degree is simply the average
number of connections of a node in the network.

Large-Scale fMRI Networks
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The global clustering coefficient [34] we employed, considered the degree, to which the
nodes’ neighbors (i.e., the nodes to which a node is directly connected) are also interconnected.
It reflects the proportion of triangles in the network, ranging from 0 (i.e., if the network does
not contain triangles) to 1 (i.e., if each two neighbors of all nodes are directly connected as
well). The clustering coefficient was calculated with function transitivity(, type = “global”) in
igraph. Local transitivity, reflecting the proportion of triangles around individual nodes, was
determined for ROIs in the resting-state fMRI data using function transitivity(, type = “local”)
in igraph.

The small-worldness index, as proposed by Humphries and Gurney [35], is based on a
trade-off of high clustering and short average path lengths, each in relation to a random net-
work of the same size. It is calculated as the ratio of the clustering coefficient of the network
divided by the expected clustering coefficient of a random network, and the average path length
of the network divided by the expected average path length of a random network. By definition,
random networks have an index close to 1, and the higher the index, the more pronounced the
small-worldness structure of the network.

The networks from which we generated the data all consisted of a single component, that is,
every node is either directly or indirectly connected to any other node in the network. This is
not necessarily the case in the estimated networks, where different sets of nodes may turn out
to be unconnected to another. The number and size of the components (i.e., connected sets of
nodes) were determined using function clusters in igraph.

Finally, average betweenness centrality was calculated as the average of the number of short-
est paths on which a node lies, which was obtained using function betweenness in igraph.

Data Simulation
In order to compare the inference methods in different relevant scenario’s, we generated four
network topologies of 2000 nodes each that differed in the degree distribution and small-
worldness [34]. Black lines in Fig 3 show the degree distributions of these network topologies.

These four different network topologies featured a small-world structure (SW) or not (SW,

random network), and contained hubs (H) or not (H). In order to match empirically found
brain network densities (i.e., proportion of edges), these networks were designed to be sparse
(around 3% of possible edges; as found by [36]) or very sparse (around 0.3% of possible edges;
similar to [37]). Nevertheless, due to the huge number of possible edges in a network with
p = 2000 nodes (p × (p − 1)/2 = 1999000), this corresponded to approximately 54000 and 6800
edges for the sparse and very sparse networks, respectively.

As explained in detail below, an autoregressive time-series of length 500, 1000, 3000, and
10000 was produced for each node in each network. In covariance estimation, a ratio of obser-
vations n to the number of variables p of about 15 is typically desirable, but here we have a
much smaller ratio, indicating the n� p scenario. With p of 2000 nodes, and n of 500, 1000,
3000, or 10000 observations, the n/p ratio would range between .25 to 5. However, due to the
autocorrelation of the time-series, these observations were not independent of each other. This
implies that the effective number of observations was even smaller. Correcting for the autocor-

relation in the time-series ρ, we arrive at the effective numbers of observations n0 ¼ n� 1�r
1þr of

166.7, 333.3, 1000, and 3333.3 [38]. The effective n0/p ratio is thus lower, ranging from 0.083
to 1.667.

Data simulation consisted of three steps: First, we generated network topologies that dif-
fered according to degree distribution and small-worldness. Secondly, we sampled weighted
networks for each of these network topologies. Thirdly, we sampled time-series data for each of
the weighted networks. In the next subsections, these steps are described in detail.

Large-Scale fMRI Networks
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Step 1: Generation of Network Topologies
Two small-world networks were built using an algorithm from social networks [28], which,

in each iteration adds certain connections, and with probability pd removes certain connec-
tions, and which, depending on the value of pd, will lead to small-world networks with or with-
out hubs. The exact algorithm is described in detail by Davidsen et al. [28]. We employed the
algorithm with 2000 nodes, using 1250000 iterations to build each network. To obtain a small-

world network with hubs SW-H and one without hubs SW�H, parameter pd of the algorithm
was set to .008 and .1, respectively. These parameter values were chosen, because they produced
networks with the desired properties. The next network, containing hubs without small-world

structure SW �H, was generated using a linear preferential attachment algorithm discussed
by [27], as implemented in the function barabasi.game in Rpackage igraph [32]. As this algo-
rithm could result in networks with more than one edge between two nodes, and with an edge
from a node to itself, such improper connections were then removed with the simplify function
in igraph to arrive at a viable network. The number of nodes was set to 2000, and the number
of edges to add in each time step,m, was set to 29. This value ofm was chosen, because it
resulted in a network comparable to SW-H with respect to density. A random network

Fig 3. Recovery of degree distributions based on 500 observations. Densities of the true (black) and
recovered node degrees of shrinkage (blue), ridge (orange), and lasso (green) estimated partial correlations,
and of pairwise correlations (red). NB: x-axis cut off.

doi:10.1371/journal.pone.0129074.g003

Large-Scale fMRI Networks

PLOS ONE | DOI:10.1371/journal.pone.0129074 September 1, 2015 7 / 32



without small-world structure and without hubs SW �H was generated with 2000 nodes and
density .003 by random sampling of edges, in which each possible edge had the same probabil-
ity of .003 of being present. For post hoc comparison, a complementary random network with

density .03 and 2000 nodes was generated analogously SW �H � c. To ensure connectedness
of all networks, a few isolated nodes were removed. To arrive at representative network topolo-
gies, we generated 100 networks for each network type, and selected the network that had the
smallest or next-to-smallest normalized Euclidian distance from the respective group mean of
transitivity, average path length, average degree, variance of degrees, average betweenness cen-
trality, and small-worldness. The resulting network sizes and other network characteristics of
interest are shown in Table 1. Each generated network topology was represented as an adja-
cency matrix, in which the presence of a connection between a row-node and a column-node is
indicated by entry 1, and the absence of this connection is indicated by entry 0. From these
adjacency matrices, we generated weighted networks as follows.

Step 2: Generation of Weighted Networks
The weighted networks we use can be represented as a partial correlation matrix, where

each zero represents conditional independence [13]. We constructed a partial correlation
matrix R by drawing values from the uniform distribution U([−1,−.01][[.01,1]), one for each
edge, to arrive at the (possibly singular) partial correlation matrix Rs, which has ones on the
diagonal, and sampled values on those off-diagonal positions where the adjacency matrix
equals 1. We then regularized Rs to have the matrix represent a distribution with dimension
2000 (i.e., the resulting matrix is positive definite), and reset those off-diagonal elements,
where the respective adjacency matrix equals 0, to 0 to ensure that weights of absent edges are
exactly zero. If this step is ignored, the resulting matrix R is not a proper representation of the
true network. The resulting matrix is the partial correlation matrix R. The partial correlation
matrix contains the weights of the connections on the off-diagonal. Table 1 shows the average
strength (weighted degree) [39] of the nodes in the weighted networks. For all four partial cor-
relation matrices we calculated a correlation matrix C by multiplying the off-diagonal elements
of R with −1, and then calculating the pseudo-inverse using the function pcor2cor of the R-
package corpcor [40]. We then multiplied the correlation matrix C by a uniform variance of 2,
to arrive at a positive definite covariance matrix S for each of the four different networks.

Step 3: Generation of Time-Series Data
From the covariance matrices S, we generated time-series data with an AR(1) temporal

structure, which is an appropriate lag for preprocessed fMRI data [41] [42, 43]. The time-

Table 1. Characteristics of simulated networks.

SW � H SW�H SW-H SW � H SW �H � c

Number of nodes p 1998 1982 2000 2000 2000

Number of edges 6843 6744 53748 54720 53581

Prop. of edges 0.003 0.003 0.03 0.03 0.03

Avg. path length 4.17 4.16 2.48 2.11 2.21

Clustering coefficient 0.00 0.16 0.29 0.07 0.03

Small-worldness 1.02 45.86 10.02 2.79 1.03

Avg. degree 6.85 6.80 53.75 54.72 53.58

Min. degree 1 1 1 26 31

Max. degree 16 72 573 886 78

Avg. betweenness 3161 3135 1475 1111 1204

Avg. strength 2.06 1.60 2.59 2.58 4.28

doi:10.1371/journal.pone.0129074.t001
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series data of length 10000 were constructed by first sampling 10000 random values for
each node from a standard normal distribution with mean zero and variance 1, collected in
Z (N × 10000-dim. matrix). We then pre-multiplied Z with the transpose of the Cholesky
decomposition of S, and post-multiplied the resulting matrix with the Cholesky decomposition
of the Toeplitz matrix of an AR(1) process with autoregressive parameter ρ = .5. From each of
the resulting full data matrices, we built 4 (nested) datasets: the first 500 timepoints, the first
1000 timepoints, the first 3000 timepoints and all 10000 timepoints.

Magnetic Resonance Imaging Scanning Procedure
The fMRI resting-state data were acquired in a single scanning session on a 3T scanner (Phil-
ips). For the resting-state protocol participants were instructed to stay alert and focus on a
white fixation cross; presented on a black-projection screen that was viewed via a mirror sys-
tem attached to the magnetic resonance imaging (MRI) head coil. In total, 240 T2�-weighted
echoplanar images (EPIs) (2202 mm FOV; 962 in plane resolution; 3.3 mm slice thickness; 0
mm slice spacing; TR 2000 ms; TE 28 ms; FA 90o, ascending orientation) were scanned. For
registration purposes, a three-dimensional T1 scan was acquired before functional runs of an
independent fMRI study (T1; TFE 218x226 mm FOV; 2562 in plane resolution; 182 slices, 1.2
mm slice thickness, TR 9.56 ms, TE 4.6 ms, FA 8, coronal orientation).

Preprocessing of Resting-State fMRI Data
Preprocessing of the resting-state fMRI data was carried out using FEAT (FMRI Expert Analy-
sis Tool) Version 5.98, part of FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl). The
following pre-processing steps were applied; motion correction using MCFLIRT [44]; slice-
timing correction using Fourier-space time-series phase-shifting; non-brain removal using
BET [45]; grand-mean intensity normalization of the entire 4D dataset by a single multiplica-
tive factor; highpass temporal filtering (Gaussian-weighted least-squares straight line fitting,
with sigma = 50.0s).

Parcellations of Resting-State fMRI Data
The parcellation procedure relied on a recently published structural segmentation procedure
using the Desikan labeled mesh in freesurfer [46], [47]. More specifically, the Lausance 2008
parcellation within the Connectome viewer toolkit (http://www.cmtk.org) was used to create
the 5 embedded hierarchical cortical parcellations within Freesurfer [36, 46, 48, 49]. This
means that for each subject, the T1-weighted image is first segmented into 68 atlas based corti-
cal parcels, using the freesurfer Desikan labled mesh from an average brain [47]. With the use
of the Lausanne 2008 template (available in the connectome viewer toolkit), each parcel is then
subdivided into smaller ROIs of approximately 1.5 cm2 to obtain the high resolution parcella-
tions of 1000 ROIs. The 1000 cortical ROIs are then grouped into bigger ROIs to arrive at 5
separate parcellations with respectively 68, 114, 219, 448, and 1000 ROIs [46].

Extraction of Time-Series of Resting-State fMRI Data
For each individual, all segmentations were transformed and registered onto the fMRI rest-
ing-state images. To obtain, the most refined transformation matrix, EPI images were first
registered onto the individual T1 scan. The inverse of this matrix, per subject, was then used
to register all T1 mapped segmentations into epi space. Consequently, the averaged times
series across voxels was extracted per ROI, for each segmentation. Prior to the computations
of networks, for each segmentation, the mean cerebral fluid and white matter signals were
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regressed from each time series. Note that, all time series were extracted from ROIs registered
to individual EPI space.

Participants
Data was collected from five healthy adults (mean age 24.8 years, range 21–32 years; 4 females).
In accordance with the declaration of Helsinki, all participants provided written consent before
the scanning session. The ethics committee of the Department of Developmental Psychology of
the University of Amsterdam approved the experiment (approval number 2010-DP-1131) and
all procedures complied with relevant laws and institutional guidelines. All participants were
right handed and had normal or corrected-to-normal vision. A small part of the resting state
fMRI data have been used for illustrative purposes in a different paper on model selection [50].

Results
To give a complete picture of how the estimated networks differ by the four methods, we provide
a combination of several network characteristics, and false and true positive rates (i.e., the proba-
bility of inferring an edge where there is none and the probability of recovering an existing edge,
respectively). We first present the results of the following four networks: small-world structure

with hubs (SW-H), small-world structure without hubs (SW�H), hub network without small-

world structure (SW�H, and the sparser random network without small-world structure and

without hubs (SW�H). The results of the complementary random network (SW�H�c) are pre-
sented in a post hoc comparison, as the results of the two random networks were comparable.

As mentioned above, we evaluate performance of the methods in the scenarios with the cor-
rect number of edges and nodes [51]. Also, we investigate performance when up to 20% below
or above the true number of edges are selected. Fixing the number of connections to a certain
number (fixed density) is directly related to choosing a certain cutoff threshold in estimated
values or significance level [8]. This ensures that comparing connectivity for each of the four
methods is based only on how a connection is made. That is, if a connection is judged to be
present according to the pairwise correlation method, but absent according to the partial corre-
lation method, this difference is exclusively due to the difference in estimators.

Small-Worldness and Related Network Characteristics
As mentioned above, small-world networks are characterized by short average pathlengths and
high clustering. This implies a high connectivity in each neighborhood of nodes [7, 35, 51].
Formally, the small-worldness index can be defined by the ratio of the clustering coefficient
and the average pathlength relative to a random network of the same dimensions [35]. The
small-worldness index of a network depends heavily on the number of triangles, since the clus-
tering coefficient is the percentage of triangles out of the number of triplets (three nodes with
two edges) [34, 35]. It is known that triangles are often erroneously obtained using pairwise
correlations [11]. In the simulations, this problem can be observed in each of the four network
topologies (see Fig 4). When using pairwise correlations to determine the connections in the
network (red curve), the small-worldness index is much higher than the true value for each of
the networks (dashed line), whether they are small-worlds or not. It even appears that, for pair-
wise correlations, the index increases as the numbers of observations increases. The shrinkage
(blue curve) and lasso (green curve) estimates appear to be the most accurate in general. Thus,
as expected, due to overestimation of the prevalence of triangles, the pairwise correlation
method clearly inflates the clustering coefficient (Fig 5). When considering only pairs of
regions, the number of triangles will be high when the correlations in the indirect connection
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are high [52]. Fig 4 also shows that obtaining too many connections (20%) results in lower esti-
mates of small-worldness, but this is mainly due to the ensuing underestimation of the average
pathlength (Fig 5), since the clustering coefficient hardly changes (Fig 5).

Fragmentation and Connectedness
In the true networks each pair of nodes is directly or indirectly connected, which implies that
there are no isolated (groups of) nodes. However, a network obtained by using pairwise correla-
tions is fragmented into many smaller ‘islands’, that is, isolated components, up to as many as
1000 in the network with hubs (Fig 6). Of course this is accompanied by components of smaller
size. The size of the largest component is smaller up to a factor of 2 than for a component in the
partial correlation network (Fig 6). Partial correlation methods, in particular the ridge regression
and shrinkage methods, result in less fragmented and actually connected networks.

Betweenness Centrality
The average betweenness centrality of the estimated networks, that is the average of the num-
ber of shortest paths on which each node lies, is also affected by the use of pairwise correlations.

Fig 4. The small-worldness index for the four networks and the four estimation methods pairwise
correlations (red), lasso (green), ridge (orange), and shrinkage (blue), compared to the true value −−

(black). The thickness of the line represents the number of selected edges. Pairwise correlation networks
always overestimate the small-worldness.

doi:10.1371/journal.pone.0129074.g004

Large-Scale fMRI Networks

PLOS ONE | DOI:10.1371/journal.pone.0129074 September 1, 2015 11 / 32



Fig 5. Clustering coefficient (upper) and average pathlength (lower) for the four networks and
estimation methods.

doi:10.1371/journal.pone.0129074.g005
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Fig 6. The number of components (upper) and the size of the largest component (lower) obtained for
the four networks and estimationmethods.

doi:10.1371/journal.pone.0129074.g006
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In particular, in those networks, in which using pairwise correlations resulted in strong frag-

mentation of the network (SW�H, SW-H, SW�H), the average betweenness centrality is sub-
stantially underestimated, as the total number of shortest paths is reduced in the pairwise
correlation networks (Fig 7).

Degree Distribution
As mentioned above, the degree of a node refers to the number of connections it has with other
nodes. The degree distribution of a network is important, as it has been connected with proper-
ties like preferential attachment (“the rich get richer”; [27]). We investigated whether estimates
of the networks in the simulation scenarios provided a good representation of the degree distri-
bution. The true and recovered degree distributions of the four networks are shown in Fig 3. A
network obtained with pairwise correlations tends to have too many nodes with low degree, as
the mode is too low, whereas most networks obtained with partial correlations are closer to the
true distribution (see Fig 3).

Correctly reproducing the underlying distribution of degrees does not necessarily imply
that the nodes with low degrees indeed have low degrees and the nodes with high degrees
indeed have high degrees, that is, that the degrees of the individual nodes are reproduced faith-
fully. Therefore, we compared the recovered degrees of the nodes to their true degrees. This

Fig 7. Themean betweenness centrality of the four networks and estimation methods.

doi:10.1371/journal.pone.0129074.g007
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comparison showed that pairwise correlation networks have a tendency to contain several
nodes with much higher degree than the true network (Fig 8). In contrast, the partial correla-
tion networks tend to underestimate the true degrees, but in general are closer to the degree
distribution than the pairwise correlation network. Furthermore, the misfit between recovered

Fig 8. Recovery of node degrees based on 10000 observations. Scatter plots of true (x-axis) vs recovered (y-axis) node degrees of shrinkage (blue),
ridge (orange), and lasso (green) estimated partial correlations, and of pairwise correlations (red).

doi:10.1371/journal.pone.0129074.g008
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and true degrees decreases for the partial correlation networks with longer time-series, but not
so for the pairwise correlation networks (Fig 9). Weighted degrees (strengths) of the network
nodes were in all conditions better estimated by partial correlation methods than by pairwise
correlation (Fig 9).

Summary of Network Characteristics
The previous sections addressed in detail the method’s biases, including over- or underestima-
tion, in the recovery of network characteristics at different edge selection criteria. Summariz-
ing, Fig 9 shows an overview of the absolute differences between true and recovered network
characteristics of the four networks. Overall, partial correlation methods tend to be closer to
the true network characteristics, that is, the recovered network is more representative of the
true network with respect to the network characteristics than the network recovered by pair-
wise correlations. Furthermore, partial correlation methods in most cases improve with
increasing time-series length, while this is not the case for pairwise correlations. Naturally,
even if a recovered network has similar network characteristics as the true network, this does
not imply that the recovered connections between nodes represent true connections in the net-
work, which is addressed in the next section.

Correct Connections
To consider to what extent connections were correctly identified, we examine the false positive
rate (FPR), that is, the probability of deciding that there is a connection given that there is no
true connection, and the true positive rate (TPR), that is, the probability of deciding that there
is a connection given that there actually is one. The FPRs of the methods, shown in Fig 10, may
seem small considering their absolute values. However, as the networks were sparse, the num-
ber of erroneously inferred edges is divided by a very large number of non-existent connec-
tions. In order to set FPRs into perspective, the proportion of edges in the true network is
indicated as well (dotted line). The FPR of the pairwise correlation networks is nearly always
higher than that of the lasso and shrinkage based partial correlation networks (Fig 10). Ridge
regression partial correlation networks have an unacceptably large FPR if the number of obser-
vations is smaller than the number of nodes, as expected. In most cases, the FPR is lower than
the proportion of edges in the true network (dotted line). However, this result does not occur
in the presence of hubs.

The TPR in Fig 11 also shows that pairwise correlation networks are inaccurate in most
cases, and that ridge regression partial correlation networks estimated from small numbers
of observations are inaccurate. Strikingly, the pairwise correlation networks show almost no
improvement with increasing numbers of observations. This indicates that pairwise correlation
networks are in general inappropriate for inferring underlying connectivity. In contrast, ridge
regression partial correlation networks do improve with increasing numbers of observations,
reaching TPR and FPR values comparable to lasso and shrinkage based networks with 10000
observations. Note that the TPR is not particularly high for any type of method; however, for
partial correlation networks it increases strongly with increasing number of observations. Recall
that with 2000 nodes a total of nearly two million possible edges are estimated with 10000 obser-
vations, which is a poor ratio of observations to possible edges (parameters). To summarize, Fig
12 gives an overview of TPRs, and a function of FPRs (such that a higher value is associated
with a better FPR) for the four methods and the four networks topologies. While partial correla-
tion methods reach average TPRs larger than .75 in the two networks without hubs with suffi-
cient numbers of observations, the average TPR in the two hub networks remains very low (<
.5) for all methods at the numbers of observations considered in our simulations.
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Fig 9. Overview of absolute differences between true and recovered network characteristics of shrinkage (blue), ridge (orange), and lasso (green)
estimated partial correlations, and of pairwise correlations (red), in the condition where the correct number of edges is selected. For node
characteristics (i.e., degree, strength, and betweenness), sums of absolute differences of linearly transformed variables x* are shown
(x� ¼ ðx�MinðtruevariableÞÞ

ðMaxðtruevariableÞ�MinðtruevariableÞÞ; i.e., 0 was mapped on the minimum of the true variable, and 1 was mapped on the maximum of the true value). SWI = Small-

worldness index, CC = Clustering coefficient, APL = Average path length, #Comp = Number of components, n = Number of observations. NB: x-axis on
logarithmic scale; if absolute difference is zero, the method’s symbol is not shown.

doi:10.1371/journal.pone.0129074.g009
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We also examined whether the identification of a true connection depends on the degrees
of the two nodes that are connected by it (e.g., are connections between nodes with two
degrees more easily identified than connections between a hub node and a node with two
degrees?). For this purpose, we calculated the TPR and the FPR as a function of the true
degrees of each pair of connected nodes. Fig 13 shows that the TPR is higher in the partial
correlation networks than in the pairwise correlation networks for almost all degree pairings.
Pairwise correlation networks have a very low TPR for connections between lowest to larger
degree nodes. Merely for connections involving largest and hub nodes does the TPR of pair-
wise correlation networks approach or exceed the TPRs of the partial correlation networks.
However, in exactly these cases, the FPR of the pairwise correlation networks are inacceptably
large (Fig 14). The graphical lasso networks have somewhat elevated FPRs and TPRs for con-
nections between hub nodes. In contrast, the FPR of the other two partial correlation net-
works remains relatively small across low, medium, large degree and hub nodes, while their
TPRs are in general the highest (> .75 for networks without hubs, and ranging between .25
and .5 for networks with hubs) and relatively stable across the whole range of lowest degree
to hub nodes.

Fig 10. The false positive rate for the four networks and estimationmethods. The dotted line � � � shows
the level of the false positive rate above which the absolute number of false positive edges even exceeds the
absolute number of edges in the true network.

doi:10.1371/journal.pone.0129074.g010
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Effect of Hubs
As shown above, in the two networks with hubs, all methods perform worse. In these networks,
the maximum degree is much larger than in the networks without hubs (see Table 1). However,
these two networks also have a larger number of edges (density of 3%), in order to make a net-
work with large-degree nodes and still be connected, than the networks without hubs (density
of 0.3%). To separate the effects of density and hubs, we analyzed the complementary random

network (i.e., without hubs) with a density of 3% (SW�H�c). The results support the hypothe-
sis that the presence of hubs causes the decrease in perfomance, rather than the lower density

of the network. The true positive and false positive rates of network SW�H�c (Fig 15) show
much better performance of the partial correlation networks than the pairwise correlation net-

works with hubs (SW�H and SW-H, Figs 10 and 11), but also, slightly worse performance

than in the sparser random network SW�H.

In all cases, pairwise correlations perform badly, as in the sparser random network SW�H.
For this reason, and on the basis of the recovery of the other characteristics of network

SW�H�c by the four methods (Fig 15), the large difference in recovery between networks

SW�H and SW�H vs SW-H and SW�H can indeed be attributed to the presence of hubs.

Fig 11. The true positive rate for the four networks and estimation methods.

doi:10.1371/journal.pone.0129074.g011
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Results of Application to Resting-State Data
To illustrate how these results affect the analysis of actual neuroimaging data, we applied pair-
wise and partial correlation methods to time series of BOLD resting-state data, obtained from 5
individuals, similar in terms of genetic makeup. Resting-state functional connectivity maps
were constructed through the hierarchical decomposition of the cortical surface into 5 embed-
ded cortical parcellations with number of ROIs (nodes) n of 68, 114, 219, 448, and 1000 [36,
46, 48, 49]. To compare the methods, the resting-state time series obtained from each parcella-
tion was analyzed with both pairwise correlations and partial correlations. We chose to obtain
partial correlations by optimal shrinkage estimation, as it was in our simulations in general pre-
ferrable above ridge regression, and although quite similar to the lasso, seemed slightly better
than the lasso, as judged by the TPRs. For each participant, we calculated pairwise correlation
and partial correlation networks consisting of the 3% strongest (pairwise or partial) correla-
tions for each of the parcellations (resulting in 68, 193, 716, 3003, and 14985 edges, respec-
tively). We focus on three issues: a) the difference between correlation and partial correlation
networks, b) the consistency of the networks with respect to different parcellations (i.e., with
the increasing number of ROIs), and c) the consistency of the estimated networks with varying
numbers of observations (i.e., lengths of the time series).

Fig 12. Overview of TPR and of 1 − f(FPR) for shrinkage (blue), ridge (orange), and lasso (green) estimated partial correlations, and for pairwise
correlations (red), averaged over all three selection criteria (i.e., correct number of edges, 20% less edges, and 20%more edges). f(FPR) = exp
(−102*FPR); n = Number of observations.

doi:10.1371/journal.pone.0129074.g012
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Pairwise Correlation vs Partial Correlation Networks
Fig 16 shows the obtained networks of the 3% strongest partial or pairwise correlations in the
five participants. Both in the pairwise and in the partial correlation networks of all participants,
those areas commonly reported as associated with resting-state activity (i.e., we considered pre-
cuneus, medialfrontal, inferior parietal, medial temporal lobe, primary sensorimotor, primary

Fig 13. True positive rate as a function of node degree (given 10000 observations) of shrinkage (blue), ridge (orange), and lasso (green) estimated
partial correlations, and of pairwise correlations (red). For each network, nodes were divided into 6 bins according to degree: 5 equally-sized bins, and a
6th bin containing the 50 nodes with the highest degree (i.e., the hubs in the hub networks). TPR is shown for each pairing of degree bins (e.g., sixteenth pair
ð1
6
Þ refers to edges between the nodes with lowest degrees and the nodes with highest degrees; rightmost pair ð6

6
Þ refers to edges between the nodes with

highest degrees).

doi:10.1371/journal.pone.0129074.g013
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visual, extrastriate visual, bilateral temporal, insular, anterior cingulate cortex, superior parietal,
superior frontal, posterior cingulate cortex, in line with [53–57]) had a larger average degree
and a larger average betweenness than the remaining areas. However, the amount of overlap
between pairwise and partial correlation networks was 62% at most, and decreased further
with increasing number of ROIs or decreasing number of observations in each participant (see
dashed black lines in Figs 17 and 18, respectively). As expected, network characteristics that

Fig 14. False positive rate as a function of node degree (given 10000 observations) of shrinkage (blue), ridge (orange), and lasso (green) estimated
partial correlations, and of pairwise correlations (red). For each network, nodes were divided into 6 bins according to degree: 5 equally-sized bins, and a
6th bin containing the 50 nodes with the highest degree (i.e., the hubs in the hub networks). FPR is shown for each pairing of degree bins (e.g., eleventh pair
(1,6) refers to edges between the nodes with lowest degrees and the nodes with highest degrees; rightmost pair (6,6) refers to edges between the nodes with
highest degrees).

doi:10.1371/journal.pone.0129074.g014
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depend on the inferred network topology differ substantially depending on the method used.
Fig 19 shows network metrics of interest for the five participants over different parcellations
and methods. As in the simulation study, the use of pairwise correlations results in more frag-
mented networks with a higher amount of clustering and a higher small-worldness index.

Fig 15. Recovery results of the four estimation methods for additional random network SW�H�c (with
the high density of 3%). True −− network metrics indicated where appropriate. The dotted line � � � shows the
level of the false positive rate, above which the absolute number of false positive edges even exceeds the
absolute number of edges in the true network.

doi:10.1371/journal.pone.0129074.g015
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Fig 16. Networks of 68 ROIs based on 3% strongest partial correlations (blue) and pairwise correlations (red) of all 5 participants. Left hemisphere is
on left side. ROIs with larger nodes have higher betweenness centralities. Networks are superimposed on transverse MNI152 T1 template for illustration
purposes (Copyright (C) 1993–2004 Louis Collins, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University). Figure prepared with
the R-package qgraph.

doi:10.1371/journal.pone.0129074.g016

Fig 17. Overlap between networks at different numbers of ROIss (parcellations). Dashed black lines −
− show the proportion of edges that were present both in the pairwise and in the partial correlation network of
a given parcellation. Separate lines for each participant (numbered 1–5). Blue (or red) lines show the
comparison of the base-line 68-ROI parcellation with higher-resolution parcellations for pairwise correlation
(red) networks (or partial correlation (blue) networks). Plain blue (or red) lines − show the proportion of areas
of low-resolution parcellation that were internally connected by at least one edge in the higher-resolution
parcellations, given that the area was split (within-area connectivity). Dotted blue (or red) lines . . . show the
proportion of areas that were inter-connected in the low-resolution parcellation, that were also inter-
connected by at least one edge in the higher-resolution parcellations (between-area connectivity).

doi:10.1371/journal.pone.0129074.g017
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As shown in Fig 20, the local transitivity of most ROIs is larger in the pairwise correlation
network than in the partial correlation network. This is in line with the expectations based on
theory and our simulation results.

Betweenness centralities of each ROI are shown in Fig 21. In line with our simulation
results, in which pairwise correlation networks resulted in a severe underestimation of mean
betweenness centrality if the number of observations was sufficiently large, the average
betweenness centrality of the pairwise correlation networks (red line) is much smaller than
the average betweenness centrality of the partial correlation networks. This is the case for
almost all ROIs.

Network Consistency Across Different Parcellations
To examine the overlap between networks of low-resolution and higher-resolution parcella-
tions, we focussed on within-area connectivity and between-area connectivity (Fig 17).
Between-area connectivity (given a connection in the 68 ROI parcellation) is high in pairwise
and in partial correlations networks. However, within-area connectivity is higher in partial cor-
relation networks than in pairwise correlation networks.

Network Consistency Across Varying Time-Series Lengths
From each participant, we prepared 16 embedded data-sets with consecutively shorter length of
the time-series, starting with the full series of 240 volumes down to a minimum of 15 volumes.
For each data set, we calculated two networks as above, consisting of the edges with the 3% stron-
gest (pairwise or partial) correlations. To assess the overlap of a partial (or pairwise) correlation
network based on a given number of volumes with the respective partial (or pairwise) reference

Fig 18. Overlap between networks at different numbers of volumes (i.e., time-series lengths). Shown is the proportion of identical edges present in two
respective networks. Black lines −− show overlap between the pairwise correlation network and the partial correlation network of a participant, based on a
given number of volumes (i.e., time-series length). Separate lines for each participant (numbered 1 − 5). Red (or blue) lines indicate overlap between the
pairwise correlation (red) (or partial correlation (blue)) network based on the full time-series of 240 volumes and the pairwise correlation (red) (or partial
correlation (blue)) network based on smaller numbers of volumes (i.e., shorter time-series length.

doi:10.1371/journal.pone.0129074.g018
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network based on 240 volumes, we calculated the proportion of overlapping edges. The propor-
tion of overlapping edges was calculated as the number of individual edges that are present in
both networks (i.e., the size of the intersection of the edges in the two networks) divided by the
total number of edges in a network (i.e., the 3% of all possible edges that were selected). An over-
lap of 100% implies that exactly the same edges are present in the two networks, while an overlap
of 0% implies that completely different edges are present in the two networks. Partial correlation
networks show a 100% overlap between the 240 volumes and consecutively smaller numbers of
volumes, down to 90 or 60 volumes (see blue lines in Fig 18). With fewer observations, the over-
lap decreases. The amount of overlap of the pairwise correlation networks at different time-series
lengths is in general lower than or equal to the overlap of the partial correlation networks at dif-
ferent time-series lengths (see red lines below blue lines in Fig 18).

Discussion
The current study clearly shows that pairwise correlations should not be used to estimate con-
nectivity from functional MRI data, because pairwise correlation networks are generally very
poor representations of the true network. Ad-hoc solutions, like tweaking the cutoff threshold
for the correlation coefficients, is not a solution because the problem is inherent in the

Fig 19. Global network metrics of interest of pairwise correlation (red) and partial correlation (blue)
networks for different numbers of ROIs (parcellations).Numbered lines for participants 1 to 5.

doi:10.1371/journal.pone.0129074.g019
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pairwise correlation methodology itself. Pairwise correlations are problematic, because they
cannot distinguish between direct and indirect connections, and overestimate the proportion
of triangles. We showed that this methodology always results in a small-world network with
more components than in the true network, regardless of the true network topology. Addi-
tionally, the degree distribution is poorly represented. Logically, in order to correctly infer
such network characteristics, a high true positive rate (TPR) and a low false positive rate
(FPR) in edge detection are crucial. However, in pairwise correlation networks the TPR is low
and does not increase with additional observations (longer time-series), and the FPR of the
pairwise correlation networks is nearly always higher than that of the lasso and shrinkage
based partial correlation networks.

Small-worldness, degree distribution, betweenness centrality, and number of components
are better estimated using the shrinkage or lasso method to obtain partial correlations for
large-scale networks. The presence of hubs limited the efficiency of these methods. This is
caused by several factors. First, the presence of hubs means that variance explained by a hub
node will eliminate other, small signal connections, which leads to lower TPRs. Second, in a

Fig 20. Local transitivity of left (L) and right (R) hemisphere ROIs in pairwise correlation (red) and partial correlation (blue) networks with 68 ROIs,
averaged over participants.

doi:10.1371/journal.pone.0129074.g020
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network with hubs, the number of small signal connections is relatively large. The reason is
that the network (partial covariance matrix) has to represent a proper (non degenerate) distri-
bution, which requires many small signal connections when hubs are present. And the third
and final reason is that the maximum number of observations we used is still relatively low
compared to the number of parameters (0.005 observations per possible edge, or parameter)
[58]. These conditions resulted in the rather poor TPRs for the recovery methods when hubs
were present. Thus, the higher the maximum degree in the network, the more independent
observations are needed. Naturally, if the sample size is too small, all methods fail. Based on
our simulations, we caution against the derivation of brain networks of size 2000 with 500 or
less observations. With 500 observations, the TPR of the best methods in a random network is
below .75, which is not particularly high. TPR drops dramatically to .25 or below if the network
has a more complex structure (small-world networks, and/or networks contains hubs). In this
case, clearly, more observations are needed to reasonably infer underlying networks of this size.
If obtaining more observations is not possible, networks of smaller size should be considered
(i.e., working with less fine-grained parcellations). It should be kept in mind that the simulated

Fig 21. Betweenness centrality of left (L) and right (R) hemisphere ROIs in pairwise correlation (red) and partial correlation (blue) networks with 68
ROIs, averaged over participants.

doi:10.1371/journal.pone.0129074.g021
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datasets contained temporal dependence, as is common in fMRI data and other time-series. As
mentioned above, the effective number of observations was thus lower than the actual number
of observations [38]. It may be beneficial to use kernel covariance estimators, which are shown
to be consistent for time dependent data [59].

While [11] concluded that pairwise correlation can and should be used to measure connec-
tivity in combination with adapted null models, our simulation results suggest otherwise for
large-scale networks. The true positive rate and false positive rate of pairwise correlation net-
works are not acceptable. This also holds for ridge regression partial correlations, but only if
sample sizes are smaller than the number of nodes.

In an early simulation study focusing on the recovery of small-world networks with sparse
multivariate autoregression (� 100 nodes) ridge regression was found to be optimal, with
no significant difference between lasso and ridge regression [41]. Their simulations did not
include a comparison to correlation networks, nor were there different topologies investigated,
which clearly has a large impact on the results. In recent years, generalizations and variants of
the lasso have been developed, among which the graphical lasso (the one in [41] is an approxi-
mation to the graphical lasso used here), which, together with the shrinkage estimator, turned
out particularly suitable for large-scale network recovery in the present simulation scenario.

Our application to resting-state fMRI illustrated that partial correlation networks are
more consistent and reliable than networks obtained from pairwise correlations. The inappro-
priateness of pairwise correlations to infer connectivity networks also holds for other areas of
research, such as genetics [24]. Thus, we recommend the use of partial correlations obtained
with the graphical lasso or shrinkage estimator to build large-scale networks.
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