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Abstract: Quantum interference (QI) can lead to large variations in single molecule conductance.
However, controlling QI using external stimuli is challenging. The molecular structure of
phenoxyquinone can be tuned reversibly using light stimulus. In this paper, we show that this can be
utilized to control QI in phenoxyquinone derivatives. Our calculations indicate that, as a result of
such variation in molecular structure of phenoxyquinone, a crossover from destructive to constructive
QI is induced. This leads to a significant variation in the single molecule conductance by a couple
of orders of magnitude. This control of QI using light is a new paradigm in photosensitive single
molecule switches and opens new avenues for future QI-based photoswitches.

Keywords: photochromic molecules; quantum interference; electrical conductance; molecular
electronics; photoswitches

1. Introduction

Studying charge transport through molecular devices has attracted a growing interest in
the last decade [1–3]. In particular, understanding the influence of light on properties of single
molecular-scale devices can have applications on better characterization of the molecular junctions e.g.,
Raman spectroscopy or used as an alternative to a molecular scale field effect transistor [4–6]. In single
molecule optoelectronics, one of the main motivations is to switch electrical conductance on and off using
an external stimulus such as an external electric field [7,8], redox chemistry [9], or light [4,5,10,11]. In the
latter, the electrical current is switched reversibly on and off in photochromic molecules in the presence
of light or a change in its intensity. These can be mediated by electron transfers, photo-induced bond
cleavages, pericyclic reactions, E–Z isomerizations or intra-molecular hydrogen/group transfer [4,12–17].
In E–Z isomerizations, the structure of molecule changes upon irradiation with light at specific
wavelengths [18]. For example, the molecular structure of azobenzene [19] and stilbene [20] changes
from trans to cis confirmation by ultraviolet light [10]. This leads to changes in the electrical conductance
of the molecule between two electrodes. The conductance measurement of azobenzene between
metallic electrodes shows that the single molecule conductance of cis confirmation is higher than trans
confirmation by only a factor of two in agreement with predictions from theory (see Section A of
the supporting information SI and Figures S1 and S2) [21,22]. This ratio is higher in self-assembled
monolayers formed by azobenzene molecules because of changes in contacting modality and molecular
film thickness [23,24]. However, these ratios are not sufficient to deliver high efficiency photoswitches.

Quantum interference (QI) can lead to a large variation (e.g., couple of orders of magnitude)
in single molecule conductance as demonstrated in several molecular junctions [25]. For example,
by simply changing the connection point to electrodes from para to meta in oligo(phenylene-ethynylenes)
OPE3, the single molecule conductance changes by more than 30 times at room temperature due to
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a crossover from a destructive to constructive QI [26]. However, in-situ chemical modification of a
molecule in the junction using external stimulus is challenging.

In what follows, our aim is to demonstrate that QI in a single molecule junction can be
modulated from destructive to constructive in phenoxyquinone photosensitive molecules. Trans and
cis configurations of phenoxyquinone are shown in Figure 1. These isomers are stable under different
light stimuli [27]. In visible light, phenoxyquinone molecule takes trans configuration (Figure 1a)
whereas under UV light it is changed to cis (Figure 1b) configuration [28]. The energy needed for this
transition is c.a. 300 meV [27]. This process is reversible and cis isomer can be transformed to trans
isomer through irradiation or heating with visible light [29]. This makes phenoxyquinone derivatives
attractive candidates for photoswitching. Here, we demonstrate for the first time that this light
induced change in molecular structure controls room temperature QI in of phenoxyquinone molecules
and a crossover from destructive QI (DQI) to constructive QI (CQI) takes place. This is significant
because such crossover from CQI to DQI does not take place in other photochromic molecules such
as azobenzene or dithienylethene leading to smaller on/off ratio. The crossover from CQI to DQI in
phenoxyquinone leads to a couple of orders of magnitude increase in electrical current and a large
on/off ratio of several orders of magnitude is accessible.
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Figure 1. Chemical structures of (a) trans and (b) cis phenoxyquinone isomers. In visible light,
phenoxyquinone molecule takes trans configuration, whereas, under UV light, it is changed to
cis confirmation.

2. Computational Methods

The Hamiltonian of the structures described in this paper was obtained using DFT as described
below or constructed from a simple tight-binding model with a single orbital per atom. The optimized
geometry and ground-state Hamiltonian and overlap matrix elements of each structure were
self-consistently obtained using the SIESTA [30] implementation of density functional theory DFT.
SIESTA employs norm-conserving pseudopotentials to account for the core electrons and linear
combinations of atomic orbitals to construct the valence states. The generalized gradient approximation
(GGA) of the exchange and correlation functional is used with the Perdew–Burke–Ernzerhof
parameterization, a double-ζ polarized basis set, and a real space grid defined with an equivalent
energy cutoff of 250 Ry. The geometry optimization for each structure is performed for the forces
smaller than 40 meV/Å.

The mean-field Hamiltonian obtained from the converged DFT calculation or a simple tight-binding
Hamiltonian was combined with Gollum [31,32] implementation of the non-equilibrium Green’s
function method to calculate the phase-coherent, elastic scattering properties of the each system consist
of left (source) and right (drain) leads and the scattering region. The transmission coefficient T(E)
for electrons of energy E (passing from the source to the drain) is calculated via the relation T(E) =

trace
(
ΓR(E)GR(E)ΓL(E)ER†(E)

)
. In this expression, ΓL,R(E) = i

( ∑
L,R

(E) −
†∑

L,R
(E)

)
describes the level

broadening due to the coupling between left (L) and right (R) electrodes and the central scattering region,
ΣL,R(E) are the retarded self-energies associated with this coupling, and GR = (ES−H − ΣL − ΣR)

−1 is
the retarded Green’s function, where H is the Hamiltonian and S is overlap matrix. Using the obtained
transmission coefficient T(E), the electrical current I and conductance G could be calculated by the
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Landauer formula I = e
h

∫
dE T(E)( f (eV/2) − f (−eV/2))G = G0

∫
dE T(E)

(
−
∂ f
∂E

)
, where G0 = 2e2/h

is the conductance quantum, V is bias voltage, and f is Fermi distribution function. At low temperatures
(e.g., T = 0K), Landauer formula simplifies to G = G0 T(EF).

3. Results

We use density functional theory (DFT) to obtain ground state geometry of cis and trans
phenoxyquinone isomers (see method section). Our calculation shows that the ground state energy of
trans isomer is 310 meV lower than cis isomer in agreement with reported experimental values [27].
The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO)
are shown in Figure S3 of the SI. Clearly, the HOMO-LUMO energy gap of trans-phenoxyquinone
(2.02 eV) is 0.5 eV larger than cis-phenoxyquinone (1.52 eV). To study electron transport properties
of phenoxyquinone derivatives, we use two different anchor groups, thiol and direct Au-C bond to
attach molecules to gold electrodes (Figures 2 and 3). We then obtain the ground state mean field
Hamiltonian from optimized geometry of each structure using DFT. The transmission probability [31]
T(E) of electrons with energy E traversing through each junction is then calculated. The electrical
conductance G = G0T(EF) and current I are then obtained from Landauer formula (see methods).
Note that room temperature electrical conductance is obtained from thermal averaging of transmission
function using Fermi distribution.

Figure 2a,b show the molecular junctions formed by trans and cis phenoxyquinone molecules
using thiol anchor, respectively. The electrical conductance of trans-phenoxyquinone is shown by a blue
curve in Figure 2c. The dip in G(EF) is due to destructive quantum interference which leads to a low
electrical conductance in trans isomer (dashed lines show the room temperature electrical conductance).
In contrast, constructive interference through cis-phenoxyquinone leads to a higher conductance.
At DFT Fermi energy (EF = 0 eV), the conductance is 8 × 10−3 G0 for cis and 3 × 10−5 G0 for trans isomers.
Clearly, the conductance of cis-phenoxyquinone is at least two orders of magnitude higher than that
of trans-phenoxyquinone not only at EF = 0 eV, but also for whole energy range between HOMO
and LUMO of trans-phenoxyquinone (Figure 2c). Figure 2d shows the room temperature electrical
current through phenoxyquinone for different bias voltages between two electrodes (Figure 2a,b).
The current is more than two orders of magnitude larger in cis isomer compared to that of trans isomer.
The transition from low conductance trans isomer (off state) which can be induced by UV light to high
conductance cis isomer (on state) leads to an on/off ratio of > 100. This large variation in electrical
conductance from cis to trans phenoxyquinone demonstrates the potential of these molecular junctions
for photoswitching application.

To demonstrate that this large variation in electrical conductance is independent of the choice of
the anchor group to electrodes, we calculate electron transport through phenoxyquinone derivatives
using direct coupling to the gold electrodes (Au-C bond) as shown in Figure 3a,b. Figure 3c
shows the conductance G(EF) of junctions of Figure 3a,b. Clearly, the electron transmission through
trans-phenoxyquinone is governed by DQI leading to a low electrical conductance, whereas electrons
transmit through cis-phenoxyquinone junction constructively (high conductance). The conductance
values are 1 × 10−2 G0 and 2 × 10−4 G0 for cis and trans isomers, respectively, at EF = 0 eV. The electrical
conductance through cis-phenoxyquinone is 2–5 orders of magnitude higher than trans-phenoxyquinone
for a wide energy range in the vicinity of EF = 0 eV, meaning that, regardless of the Fermi energy
of electrodes, the electrical conductance of cis isomer is much higher than that of trans isomer.
Figure 3d shows the electrical current for junctions of Figure 3a,b for different bias voltages at room
temperature. Clearly, a large on/off ratio of > 1000 is accessible at Vb > 0.45 V. This is higher than the
on/off ratio of dithienylethene, azobenzene, and stilbene photochromic molecules studied between
gold or graphene electrodes [10,11,15,33] and is a consequence of crossover from DQI to CQI in
phenoxyquinone molecules.
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Figure 3. Molecular structures of (a) trans and (b) cis isomers of phenoxyquinone with acetylene
linker and direct Au-C connection to gold electrodes; (c) low temperature conductance and
(d) room temperature current for (a,b). Dashed lines in (c) show the corresponding room
temperature conductances.

This large variation in the electrical conductance is due to a crossover from conjugated cis-
phenoxyquinone to cross conjugated trans-phenoxyquinone. This can be understood using curly
arrows rules [34]. Arrow-pushing pathways are ‘dead ends’ in trans configuration (Figure 4a), whereas
there is a ‘pathway’ from one electrode to the other in cis configuration (Figure 4b). This means that,
from curly arrows rules, a DQI (CQI) is expected for cis (trans) isomer in agreement with DFT results
in Figures 2 and 3. The oxygen atom in carbonyl group (C=O) acts like scissors which weaken the
electronic coupling between the neighbouring carbon atom (shown by green dots in Figure 4c,d) with
its other neighbouring atoms (shown with blue coupling in Figure 4c,d). The oxygen atom in carbonyl
group also changes on-site energy of neighbouring carbon atoms by modifying the charge on the
carbon atom. Using this picture, we build a simple single orbital per atom tight binding model as
shown in Figure 4 (see methods for details). We then calculate transmission coefficient T(E) between
site m and n (Figure 4c,d) for both trans and cis isomers as shown in Figure 4e. We obtain DQI in trans
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isomer in contrast to CQI in cis isomer (Figure 4e) in qualitative agreement with our material specific
DFT result (Figures 2 and 3).Nanomaterials 2020, 10, x FOR PEER REVIEW 5 of 7 
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Figure 4. QI based on curly arrows rules and tight binding model. Arrow-pushing pathways for
(a) cis and (b) trans phenoxyquinone isomers. (c,d) simplified tight binding picture and (e) electron
transmission coefficient curves for trans and cis isomers as a function of electron energy for tight-binding
model of site energy ε0 = 0 and nearest-neighbor couplings γ = −1. On-site energy at red sites (Figure 4)
is εm = −0.55γ and γm = −0.15.

In order to demonstrate the effect of connection point to the electrodes on QI through trans and cis
configurations of phenoxyquinone, we also calculate transmission coefficient between (m, n’), (m’, n)
and (m’, n’) connectivities (Figure 4c,d) using material specific Hamiltonians obtained from DFT.
We obtain constructive interference for both cis and trans isomers when they connected to the electrodes
from (m, n’) and (m’, n) connectivities (Figure S5a–f of the Supplementary Materials), whereas quantum
interference is destructive for both cis and trans isomers through (m’, n’) connectivity (Figure S5g–i
of the Supplementary Materials). This shows that the manifestation of light induced QI depends on
the connection point of phenoxyquinone core to the electrodes. This is also in agreement with our
simple tight-binding model (Figures S5j–l and S7j–l of the Supplementary Materials). Using different
anchor groups or electrode configuration does not change the result as shown in Figures S6 and S7 of
the Supplementary Materials.

4. Conclusions

In summary, photochromic molecules change their conformation when exposed to ultraviolet
or visible light irradiation. In this paper, we demonstrated that such conformational change in
phenoxyquinone derivatives can lead to a significant variation in their single molecule conductance
by a couple of orders of magnitude. We attributed this to a reversible crossover from destructive
interference in trans isomer to constructive interference in cis isomer, which leads to a large variation in
current (>1000 times) at room temperature.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/8/1544/s1,
Figure S1. Frontier molecular orbitals of azobenzene. Figure S2. Transport through of azobenzene derivatives.
Figure S3. Frontier molecular orbitals of phenoxyquinone. Figure S4. Energy and isosurfaces of phenoxyquinone
molecular orbitals for trans and cis isomers. Figure S5. Molecular structure of the junctions formed phenoxyquinone
isomers and electron transport through the junctions for different connectivities to electrodes. Figure S6. Molecular
structure of the junctions formed phenoxyquinone isomers and electron transport through the junctions using
different anchor / electrode configuration. Figure S7. Molecular structure of the junctions formed phenoxyquinone
isomers and electron transport through the junctions for different connectivities to electrodes using direct Au-C.
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