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Chemistry 
beyond the Hartree–Fock energy 
via quantum computed moments
Michael A. Jones1, Harish J. Vallury1, Charles D. Hill1,2 & Lloyd C. L. Hollenberg1*

Quantum computers hold promise to circumvent the limitations of conventional computing for 
difficult molecular problems. However, the accumulation of quantum logic errors on real devices 
represents a major challenge, particularly in the pursuit of chemical accuracy requiring the inclusion 
of electronic correlation effects. In this work we implement the quantum computed moments (QCM) 
approach for hydrogen chain molecular systems up to H 

6
 . On a superconducting quantum processor, 

Hamiltonian moments, 〈Hp〉 are computed with respect to the Hartree–Fock state, which are then 
employed in Lanczos expansion theory to determine an estimate for the ground-state energy which 
incorporates electronic correlations and manifestly improves on the direct energy measurement. 
Post-processing purification of the raw QCM data takes the estimate below the Hartree–Fock energy 
to within 99.9% of the exact electronic ground-state energy for the largest system studied, H 

6
 . 

Calculated dissociation curves indicate precision at about 10mH for this system and as low as 0.1mH 
for molecular hydrogen, H 

2
 , over a range of bond lengths. In the context of stringent precision 

requirements for chemical problems, these results provide strong evidence for the error suppression 
capability of the QCM method, particularly when coupled with post-processing error mitigation. While 
calculations based on the Hartree–Fock state are tractable to classical computation, these results 
represent a first step towards implementing the QCM method in a quantum chemical trial circuit. 
Greater emphasis on more efficient representations of the Hamiltonian and classical preprocessing 
steps may enable the solution of larger systems on near-term quantum processors.

The computing resources required for the ab-initio solution of molecular systems generally scale exponentially 
as the system size increases, however, Feynman recognised that quantum computers may be able to solve these 
problems  efficiently1. There has been considerable progress in developing quantum algorithmic approaches to the 
problem, and in understanding the quantum resources required for useful real-world  cases2–7. Generally, because 
the underlying quantum algorithms are inherently phase sensitive, these approaches require fault-tolerant quan-
tum error correction over hundreds of thousands to several million physical qubits to simulate molecular or 
condensed matter systems of scientific interest. With fault-tolerant quantum computation inaccessible in the 
short-to-medium term, approaches have been suggested that aim to make use of the advantages of quantum 
computation while keeping circuit depth minimal to reduce the accumulation of errors. Notable among these 
methods are variational hybrid algorithms such as the Variational Quantum Eigensolver (VQE)8,9 which exploits 
the quantum processor’s ability to efficiently encode the state of a quantum system while leveraging classical 
computation to optimise the state with respect to some inbuilt parameter set, using the expectation value of a 
chosen observable, usually the Hamiltonian, H , as the cost function. Such algorithms have been considered as 
 candidates4,10 for demonstrating quantum  advantage11 on a problem of real scientific interest. Since the initial 
 proposal8 and implementations of  VQE8,9,12,13, various modifications and improvements to the algorithm, such 
as adaptive ansätze14,15 and alternative objective  functions16 have been suggested.

While the reduced circuit depth of variational quantum algorithms provides a way to reduce errors, there is no 
way to completely prevent them on the Noisy Intermediate Scale Quantum (NISQ) hardware currently  available17. 
As such, methods have been proposed to mitigate the effects of noise such as Richardson  extrapolation18,19 and 
McWeeny  purification20,21 among others. For molecular problems, these methods have achieved some success in 
effectively recovering the noise-free limit of the variational trial-state—usually constructed in the Hartree–Fock 
 approximation22 as a first step. However, the real challenge remains to incorporate electronic correlation effects 
in a sufficiently noise-robust manner to break through the limitations of the Hartree–Fock trial-state and into 
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the regime of chemical precision at the 1 kcal/mol (1.59 mH) level. While a more complicated trial state such as 
the UCC ansätz23 or its  variations24 can, in principle, incorporate the required correlations; as the problem size 
is increased beyond what can be simulated classically the circuits soon become prohibitively long and inacces-
sible to near-term quantum devices.

Here we apply the recently introduced Quantum Computed Moments (QCM)  approach25 to compute cor-
rections to the conventional variational estimate, 〈H〉 , for molecular problems (defined by an electronic Hamil-
tonian, H ), on a superconducting quantum processor as outlined in Fig. 1 and discussed in further detail in the 
“Results” section. The QCM approach incorporates system dynamics through the computation of Hamiltonian 
moments, and uses results from Lanczos expansion  theory26 to produce a dynamic correction, effectively sum-
ming these effects to all orders. The utility of the QCM method was previously demonstrated for quantum 
magnetism problems on a superconducting quantum processor of up to 25 qubits, providing stable estimates of 
the ground-state energy which improve on the corresponding direct energy measurements. Critically, the QCM 
results, even for this relatively large number of qubits, showed a high level of robustness to device errors and 
noise, suggesting utility for other quantum problems of interest on near-term devices. For our test molecular 
problem, we consider the ground state energy of hydrogen-atom chains up to H 6 computed with respect to a 
single-Slater determinant variational state.

Recently, other methods of using moments in the QC context have been proposed based on the power 
 method27, extensions of the variational  approach28, or the connected moments expansion (CMX)29–32. Unlike 
approaches such as the CMX, which applies Pade approximates to the t-expansion, the energy estimates obtained 
from Lanczos expansion theory are based on a rigorous diagonalisation of the Hamiltonian in Lanczos expanded 
form for a given finite moment order. In the past, direct comparisons show that the Lanczos expansion approach 
consistently provides a better energy  estimate33.

These moment-based methods fit into a broader category of so-called Quantum Subspace Expansion (QSE) 
methods that classically diagonalise the Hamiltonian in an alternative basis where the diagonalisation can be 
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Figure 1.  Overview of the quantum computed moments (QCM) approach applied to problems in chemistry. 
(a) The molecular system H 6 is represented by a second-quantised Hamiltonian over a set of molecular 
orbitals. The trial-state is the Hartree–Fock state, i.e. the occupation of the indicated orbitals. Application of 
the Hamiltonian moments allows for the generation of electronic correlation effects that the Hartree–Fock 
state cannot otherwise incorporate. (b) Overview of hybrid quantum/classical aspects of the QCM approach 
including a device map for the quantum processor ibmq_sydney used in this work.



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8985  | https://doi.org/10.1038/s41598-022-12324-z

www.nature.com/scientificreports/

carried out more efficiently/accurately. The generation of such a basis can be carried out by repeated applica-
tion of the Hamiltonian operator to a suitably chosen trial-state (leading to moments-based methods) or by the 
application of other operators such as electronic  excitations34,35, Pauli  operators36 or matrix exponentials of the 
 Hamiltonian37,38. Alternatively, a non-orthogonal basis can be defined as a more general set of states that can be 
prepared easily on the quantum  processor39–42.

It is worth noting that Lanczos expansion theory is capable of more than calculating corrections to the 
ground state energy and that it should also be possible to calculate energy  gaps43, thermodynamic properties and 
expectation values of physical  quantities44 etc.  Recently45 a simulated quantum computer was used to calculate 
Green’s functions based on the Hamiltonian moments and another method has been  proposed46 for calculating 
exited states and time-evolution over a long time period from the Hamiltonian moments obtained from time-
evolution over a short time period.

Results
Chemistry via Quantum Computed Moments. The QCM method is applicable to any molecular prob-
lem in general, however, for definiteness we consider linear chains of hydrogen atoms (Fig. 1a) governed by the 
usual second-quantised molecular Hamiltonian:

where a†j  ( aj ) are creation (annihilation) operators for an electron in molecular spin-orbital j. The one- and 
two-body molecular integrals ( hjk and gjklm respectively) are computed efficiently on a classical computer and 
represent the kinetic energy of the electrons and the attractive electron-nuclear potential (h) and the repulsive 
electron-electron interactions (g). The Hamiltonian as written in Eq. (1) does not include the repulsion energy 
between the atomic nuclei—when calculating dissociation curves this must be taken into account as the nuclear 
repulsion varies as a function of atomic coordinates. This energy is referred to as the molecular energy. When 
performing optimisations for a single set of atomic positions the nuclear repulsion energy does not need to be 
taken into account as it is independent of the electronic configuration—this energy is referred to as the electronic 
energy. The problem is to use a quantum computer to find the ground-state energy to chemical precision (1 kcal/
mol ≈ 1.59 mH). The conventional Variational Quantum Eigensolver (VQE) approach employs the quantum 
computer to compute the expectation value 〈H〉 , with respect to a well-chosen trial state, as a cost function in a 
classical minimisation loop. For chemical problems, the Hartree–Fock (HF) state is the chosen starting point for 
the minimisation of 〈H〉 . While gate-errors and device noise have a considerable effect on the values of 〈H〉 , error 
mitigation and purification techniques can essentially recover the HF  energy21. In the quantum computation con-
text, to go beyond the HF energy towards chemical precision one must include electronic correlations. While this 
can be achieved through the use of better trial state ansätz such as the Unitary Coupled Cluster ansätz (UCC)23 
or alternative algorithms such as Quantum Phase Estimation (QPE)51, these approaches generally involve many 
qubits and/or deep circuits and/or quantum error corrected logical qubits and are therefore not suited to NISQ 
devices, even in the medium term. For NISQ devices to be of any use as a computational tool for chemistry, the 
algorithmic approaches must be adapted to be highly noise-robust in order to be capable of producing accurate 
results in the context of chemical precision.

The QCM method is based on an expansion of the Lanczos tridiagonal form in terms of moments 〈Hp〉 (see 
section A in SI for details)26. The Hamiltonian moments encapsulate the system’s dynamics with respect to a given 
trial state—for the chemistry problems considered here, this equates to incorporating electronic correlations 
over the single Slater determinant trial state. In the quantum computing context, early explorations considered 
Hamiltonian moments in both adiabatic and gate-based circuit  approaches52 and were later extended to the 
notion of direct computation of these  quantities53. The resulting Quantum Computed Moments (QCM)  method25 
employs an approximation for the ground state energy in terms of connected moments (cumulants) cp of 〈Hp〉 , 
to fourth order, given by the  expression26,54,55:

The second term involving higher order connected moments not only provides a dynamical correction to the 
direct measurement result, c1 ≡ �H� , it also contributes a high degree of robustness to circuit errors.

For a given Hamiltonian, H , the QCM method begins by exponentiating H to produce {H1,H2,H3,H4} . 
Here we keep H in second quantised form so the multiplications can be performed, for example, by using Wick’s 
theorem. After conversion to qubit operators, the growth of the number of terms in the exponentiated forms 
of H is controlled by forming tensor product basis (TPB)  sets9 in a classical pre-processing step (as discussed 
in section D of the Supplementary Information). The trial state employed in this work is based on that used by 
Arute et. al.21, where each qubit represents the occupation state of a molecular orbital, classically pre-computed 
in the STO-3G minimal basis using the Python package pyscf56. (See section C in the Supplementary Informa-
tion for additional details).

To reduce the computational burden on the quantum processor, an extension of a spin-symmetry reduc-
tion  technique21 was employed to reduce the number of qubits by a factor of 2. While this qubit reduction (see 
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section B in SI for details) requires several restrictions on the problem, most notably that the trial state must be 
a single Slater-determinant, the inclusion of electron dynamics introduced to the system by the QCM method 
allows the computation to achieve accuracy beyond what would normally be possible for such a trial state. This 
technique also allows for a reduction in the number of Tensor Product Basis (TPB) elements that need to be 
measured in the Hamiltonian averaging procedure by a factor of N14

s  from the naive method of measuring the 
(worst case) O(N16

s ) terms in H4 individually, where Ns is the number of spin-orbitals. The results here were 
obtained using the conventional O(N4

s ) scaling of the Hamiltonian terms for which classical pre-processing on 
modest computing resources limited the molecular system size. However, our results together with the wide 
applicability of the QCM method to molecular systems in general, provides the tantalising possibility that with 
alternative Hamiltonian representations the QCM approach, coupled with error mitigation schemes, has the 
potential to provide accurate and strongly error-robust results for the ground state energy of larger chemical 
systems on near-term quantum computers.

Circuit parameter sweep. With respect to the single Slater-determinant trial-state defined in Fig.  2 
(parameter set θ ), all observables contained in the TPB sets were measured directly on the ibmq_sydney device 
for the molecular systems H 2 , H 4 and H 6 with all bond lengths set to 0.74 Å (the equilibrium bond distance 
of molecular hydrogen). Each TPB set was measured using 8192 shots. To illustrate variational behaviour we 
present the data for values of the opening trial-state parameter θ1 around the Hartree–Fock state compared to 
the Hartree–Fock energy and the Full Configuration Interaction (FCI) results in Fig. 3a (see section F in the 
Supplementary Information for ensemble data over the variational parameter sets). The error robustness of the 
QCM results is quite evident for all three molecular systems—while the pink triangles representing the direct 
measurement result (with respect to θ1 ) move significantly away from the solid pink line indicating the trial-
state limit (HF energy), the upward shift of the QCM due to device errors (green triangles shifting away from 
the green line) is suppressed by an order of magnitude. Despite the large number of observables required to be 
measured on the QC device in the determination of the moments, the QCM correction term consistently sup-
presses the device errors contained in the uncorrected computation c1 = �H� . In fact, for the largest system, H 6 , 
the raw QCM data already recovers 99.7% of the minimised trial-state energy at the HF point.

Density matrix purification. To investigate the potential of the method to reach beyond the Hartree–Fock 
energy we perform McWeeny purification on the 1-body reduced density matrix (1-RDM)20—this procedure 
has been shown to improve the direct energy measurement result at the Hartree–Fock  point21. Details on the 
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Figure 2.  Trial state construction and implementation: illustrated case—the 6 atom hydrogen chain. (a) Qubit 
representation of the orbital basis, the trial circuit expressed in terms of Givens  rotations47–49 and the Givens 
rotation expressed in terms of CNOT and single qubit gates and its matrix representation. Parameterised gates 
are shaded in red (b) The trial state produced when θj = π/4 , visualised using the Quantum User Interface 
(QUI)  system50. Only the states representing the correct number of electrons are included on the horizontal axis 
since only these states can have non-zero amplitudes.
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purification procedure can be found in section E in the Supplementary Information. The results of the RDM 
purification procedure are shown in Fig. 3b. As observed in previous  work21, the purification procedure applied 
to the direct energy measurement (pink inverted triangles) goes a long way to recovering the trial-state energy 
(pink line). However, the key observation is that the RDM purification is also highly effective in correcting the 
remaining device errors in the QCM calculation (green inverted triangles), explicitly recovering a portion of the 
electron correlation and pushing the result beyond the HF energy (black dashed line).

The high level of accuracy (relative to the FCI result) in the H 2 case is in part due to the fact that the Hilbert 
space spanned by the minimal basis is reasonably small, so the Hartree–Fock state is a better approximation to 
the true ground-state. For the H 4 and H 6 cases the accuracy of the Hartree–Fock method is decreased and so the 
QCM results based on the HF state are also reduced in accuracy. Systematic improvement of the trial state (of 
the form usually used in VQE calculations) is expected to allow the QCM method to more accurately estimate 
the ground-state energy.

Dissociation curves. Finally, we repeat the calculations at a range of atomic separations to compute the 
dissociation curves shown in Fig. 4. As expected, in the absence of noise, the QCM correction (green line) incor-
porates the electronic correlations at a sufficient level to recover energies below the Hartree–Fock energy (pink 
line) for all bond distances examined for all three molecules. For most cases, especially at longer bond lengths 
where the Hartree–Fock energy diverges more significantly from the FCI results, the moments-based correction 
without any additional error mitigation (green crosses) is sufficient to calculate energies below the Hartree–Fock 
energy, even when performed on a noisy quantum device.

With the application of 1-RDM purification, the moments based method on the quantum device ibmq_sydney 
(green inverted triangles) was able to outperform the noiseless Hartree–Fock results for all molecular geometries 
considered, reaching error thresholds relative to the FCI results of order 10 mH for the longest chain, H 6 , and 
0.1 mH for molecular hydrogen. The latter is below the chemical precision threshold of 1.59 mH (black line in 
Fig. 4b). We note that this result is within chemical precision of the FCI energy calculated in the minimal STO-3G 
basis and that a significantly larger basis is required to claim true chemical  accuracy4. We also note that the results 
presented by Arute et. al.21 are likewise restricted by the choice of basis and are in fact within chemical precision 

,{ } , ,

,{ } , ,,

, ,
{ }

H HH2 HH H HH4 HHHH H HH6

(b) Purified QC data

(a) Raw QC data

Figure 3.  Results of varying the leading circuit parameter, θ1 for (from left to right) H 2 , H 4 , H 6 . The vertical 
axis is the absolute error in electronic energy from the FCI result |E − EFCI| on a logarithmic scale. Ideal 
simulations were performed without errors or shot noise while QC data was averaged over 4 runs (total 8192 
shots). Statistical error bars on the QC data represent one standard deviation and are often smaller than the data 
points. (a) Comparison of raw data results to noiseless simulation. (b) Comparison of purified data to noiseless 
simulation.
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only of the Hartree–Fock energy and not the FCI ground state. Additionally, the results presented here do not rely 
on the symmetry of the system and could, in principle, be calculated for any spatial arrangement of the atoms. 
This is in contrast to the results of Kawashima et. al.57 where chemical precision relative to FCI calculations was 
achieved for the H 10 ring by exploiting the high level of rotational symmetry in the system. Chemical precision 
has also been reported for  NaH58 on 4 superconducting qubits using a frozen core approximation and a UCC 
inspired circuit, a problem of similar size to the H 2 molecule simulated, reaching chemical precision relative to 
the FCI energy. Another  work59 simulates H 2 O on 11 trapped-ion qubits by carefully selecting the excitation 
operators to be included in a UCC-style ansätz circuit and achieves errors relative to the ideal result and stand-
ard deviations at the same order as chemical precision for the first few determinants. Given the precision of the 
QCM method when performed using the less accurate single Slater-determinant trial state it is expected that 
application of the method to UCC-style ansätz circuits would provide a further improvement on the precision 
of the ground-state energy estimates.

Discussion
We have applied the Quantum Computed Moments method to the quantum-chemical problem of computing 
the ground state energy of linear chains of hydrogen atoms and found that, even for restrictive single Slater-
determinant trial states, use of the QCM method allows for recovery of electron correlation and therefore 
of energies below the Hartree–Fock threshold. Though computation of the Hamiltonian moments may seem 
expensive, the scaling of the number of terms in H4 is significantly better than the worst-case as seen in section 
D of the SI and could be further reduced by transformation into an alternate basis. Additionally the number of 
measurements can be controlled by grouping mutually commuting operators for simultaneous measurement.

With the addition of McWeeny purification, we demonstrate that the method is capable of outperforming 
(noise-free) Hartree–Fock calculations, even when the moments are computed on noisy present-day quantum 
hardware, for chains of up to 6 atoms, the largest system studied here requiring up to 27 CNOT gates. For 
molecular hydrogen, H 2 , we achieve results that are within chemical precision of the FCI result calculated with 
respect to the minimal basis set for a range of inter-nuclear distances around the equilibrium bond length. For 
the H 6 chain at 0.74 Å, with no error mitigation the QCM method is able to recover 97.1% of the molecular 
energy while the usual direct measurement of 〈H〉 is able to return only 78% of the energy due to noise in the 
trial circuit preparation.

(b) Error from FCI curve

(a) Dissociation curves ,{ } , ,

,{ } , ,,

, ,
{ }

H HH2 HH H HH4 HHHH H HH6

Figure 4.  Dissociation curves for hydrogen chains. The energy values at each point correspond to a single 
energy evaluation (8192 shots) performed at parameter value θ = (0, 0, . . . ) . (a) Molecular energy as a function 
of inter-nuclear distance. The purple line is the noiseless simulation result which reproduces exactly the 
Hartree–Fock energy. (b) The absolute value of the error in molecular energy relative to the FCI results.
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Although the McWeeny purification technique is not easily generalised to states that cannot be represented 
as a single Slater-determinant, the QCM method performs well even without the purification and would likely 
benefit from any improvement in the trial state. Such improvement could come in the form of a UCCD circuit 
ansatz, for example, and should allow the QCM result to approach the FCI energy more closely while maintaining 
the QCM method’s resilience to noise. Experimentation with improved circuit ansatze is left to future work as is a 
detailed time-cost analysis. Furthermore it is possible to adapt the QCM method for the computation of excited 
state  energies43 and to properties other than the  energy44. With improvement of the trial state, combined with 
error mitigation techniques and alternative Hamiltonian representations to control the scaling of the problem the 
QCM method is a promising technique for the pursuit of chemical accuracy on present-day quantum hardware.

Methods
Spin-degeneracy qubit-reduction. Due to the spin-symmetry of the system the number of qubits 
required for quantum simulation can be reduced by a factor of 2 if the trial state is restricted to a single Slater-
determinant, |�P� (see section B in SI). Given the restricted trial state it is possible to extract expectation values 
for any excitation operator from the 1-body reduced density matrix (1-RDM) according to the equation

The qubit-reduction method is described in more detail in section B in the Supplementary Information.

The chemical Hamiltonian. The chemical Hamiltonians used in this work were computed using the 
python package pyscf56 to optimise the molecular orbitals and were converted to qubit Hamiltonians using the 
Jordan-Wigner  transform60.

Measurement details. To reduce the required number of state preparations, the Pauli strings required 
for measurement of the 1-RDM are grouped into O(N2

s ) mutually commuting tensor product basis  sets9 as 
described in section D in the Supplementary Information. For each TPB, the trial circuit was executed and the 
output state was measured 8192 times to obtain the average results. To estimate uncertainties, the 8192 measure-
ment results were randomly assigned to one of 4 bins. Each bin (of roughly 2000 results each) was processed 
individually and the standard deviation of these 4 results was calculated. Quantum computed data for the graphs 
in Figs. 3 and 4 were taken from the device ibmq_sydney and simulated results were calculated using a statevector 
simulator without shot noise. Dissociation curves were also calculated on the ibmq_toronto and ibmq_guadalupe 
devices and found to be consistent with the ibmq_sydney results.

Density matrix purification. Purification of the 1-body reduced density matrix was performed follow-
ing previous  works20,21 by iteratively applying the equation:

where R0 is the unpurified matrix and Rj is the matrix after j iterations of the purification procedure. The purifica-
tion method is described in more detail in section E of the Supplementary Information.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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