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A B S T R A C T   

The development of a cost-competitive bioprocess requires that the cell factory converts the feedstock into the 
product of interest at high rates and yields. However, microbial cell factories are exposed to a variety of different 
stresses during the fermentation process. These stresses can be derived from feedstocks, metabolism, or industrial 
production processes, limiting production capacity and diminishing competitiveness. Improving stress tolerance 
and robustness allows for more efficient production and ultimately makes a process more economically viable. 
This review summarises general trends and updates the most recent developments in technologies to improve the 
stress tolerance of microorganisms. We first look at evolutionary, systems biology and computational methods as 
examples of non-rational approaches. Then we review the (semi-)rational approaches of membrane and tran
scription factor engineering for improving tolerance phenotypes. We further discuss challenges and perspectives 
associated with these different approaches.   

1. Introduction 

Industrially important microorganisms, including bacteria and yeast, 
have been widely applied to fermentation processes to produce phar
maceuticals, nutraceuticals, enzymes and food ingredients, fuels and 
biochemicals [1–4]. To meet commercial demands, microbial cells often 
need to be engineered to achieve specific metrics such as titer, yield, and 
productivity. The advancements in synthetic biology and metabolic 
engineering have significantly increased the ability to rapidly design and 
create cells with optimised pathways, such as genome editing by Clus
tered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and 
CRISPR associated (Cas) proteins [5] and automated combinatorial gene 
assembly [6]. However, as living catalysts, microbial cells may change 
characteristics as they adapt to stressful conditions that arise during 
industrial production processes, which may lead to detrimental effects 
on the performance of these metabolically engineered cell factories. 

Metabolic engineering is often necessary for producing novel 
chemicals or increasing native product titers. However, introducing new 
pathways and rewiring native metabolism can accumulate in
termediates and toxic by-products that create cellular stress (Fig. 1). The 
presence and accumulation of these toxic compounds can adversely 

affect cell growth rates, which results in lower production capacity and 
ultimately diminish cost competitiveness. Although optimising the 
metabolic network may prevent the accumulation of such toxins, e.g., by 
introducing a dynamic enzyme regulation [7], the end-product itself can 
also reach toxic concentrations. In many cases, it is critical and neces
sary to reach high titers, which generally favours downstream processes. 
In some cases, product separation is possible (e.g. fatty alcohols via a 
dodecane overlay [8]) but often are complicated and expensive to 
implement in an industrial scale setup. Instead, the robustness of the 
host organisms can be engineered to tolerate higher product concen
trations and allow for higher production. 

One major cost factor in industrial-scale production is the carbon 
source, making up to 60% of the total process cost [9]. Therefore, 
lignocellulosic residues from agriculture and forestry have been 
explored as cheap and environmentally friendly carbon sources. How
ever, these raw materials need to be pre-treated to make their sugars 
accessible for microorganisms, often releasing additional inhibitors 
deriving from lignin, cellulose and hemicellulose [10]. These inhibitors 
are usually phenolic compounds, weak acids, or furans [10], which can 
damage the plasma and cell membrane, inhibit key metabolic pathways 
(e.g. glycolysis), form reactive oxygen species (ROS) or cause ATP 
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depletion and anion accumulation [11,12]. Microorganisms need to be 
robust or engineered to tolerate these inhibitors (Fig. 1) and thus 
maintain high production capacity. 

During the introduction and optimisation of new synthetic pathways 
and the transition from lab-scale to large-scale fermentations, different 
stresses arise that can challenge the tolerance of the host organism and 
limit its productivity (Fig. 1). Additionally, the large-scale production 
process is often very different from the conditions used for small-scale 
proof-of-concept cultivations, leading to additional stress for the cells, 
e.g. pH, temperature or osmotic pressure [13]. 

Developing industrial microorganisms with enhanced robustness 
properties has been key to achieving economically sustainable 

fermentation processes for producing chemicals, materials, and fuels. 
Thus, several reviews have highlighted this topic [14–17], but new ap
proaches are constantly being developed. Therefore, this review focuses 
on the most recent examples of established and emerging methods to 
improve stress tolerance and robustness of microorganisms, drawing 
examples mainly from Escherichia coli and yeast Saccharomyces cer
evisiae. We first focus on examples of evolutionary, systems biology, and 
computations approaches (Fig. 2), which does not require prior knowl
edge of understanding toxicity and tolerance mechanisms. Afterwards, 
we discuss examples of semi-rational and rational approaches, such as 
membrane engineering and transcription factor engineering (Fig. 2), 
which are based on a partial understanding of toxicity and tolerance 
mechanisms. An overview of the discussed studies and their improve
ments is summarized in Table 1. 

2. Non-rational approaches 

Evolutionary, systems biology, and computation approaches can be 
used to identify genetic bases that can subsequently be used to improve 
strain robustness. Systems biology and computation approaches aim to 
deepen our understanding of the stress factor on cell physiology but 
require a rational engineering step to improve strain robustness. The 
evolutionary approach immediately results in an improved strain but 
requires further studies (e.g., genome sequencing) to identify targets for 
the engineering of other strains. All three methods are not limited to 
certain cell parts but can identify targets in any different part of the cell. 
In the following section, we discuss examples for each of the three 
approaches. 

2.1. Adaptive laboratory evolution 

Adaptive laboratory evolution (ALE) techniques consist of contin
uous cultivations over multiple generations under a constant or 
increasing selective pressure, such as temperature, pH, or toxin con
centration. Often, this process relies on the basal rate of mutation 
(spontaneous) present in microorganisms, which is sufficient to generate 
enough mutants for selective pressure to act upon. However, in some 
cases, i.e., requiring more complex traits, other strategies such as 
random mutations (e.g., via UV-light) and transposon mutagenesis may 

Fig. 1. Different causes of cellular stress (left), origin (middle) and examples 
(right). Lignocellulosic feedstock is composed of hemicellulose, cellulose, and 
lignin. During the pre-treatment, inhibitors such as furans, weak acids, or 
phenolic compounds can be formed. The natural and engineered metabolism 
can generate intermediates, by-products, or products that can generate cell 
stress, e.g. alcohols, organic acids, short chain fatty acids or aromatic com
pounds. Parameters such as pH, osmotic pressure, and temperature can further 
stress cells and often change during the up-scaling of a production process. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 2. Overview of approaches and methods to increase tolerance and robustness in microorganisms discussed in this review. Evolutionary, systems biology, and 
computational approaches are non-rational approaches that can identify genetic targets to increase stress tolerance in the host organism. While those approaches 
target the whole cell, more rational approaches can target specific parts of the cell, e.g., the membrane or transcription factors (TF). Circled terms represent 
exemplary technologies discussed in this review. ALE – Adapted Laboratory Evolution, GEM – Genome-scale Model, TF – transcription factor. (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Table 1 
List of studies with different approaches for increasing the tolerance and resistance of microorganisms and their improvements.   

Approach Host Engineering strategy Study details Improvement Ref. 

Non-rational 
approaches 

ALE Yarrowia 
lipolytica 

ALE under ferulic acid 
stress 

Upregulation of YALI0_E25201g, 
YALI0_F05984g, YALI0_B18854g, and 
YALI0_F16731g 

+3-fold ferulic acid tolerance (from 
0.5 g/L to 1.5 g/L) 

[22] 

Pseudomonas 
putida 

ALE under ferulic acid 
and p-coumaric acid 
stress 

Deletion of PP_3350 and ttgB contribute to 
aromatic acids tolerance 

− 37 h lag phase in 20 g/L p-coumaric 
acid 
+4-fold in growth rate in 30 g/L 
ferulic acid 

[23] 

S. cerevisiae ALE under 
dicarboxylic acids 
stress 

Overexpression of QDR3 (multidrug 
resistance transporter) confers resistance 
to dicarboxylic acid 

+ 3-fold growth rate under 12 g/L 
adipic acid 
+ 2-fold growth rate under 12 g/L 
pimelic acid 

[24] 

S. cerevisiae ALE under aromatic 
acid stress 

Increased expression of the transporter 
gene ESBP6 helps to tolerate aromatic 
acids 

+ ~12-fold change under 0.8 g/L p- 
coumaric acid enabled growth under 
0.4 g/L ferulic acid 

[25] 

E. coli ALE under octanoic 
acid stress 

Mutation of RNA polymerase subunit 
(RpoCH419P) 

+ 5-fold in carboxylic acid 
production 
+3.8-fold in growth rate under 10 
mM octanoic acid 

[27] 

Omics S. cerevisiae GWA Identified deletion of flo1 to convey 
hydrolysate toxin tolerance 

+8-fold growth in synthetic 
hydrolysate 

[30] 

S. cerevisiae transcriptomics Overexpressing ADE1, ADE13, ADE17 +39% biomass under acetic acid 
stress 

[31] 

Clostridium 
acetobutylicum 

metabolomics Feeding of citric acid and ethylene glycol +14.6% butanol production 
+21% growth 

[32] 

GEM S. cerevisiae enzyme and 
temperature 
constrained GEM 

Expression of thermostable squalene 
epoxidase (ERG1) following model 
prediction 

~ +60% growth at 42 ◦C [38] 

E. coli combination of GEM 
with protein 
structures 

Supplementing metabolites downstream 
of the identified growth limiting enzymes 

+13% log-phase growth rate at 42 ◦C [39] 

(Semi-) 
rational 
approaches 

Membrane 
engineering 

S. cerevisiae decrease saturation Overexpression of OLE1 enhanced stress 
tolerance 

improved tolerance in spot tests for 
various stresses 

[45] 

E. coli decrease membrane 
fluidity 

Integration of trans unsaturated fatty acids 
by expression of cis-trans-isomerase from 
Pseudomonas aeruginosa 

+29% octanoic acid production, and 
+15% growth rate and +25% 
biomass at 42 ◦C 

[47] 

S. cerevisiae increase fatty acid 
chain length 

Expression of ACC1* increased oleic acid 
content 

+84% growth rate in 0.7 mM 
octanoic acid 

[48] 

E. coli cyclopropane-fatty 
acid 

Expression of cyclopropane-fatty acid- 
acyl-phospholipid synthase (cfa) from 
Halomonas socia 

+50% polyhydroxyalkanoate 
production 
+58 growth in furfural 
+78% growth in 4- 
hydroxybenzaldehyde 
+230% growth in vanillin 
+119% growth in acetate 

[49] 

S. cerevisiae sphingolipid Overexpression of sphingolipid acyl chain 
elongase ELO2 

+21.9% cell growth in 1 M NaCl [53] 

Candida 
glycerinogenes 

altering membrane 
phospholipid 
composition 

Increased 2-phenylethanol tolerance by 
overexpression of SLC1 

+8.7% titer and +62.8% productivity 
of 2-phenylethanol production 

[55] 

S. cerevisiae transporter proteins Expression of dicarboxylic acid transporter 
from Schizosaccharomyces pombe (SpMae1 
(p)) and Aspergillus carbonarius (AcDct(p)) 

+ 3-fold succinic acid titer SpMae1 
(p) 
+ 5-fold fumaric acid titer SpMae1(p) 
+ 8-fold/12-fold malic acid titer 
SpMae1(p)/(AcDct(p)) 

[57] 

E. coli carotenoid treatment Treatment of E. coli cells with polar 
carotenoids lutein and zeaxanthin 

− 30% butanol-induced membrane 
damage 

[58] 

Transcription 
factor 
engineering 

S. cerevisiae gTME Mutagenesis of the transcription factor 
Spt15p 

+15% ethanol production 
+ 13-fold in growth yield 

[60] 

S. cerevisiae specific TF 
engineering 

Engineering of the transcription factor 
HAA1 

reduced lag phase from 59 h to 37 h 
in 160 mM acetic acid 

[61] 

S. cerevisiae specific TF 
engineering 

Altering one subunit of RNA polymerase II + 40% ethanol production [62] 

S. cerevisiae MINR Identified a mutant with upregulated 
transcription factors (HSP12, HSP30, SSA4 
(HSP70), HSP82, and HSP104) 

+ 2-fold ethanol production [64] 

S. cerevisiae MINR Identified WAR1 and K110 N variants. + ~60% growth in isopropanol (50 
g/L) 
+ ~ 70% growth in isobutanol (14 g/ 
L) 

[66] 

ALE: Adapted Laboratory Evolution, GEM: Genome-scale Model, gTME: global Transcription Machinery Engineering, MINR: MultIplex Navigation of global Regulatory 
networks. 
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be combined to accelerate the mutation process. As one powerful 
approach, the topic of ALE has been the subject of multiple reviews 
[18–21]. More recently, ALE has been applied in several microbes to 
overcome a wide range of toxicities. In Yarrowia lipolytica and Pseudo
monas putida, ALE was used to overcome aromatic acid toxicity [22,23] 
and in S. cerevisiae to overcome dicarboxylic acid and aromatic acid 
toxicity at low pH [24,25]. In E. coli an ALE was performed to evolve 
strains to tolerate octanoic acid, hexanoic acid, decanoic acid, n-butanol 
and isobutanol [26,27]. 

Despite the broad applications of this technique, some aspects must 
be considered. Although ALE is a straightforward process, discovering 
underlying mechanisms can sometimes be challenging. Typically, 
genomic sequencing of the evolved strains is required. Sometimes 
further analysis, such as multi-omics analysis, is required to characterise 
the genetic changes that lead to the evolved phenotype. If the ALE is 
performed in high throughput, these analyses can require handling big 
data knowledge and, consequently, increase the time and cost of the 
experiment. Additionally, an ALE is not always the best method for 
every application. For instance, if the tolerance of the strain for a 
product should be increased to allow higher product titers, an ALE can 
result in a strain degrading the product instead of tolerating it. More
over, the fitness of host organisms will change to tolerate the applied 
selective pressure in ALE better. However, it is common for other traits 
to be comprised or even lost during this process. This so-called trade-off 
is difficult to predict and, in some cases, even unavoidable [28]. 
Therefore, ALE should be carefully designed to avoid generating strains 
with one improved trait at the cost of losing other important industrial 
traits, e.g. production titer, rate or yield. 

2.2. Omics-based approach 

Omics or multi-Omics analysis has been an integral part of strain 
development for detailed characterisation of cell physiology by 
measuring different cell components, including mRNA, protein and 
metabolites [29]. Omics based analysis has also been integrated with 
other methods to characterise and identify molecular targets responsible 
for tolerance phenotypes. However, this approach can be implemented 
alone to unveil underlying stress responses by comparing samples under 
stress and control conditions. 

With a single omics analysis, it is already possible to find targets for 
tolerance improvement. One example is a genome-wide association 
(GWA) that aims to map thousands of single nucleotide polymorphisms 
(SNPs) of different samples to associate them with phenotypical traits. 
The analysis of 165 S. cerevisiae strains isolated from diverse 
geographical niches identified genetic variants underlying toxin toler
ance. Results from GWA have further suggested that the strains genetic 
background greatly influences the mechanisms of hydrolysate tolerance 
[30]. A transcriptomic comparison was made to study how S. cerevisiae 
copes with acetic acid, revealing genes involved in purine biosynthesis 
showed significantly increased expression by zinc sulfate supplementa
tion under acetate stress, and overexpression of these genes enhanced 
cell growth under various stress conditions [31]. In addition, omics can 
also be applied when looking into the metabolites present in a biological 
sample. In another example, in Clostridium acetobutylicum, a natural 
butanol production strain, intracellular metabolic profiling was per
formed to identify the critical intracellular metabolites as regulation 
nodes that influence strain growth and butanol production. With 
computational models, this method revealed a feeding strategy with 
yeast extract, citric acid, and ethylene glycol that could significantly 
increase cell growth and butanol production [32]. 

One can also imagine that multi-Omics approaches can be applied, 
especially when it is difficult to interpret the correlation between 
toxicity and cellular changes using only a single type of omics data. 
Although multi-omics has not been reported to map stress responses 
directly, this approach has been frequently used to understand tolerance 
mechanisms. An example is a genomic-proteomic integrated data 

analysis of ethanol adapted S. cerevisiae strains in which a key difference 
in the energy-producing metabolism was found. Ethanol adapted strains 
mainly used glycolysis and ethanol fermentation for energy production, 
whereas the non-adapted strains mainly used respiration when ethanol 
was present in the media [33]. 

Despite the advances in omics technologies and their broad appli
cation, the biological interpretation of data remains a challenge. When 
performing omics to determine tolerance responses in microbes, it is 
likely to produce an extensive array of targets. In some cases, not a single 
target manipulation but a combination of several targets could confer 
the improved phenotype, which makes it difficult to validate by reverse 
engineering. Another limitation of the omics-based approach is the often 
missing linear correlation between gene expression, the level of protein 
abundance, and the in vivo catalytic activity due to various layers of 
cellular regulation, such as post-transcriptional mechanisms. Conse
quently, results can have different trends among the different layers of 
data. To prevent this, one can integrate multi-omics data to combine 
multiple layers of information [34,35]. 

2.3. Genome-scale models 

Genome-scale models (GEMs) are a mathematical representation of a 
cell or an organism [36]. GEMs allow simulations of a large number of 
combinatorial gene changes to be tested in silico and offer predictions of 
bottlenecks in metabolic pathways and thus have been used to improve 
the production of various products [37]. Recently they have also been 
used to identify bottlenecks to improve microbial robustness. By con
structing an enzyme and temperature constrained GEM (etcGEM), it was 
possible to identify enzymes in S. cerevisiae that are growth rate-limiting 
at high temperatures. As validation, the predicted target gene ERG1 
(squalene epoxidase) was replaced by the homologue of the thermoto
lerant yeast Kluyveromyces marxianus, which resulted in significantly 
better growth at 40 ◦C [38]. In E. coli, combining a GEM with protein 
structures allowed predicting growth-limiting target genes at high 
temperatures. Instead of exchanging the proteins for thermostable ho
mologues for their validation, Chang et al. chose to do a supplementa
tion experiment. Supplementing metabolites downstream of the 
identified growth limiting enzymes increased the log-phase growth rate 
by 13% at 42 ◦C [39]. A further improvement of this model, FoldME, 
additionally includes the protein-folding network to predict the cellular 
response to unfolding stress [40]. Furthermore, OxidizeME (https://gith 
ub.com/SBRG/oxidizeme) [41] includes the impact of ROS and Acid
ifyME (https://github.com/bdu91/acidify-ME) [42], the mechanisms of 
acid stress mitigation to predict the acid stress tolerance of E. coli. As 
illustrated in these examples, expansion of GEMs allows for the simu
lation of different gene expression levels across different environmental 
changes. Systematic and mechanistic understanding of stress response is 
expected to result in the identification of further targets. 

Despite their great success in identifying bottlenecks in metabolic 
pathways, the usage of GEMs to increase the robustness of microor
ganisms is limited by our understanding of toxicity and tolerance 
mechanisms. Computational models can only reflect and simulate 
known reactions and interactions. Therefore, fundamental science to 
improve our understanding of molecular stress reactions will remain 
vital for improving computational models. 

3. (Semi-) rational approaches 

As an alternative to above mentioned non rational approaches, 
rational and semi-rational engineering can be a practical approach to 
improve tolerance and robustness of industrial microorganisms. These 
approaches are especially useful in circumstances where the mecha
nisms behind the toxicity are at least partially known. In the following 
section, we will first discuss membrane engineering and transcription 
factor engineering to illustrate the usefulness of this strategy. 
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3.1. Membrane engineering 

The microbial membrane defines the insides of cells and separates 
them from the extracellular environment. As most industrial organisms 
are mesotrophiles, the membrane consists of a phospholipid bilayer with 
integrated proteins of different functions such as signalling, transport, 
and energy metabolism. To fulfil these functions, the membrane has to 
keep three key parameters at balance: the integrity, which describes the 
quality of the intact cell membrane; the fluidity, which is defined by the 
viscosity of the lipid bilayer; and the selective permeability, which 
controls the uptake of molecules for growth and removal of waste 
products [43,44]. Various factors from toxic environmental and stress 
conditions can disrupt these key parameters, which leads to slower 
growth or cell damage. Therefore, membrane engineering is a feasible 
and efficient way to increase stress tolerance by maintaining membrane 
hemostasis. 

Most common strategies for membrane engineering have been 
focused on modulation of lipid composition, which is implicated in 
improving membrane integrity and regulating fluidity (Fig. 3A). One 
way of altering the lipid composition is a change in the degree of lipid 
saturation. While saturated fatty acids are more packed and result in a 
stiff membrane, cis-unsaturated fatty acids occupy more space because 
of the nick at the double bond of their carbon chain, which increases the 
permeability and fluidity of the membrane. For instance, In S. cerevisiae, 
the overexpression of the Δ9 desaturase Ole1 increased the ratio of 
unsaturated to saturated fatty acids and increased the stress tolerance to 
various stresses (e.g. weak acids and ethanol) [45]. While in another 
example, a Geobacillus acyl-ACP thioesterase was employed to reduce 
the unsaturated fatty acid content in the membrane and improved the 
viability of a free fatty acid (FFA)-producing E. coli strain [46]. Unlike 
cis-unsaturated fatty acids, trans-unsaturated fatty acids are more linear 
in form. Thus, it can increase lipid density and consequently decrease 
membrane fluidity. As one example, a cis-trans isomerase (Cti) from 
Pseudomonas aeruginosa was expressed in E. coli, resulting in enhanced 
exogenous octanoic acid tolerance and production [47]. The study 

demonstrates that the increase in straight-chain unsaturated fatty acids 
increased membrane rigidity and improved stress tolerance. 

Another strategy is to change the length of lipid in the membrane. 
The longer the carbon chain of the lipid is, the more van der Waals in
teractions form between the lipids, which increases the stability of the 
membrane. For example, in S. cerevisiae, overexpression of an activity 
enhanced acetyl-CoA carboxylase mutant (ACC1*) increased the oleic 
acid content and the average lipid chain length. These membrane 
changes led to increased membrane integrity and cell viability at 
increasing concentrations of octanoic acid [48]. 

Additionally, the membrane lipid composition can be further modi
fied by inserting cyclopropanted or branched fatty acids (Fig. 3B). For 
example, introducing a cyclopropane-fatty acid-acyl phospholipid syn
thase from Halomonas socia in E. coli resulted in increased cyclopropane 
fatty acids, leading to increased salt tolerance [49]. Furthermore, the 
lipid composition can be modulated by changing the polar head groups 
of phospholipids, altering the sterol or sphingolipid content [44,50–52]. 
For example, the salt tolerance of S. cerevisiae can be increased by 
increasing the content of complex sphingolipids in the membrane [53] 
and by engineering the phospholipid composition [54]. In the yeast 
Candida glycerinogenes, the overexpression of SLC1 (1-acyl-sn-glycer
ol-3-phosphate acyltransferase), which catalyses the first step of the 
phospholipid synthesis, lead to increased tolerance and production of 
2-phenylethanol [55]. 

Besides membrane lipid composition, membrane proteins include 
integral membrane proteins and transport proteins, which are also 
important to maintain membrane hemostasis (Fig. 3C). Thereby, 
reconstructing the native membrane proteins and expressing heterolo
gous transport proteins have been widely used to improve stress toler
ance and microbial robustness [14,43]. Especially efflux transporter 
proteins can reduce the intracellular concentration of harmful sub
stances and thereby prevent cell damage. In the case of toxic products, 
alleviating toxicity via efflux proteins would decrease the intracellular 
accumulation of final products and act as a driving force for further 
increase in yield and productivity. However, efflux transporters either 

Fig. 3. Overview of different membrane engineering strategies to increase stress tolerance and resistance. A) Engineering of the fatty acid composition of the 
membrane by altering the degree of saturation, the average chain length, or integrating cyclopropane-fatty acids. B) Engineering lipid composition by altering the 
sphingolipid or sterol content or changing the phospholipid headgroup (PG Phosphatidylglycerol, PI Phosphatidylinositol, PS Phosphatidylserine, PE Phosphati
dylethanolamine, PC Phosphatidylcholine). C) Integrating transporter proteins into the membrane, which can either be passive channel proteins or active energy- 
consuming efflux pumps. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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use ATP or an ion gradient as an energy source to transport specific 
molecules or molecule classes across the membrane out of the cell (as 
extensively reviewed in Ref. [56]). In a recent study, transporter SpMae1 
from Schizosaccharomyces pombe, belonging to the voltage-dependent 
slow-anion channel transporter (SLAC1), have been shown to increase 
titers of succinic, malic and fumaric acids by 3-, 8- and 5-fold in 
S. cerevisiae without affecting growth. Because these voltage-dependent 
SLAC1 transporters do not use proton, sodium or ATP motive force to 
export organic acids, they have great promise for industrial production 
of these chemicals with a higher overall product yield [57]. 

Additionally, the supplementation of molecules that can be inte
grated into the membrane and increase tolerance poses a promising 
alternative to genetic engineering approaches. A recent study in E. coli 
has shown that carotenoids (lutein and zeaxanthin) can integrate into 
the membrane to increase butanol tolerance. The authors suggest using 
carotene-rich waste (e.g. tomato pomace) as a cheap carbon and caro
tene source, making this approach even more interesting for the sus
tainable production of chemicals [58]. 

Membrane engineering has proven to be a valuable tool for 
increasing microbial stress tolerance. However, membrane homeostasis 
is a highly complex and regulated process [59], and further studies are 
required to increase our understanding of this process. Furthermore, 
there is a need for improved genetic regulatory networks to allow mi
crobial cell factories to adapt their membrane composition to a wide 
range of changing environmental stress factors. 

3.2. Transcription factor engineering 

Cells have evolved and optimised their cellular functions through 
coordinated regulation of a multitude of enzymes and pathways via 
different transcriptional factors in response to different environmental 
conditions. Therefore, engineering transcription factors can be a feasible 
strategy to increase the tolerance and robustness of industrial microor
ganisms. Transcription factor engineering is particularly useful for 
building complex traits that a monogenic modification approach cannot 
achieve. With newly developed technologies for the efficient and quick 
construction of mutation libraries, transcription factor engineering can 
be easily applied to many stresses and microorganisms by setting 
different selective pressures. This so-called global transcription ma
chinery engineering (gTME) was firstly developed by Alper et al. to build 
S. cerevisiae strains resistant to high concentrations of ethanol and 
glucose [60]. Both are complex traits that are essential for the ethanol 
industry. Two target proteins Spt15 and Taf25, involved in 
TATA-binding events, were selected, as TATA-binding regulates 
SAGA-dependent and TATA-containing genes, comprising more than 
15% of all genes in yeast and controlling many different metabolic 
processes. Two mutant libraries were constructed through an 
error-prone polymerase chain reaction (PCR) and screened with 
increased ethanol and glucose concentrations. The best outcome, 
spt15-300, showed significant growth improvement in the presence of 
6% (v/v) ethanol and 100 g/L of glucose. Thereafter, a few key regu
lators have been successfully engineered to reprogram global tran
scription profile and to select for tolerance improved phenotypes, such 
as sigma factor δ70, cyclic AMP receptor protein (CRP) in E. coli, and 
zinc finger-containing artificial transcription factor in yeast [14]. 

Besides global transcription factors, it is also possible to target more 
specific transcription factors with specific applications. Recently, the 
regulon-specific transcription factor Haa1 was engineered to improve 
acetic acid tolerance in S. cerevisiae due to its involvement in the acti
vation of approximately 80% of the acetic acid-responsive genes [61]. In 
addition to focusing directly on transcription factors, the RNA poly
merase II has also been a target for altering the global transcription 
profile and improving tolerance phenotypes. One subunit of RNA poly
merase II, Rpb7, was mutated by error-prone PCR and screened for 
improved ethanol tolerance, leading to a 40% improvement in ethanol 
production [62]. 

CRISPR/Cas methods have significantly enhanced the efficiency of 
genome engineering at various scales. While it can be used to include 
single genetic changes at a time, it can also be combined with high 
throughput methods. One of these methods is the CRISPR EnAbled 
Trackable genome Engineering (CREATE), which consists of a plasmid 
library containing three variable but covalently coupled components: a 
gRNA expression region, a barcode, and a replacement cassette [63]. 
This allows mutating multiple loci in parallel and tracking the desired 
phenotype mutations. CREATE can be used to target multiple tran
scription factors simultaneously with an approach named MultIplex 
Navigation of global Regulatory networks (MINR) [64]. 

In the first published MINR study, a library was designed and con
structed with 43000 mutations by targeting 25 regulatory genes. With 
growth competition in increased ethanol and/or glucose concentrations, 
several regulatory genes, such as SMP1, which is involved in regulating 
Hog1-dependent osmo-responsive genes, were newly identified to 
confer improved ethanol and/or glucose tolerance and also improved 
ethanol production in S. cerevisiae [64]. A more extensive library con
taining over 83000 mutations was constructed in a follow-up study by 
performing saturation mutagenesis [65] of the active sites of 47 tran
scriptional regulators that interact with more than half of the yeast 
genome. A variant of WAR1, a transcription factor in response to weak 
acid, was identified to confer tolerance to isopropanol and isobutanol 
[66]. 

Transcription factor engineering, such as gTME, focuses on one 
transcription factor target at a time. Although this affects the regulation 
of numerous genes, they represent only a small fraction of the whole 
genome. Additionally, it is challenging to study how different regulators 
interact in a cell. Especially for eukaryotic cells, in which the tran
scription network is more complex than in prokaryotic cells. Thanks to 
the CRISPR technique, it is possible to study global regulatory network 
interactions with the MINR approach. Furthermore, with tractable 
design, the evolved phenotypes can be traced to the corresponding 
mutation. Nevertheless, MINR is still challenged by SNPs on oligo cas
settes which can affect the spacer region of the MINR cassettes and 
decrease gRNA activity. 

4. Conclusions and perspectives 

In this review, we discussed non-rational and (semi-)rational ap
proaches to improve tolerance when designing microbial cell factories. 
From the reviewed methods, the non-rational approaches do not require 
knowledge of any underlying genetic mechanisms and instead allow for 
identifying genetic targets for a particular phenotype. Depending on the 
applications and technical availabilities, ALE or omics-based analysis 
can be applied to improve stress phenotypes. This is becoming more 
achievable with recent technology advancements that enable cost- 
effective sequencing and functional genomics. Furthermore, these 
technologies can complement each other and be combined. For example, 
an evolutionary approach and an omics-based approach can be used first 
to evolve a phenotype and then map the genome of the evolved strain to 
identify its genetic basis. Also, computational approaches can be used to 
predict targets and then validate with omics-based profiling approaches. 
Still, these targets need to be experimentally verified by subsequent 
genetic manipulation to endow beneficial phenotypes on other indus
trial production strains. 

With prior knowledge of toxicity and tolerance mechanisms avail
able, the (semi-)rational approaches often target specific cell parts. For 
instance, due to the gatekeeper function of microbial membranes, en
gineering plasma membranes has been a feasible strategy for improving 
stress tolerance. Alternatively, cellular regulation can be manipulated 
by changing a few transcription factors to fine-tune a multitude of en
zymes and proteins to cope with different environmental changes or 
stresses. Although the regulation network is complex, and we still do not 
entirely understand it, even for model microorganisms, the situation is 
going to change. For example, the MINR method has allowed the 
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manipulation of many transcription factors to study the correlation with 
different stresses. 

Moreover, with the rapid development of Artificial Intelligence (AI) 
and automation, it is becoming more affordable to screen big mutant 
libraries with robots. Similarly, sequencing platforms are also cheaper 
and more competitive, and in combination with automated cultivation 
systems, it becomes more feasible to perform multi-omics analysis. It is 
expected that software and big data analytics such as AI will be the key 
technological drivers of the 2020s. 

Nevertheless, choosing a method to engineer microbial cell factories 
is determined by multiple factors: the available knowledge, genetic tool 
kits for the studied organism, and the desired outcome. If the available 
knowledge is scarce, the application of (semi-) rational approaches is 
limited, while non-rational approaches can still be used. Additionally, 
even if knowledge is available, genetic tool kits and protocols must exist 
for the chosen organism to implement some of the discussed methods. 
For example, the introduction of transporter proteins requires basic 
toolkits to genetically engineer organisms that might not be available for 
unconventional hosts. Finally, the chosen approach depends on the 
desired outcome. For instance, if the aim is to generate an improved 
host, evolutionary approaches are suitable. If the aim is to understand 
further the biological process underlying the improvement, the combi
nation with other methods, e.g. omics approaches, is needed. However, 
it is notable that all discussed methods have shown to be very efficient in 
improving stress tolerance in microbial cell factories (Table 1). 

Microbial cell factories have been developed primarily on model 
microorganisms such as E. coli and S. cerevisiae. However, non-model 
organisms may be more suitable hosts for target products, as they can 
cope better with toxic products or intermediates than traditional model 
organisms [67]. In recent years, the knowledge of genetic engineering 
tools has increased, and it is becoming easier to work with 
non-conventional host organisms, which may become an important di
rection for future cell factory development. 
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