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SUMMARY

By combining 6 druggable genome resources, we identify 6,083 genes as potential druggable 

genes (PDGs). We characterize their expression, recurrent genomic alterations, cancer 

dependencies, and therapeutic potentials by integrating genome, functionome, and druggome 

profiles across cancers. 81.5% of PDGs are reliably expressed in major adult cancers, 46.9% 

show selective expression patterns, and 39.1% exhibit at least one recurrent genomic alteration. 

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
*Correspondence: xiaowenh@pennmedicine.upenn.edu (X.H.), linzhang@upenn.edu (L.Z.).
AUTHOR CONTRIBUTIONS
J.J., J.Y., Z.H., X.H., and L.Z. conceived and designed the research. J.J., J.Y., Z.H., and X.H. performed the computational/
bioinformatics analysis and statistical analysis. J.J., Y.Z., T.Z., and M.X. performed the biological experiments. M.L., Y.F., J.L.T., 
K.T.M., O.T., R.H.V., and H.M.C. performed data collection and discussion on clinical oncology and drug development. J.Y. 
developed online data portal. J.J., J.Y., Z.H., X.H., and L.Z. wrote the paper.

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.1016/j.celrep.2022.110400.

DECLARATION OF INTERESTS
L.Z. and X.H. report having received research funding from AstraZeneca, Bristol-Myers Squibb/Celgene, and Prelude Therapeutics. 
O.T. and H.M.C. are employees of AstraZeneca. R.H.V. is an inventor on a licensed patent relating to cancer cellular immunotherapy 
and receives royalties from Children’s Hospital Boston for a licensed research-only monoclonal antibody.

HHS Public Access
Author manuscript
Cell Rep. Author manuscript; available in PMC 2022 March 14.

Published in final edited form as:
Cell Rep. 2022 February 22; 38(8): 110400. doi:10.1016/j.celrep.2022.110400.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.celrep.2022.110400


We annotate a total of 784 PDGs as dependent genes for cancer cell growth. We further quantify 

16 cancer-related features and estimate a PDG cancer drug target score (PCDT score). PDGs 

with higher PCDT scores are significantly enriched for genes encoding kinases and histone 

modification enzymes. Importantly, we find that a considerable portion of high PCDT score 

PDGs are understudied genes, providing unexplored opportunities for drug development in 

oncology. By integrating the druggable genome and the cancer genome, our study thus generates a 

comprehensive blueprint of potential druggable genes across cancers.

Graphical Abstract

In brief

Jiang et al. generate a comprehensive blueprint of potential druggable genes (PDGs) across 

cancers by a systematic integration of the druggable genome and the cancer genome. This resource 

is publicly available to the cancer research community in The Cancer Druggable Gene Atlas 

(TCDA) through the Functional Cancer Genome data portal.

INTRODUCTION

The “druggable genome,” a term coined by Hopkins and Groom (2002), defines a group of 

genes in our genome-encoding proteins that may be modulated by drug-like molecules. A 

large proportion of successful small-molecule drugs achieve their activity by competing for a 

binding site on the target protein with an endogenous biological molecule in cells. Sequence/
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structure similarities in the conserved domains of a family of proteins are usually indicative 

of a general conservation of binding site architecture. This would suggest that, if one 

member of a protein family can be modulated by a small molecule, the other members may 

also be modulated by compounds with appropriate pharmacological properties (Hopkins 

and Groom, 2002). Therefore, by analyzing the sequences of drug-binding domains of 

known drug target proteins, researchers are able to predict potential druggable protein 

families containing the same domains (Hopkins and Groom, 2002). Using this rationale, 

the druggable genome has been defined by multiple approaches on a whole-genome-wide 

scale (Brown et al., 2018; Campbell et al., 2012; Finan et al., 2017; Hopkins and Groom, 

2002; Kumar et al., 2013; Overington et al., 2006; Rask-Andersen et al., 2011, 2014; Russ 

and Lampel, 2005; Southan et al., 2015). Excitingly, many efforts have been launched 

recently to improve scientific understanding of these putative druggable genes, such as 

the Illuminating the Druggable Genome (IDG) project by NIH. However, current drug 

development in oncology is still narrowly focused on a relatively small proportion of genes, 

due to challenges in target identification and prioritization. Strategies to identify potential 

targets of small-molecule compounds for cancer therapy are mostly driven by possibilities 

from a medical chemistry viewpoint rather than by cancer genomic or functional profiles. 

During the last decade, cancer genomes have been comprehensively characterized by high-

throughput profiling technologies in large sample cohorts. Characterization of recurrent 

genomic alterations has provided a power tool for identification and prioritization of drug 

targets in oncology (Bailey et al., 2018; Beroukhim et al., 2010; Garraway and Lander, 2013; 

Kandoth et al., 2013; Lawrence et al., 2013; Sanchez-Vega et al., 2018; Vogelstein et al., 

2013; Yuan et al., 2014; Zack et al., 2013). Meanwhile, recent advances in genome-wide 

loss-of-function genetic screenings in large-scale cancer cell lines have also provided rich 

functional information for mapping cancer dependency and prioritizing potential therapeutic 

targets (Behan et al., 2019; Tsherniak et al., 2017). Therefore, we propose that integrated 

analysis of gene expression, recurrent genomic alterations, and cancer dependencies for 

putative druggable genes across cancers can systematically identify and prioritize potential 

therapeutic targets for treatment of cancer.

RESULTS

Definition of potentially druggable genes in the human genome

To define potentially druggable genes (PDGs) in the human genome, we integrated the 

PDG candidates generated by six independent studies in which the druggable genes were 

systematically annotated by different strategies at a whole-genome level (Brown et al., 2018; 

Finan et al., 2017; Hopkins and Groom, 2002; Kumar et al., 2013; Russ and Lampel, 2005; 

Southan et al., 2015). We initially identified 11,280 genes that were predicted to be PDGs 

by at least one of the PDG sources (Figure 1A). Among them, 714 genes were annotated 

by all 6 studies, while 5,445 genes were only reported by one source (Figure 1B). The most 

recent database on the druggable genome, Open Targets (Brown et al., 2018), contributed 

the largest numbers of those unique PDGs (n = 4,923) (Figure 1C), suggesting that the 

number of predicted PDGs was remarkably increased during the last decade. In this study, 

we defined genes annotated by at least two sources as PDGs. Notably, if a gene is defined as 

a PDG, this does not necessarily mean that its protein product has been successfully targeted 
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in the clinic. For example, plenty of pharmacological approaches have been developed to 

target mutant p53 or restore wild-type p53 (Vassilev et al., 2004); thus, TP53 was defined 

as a PDG. However, most of these approaches have failed in early clinical development. 

Second, a small portion of genes that are not able to be directly targeted may also be 

defined as PDGs, due to pharmacological strategies that target their associated protein 

complexes. A typical example is represented by genes in the cyclin family, such as CCND1 
and CCNE1. To be consistent with the current definition for PDGs, we included the above 

two classes of genes as PDGs if they were annotated by more than one source. Finally, 

given rapid advances in development of epigenetic drugs (i.e., small-molecule compounds 

directly modulate histone modification enzymes [HMEs]) in oncology, HMEs were included 

in the PDG list. Taken together, a total of 6,083 PDGs were analyzed in this study (Table 

S1). Using the information from the Target Center Resource Database (Lin et al., 2017; 

Nguyen et al., 2017), we analyzed the gene family categories and the target development 

levels (TDLs) of the above PDGs. Consistent with previous reports, a large percentage 

of PDGs fell into four well-known PDG families: kinases (8.9%), G-protein-coupled 

receptors (GPCRs) (12.9%), ion channels (ICs) (4.5%), and nuclear hormone receptors 

(NRs) (0.8%). PDGs belonging to these four well-known PDG families were commonly 

shared by all six sources (Figures 1C and 1D). Consistent with their percentage in the 

human genome (20.7%), enzymes make up the largest gene function category (24.8% of 

PDGs), representing 1,507 genes encoding enzymes. In contrast, although there are 1,396 

transcription factors (TFs) in our genome, only 40 transcription factors were defined as 

PDGs (druggable TFs, 0.7% of PDGs), indicating that targeting TFs remains challenging 

in drug development. Notably, although 9.2% and 20.6% of the PDGs were targeted by 

approved drugs (TDL: Tclin) and small molecules that satisfy the activity thresholds (TDL: 

Tchem), respectively, the majority of the PDGs (53.4%) still lack chemical compounds to 

manipulate their functions (Figures 1D and 1E). Importantly, 15.9% of them were defined 

as TDL Tdark (i.e., their biological functions were still unknown). Consistently, when 

analyzing the related publications for each PDG, we found that a majority of PDGs (69.2%) 

were understudied genes (PubTator score < 150) based on their PubTator scores (Wei et al., 

2019) (Figure 1E). For example, among the 4 major druggable families, 339 genes were 

defined as understudied genes by IDG.

Expression of the PDGs across cancers

The RNA sequencing profiles were retrieved from the GTEx and TCGA (Figure S1; Tables 

S2 and S3). We found that 81.5% of PDGs (n = 4,957) were expressed in cancers, while 

18.5% (n = 1,126) were defined as undetectable genes (Figure 2A). Among the expressed 

PDGs, 34.6% (n = 2,107) exhibited a ubiquitous expression pattern across cancers. Notably, 

46.9% (n = 2,850) of PDGs were only detectable in a portion of tumor specimens across 

cancers (defined as selectively expressed). As expected, genes targeted by FDA-approved 

cancer therapy drugs were significantly enriched in this selective expression group (p = 

0.018, OR = 1.6). We were able to further classify the selectively expressed PDGs into 

four categories based on their expressional distribution (Figures 2A and 2B; Table S4). 

Across cancers, a total of 2,099 PDGs showed a lineage-enriched expression pattern, and a 

median of 86 lineage-enriched PDGs were identified in each tumor type (Figure 2C). Most 

druggable gene families were widely expressed in cancers, although the GPCRs and ICs 
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had significantly larger portions (67.6% and 23.1%, respectively) defined as unexpressed 

(Figure 2D). The HMEs and druggable TFs showed higher percentages of ubiquitous 

expression, while the expression patterns of the ICs, NHRs, and transporters were more 

selective. To unbiasedly and systematically identify the PDGs that are highly expressed 

in cancers (caPDGs), we generated an expressional score for each PDG by comparing its 

RNA expression level in a certain tumor type (TCGA cohort) to all normal tissue specimens 

(GTEx cohort) using a computational strategy recently developed by the Functional Cancer 

Genome (FCG) project (Hu et al., 2021) (Figure 2E). We identified a total of 697 caPDGs, 

which were relatively highly expressed in at least one cancer type (a median of 28 caPDGs 

for each cancer type) (Figures 2C and 2F). Based on their expressional scores, we further 

classified the caPDGs into three tiers (i.e., high, moderate, and low confidence). Notably, 

although the majority of the caPDGs were identified in a single cancer type, we found 

that 29.6% (206/697) of caPDGs were shared by more than one tumor type (Figure 

2F), suggesting that these caPDGs may be upregulated by common tumorigenic signals. 

Taken together, a large portion of PDGs were expressed in cancer and many of them 

showed selective expression patterns or relatively higher expression in cancer, thus providing 

potential therapeutic windows for cancer drug development.

Somatic copy number alterations of the PDGs across cancers

We identified cancer-associated PDGs driven by recurrent focal somatic copy number 

alterations (SCNAs) in each cancer type using a computational strategy recently developed 

by the FCG (Hu et al., 2021) (Figure 3A). After initially identifying 35,697 (8,705 

amplification and 26,992 deletion) recurrent focal SCNA events harboring PDGs across 

33 tumor types, a G score was estimated for each PDG located in recurrent SCNA loci. We 

removed the non-detectable PDGs, then analyzed the correlations between RNA expression 

and DNA copy number, and a positive and significant correlation was observed for 50.7% 

(4,539/8,949) of PDG SCNA events identified in the first 3 steps. Collectively, across the 

TCGA cohort, we identified 1,993 PDGs that met all 4 criteria in at least one tumor type. 

To estimate the SCNAs for PDGs at a pan-cancer level, we also calculated an overall G 

score (Table S5). Across 33 cancer types, 464 PDGs showed an overall G score above a 

cutoff (Figure 3B). The most well-known SCNA-driven targets with FDA-approved drugs 

were successfully identified and prioritized as the top rank (Figures 3C and S2). Importantly, 

after the PDGs were classified to eight categories based on their functions, we observed that 

kinases and HMEs were significantly enriched in the PDGs with recurrent SCNAs, while 

GPCRs and ICs were significantly enriched in the PDGs without recurrent SCNAs (Figures 

3D and S3). This indicates that a large portion of kinases and HMEs may play “driver” roles 

in tumorigenesis, thereby serving as promising anticancer drug targets. Notably, HMEs were 

the most significantly altered gene class among the PDGs in both copy number gains and 

losses, indicating that epigenetic dysregulation may serve as one of the major vulnerabilities 

in cancer for treatment. Finally, we analyzed the TDL for each PDG estimated by the IDG 

and found that more than half of the SCNA-driven PDGs (61.0%) were classified as Tbio 

or Tdark (Figure 3E), providing large and unexplored opportunities for development of 

anticancer drugs. Consistently, when we searched in the PubTator database for the numbers 

of research publications for each PDG, 64.2% (298/464) of the SCNA-driven PDGs were 

classified as understudied genes.
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Somatic mutations of the PDGs across cancers

We integrated five complementary approaches to identify recurrent somatic mutations using 

a computational strategy recently developed by the FCG (Hu et al., 2021) (Figure 4A). 

A mutation score (M score) was estimated for each mutated PDG in a given tumor type. 

Collectively, across 33 tumor types, we identified 361 PDGs that have recurrent mutations 

in at least one cancer type. To estimate the recurrent mutations of PDGs at a pan-cancer 

level, an overall M score was also estimated (Table S6). Across 33 cancer types, 117 PDGs 

showed an overall M score above a cutoff (Figures 4B and S4). As in the SCNA analysis, 

the most well-known mutation-driven targets with FDA-approved drugs were successfully 

identified and prioritized as the top rank (Figure 4C). Notably, we observed 40/117 (34.2%) 

recurrent mutant PDGs harboring hotspots defined by the Cancer Hotspots database (Chang 

et al., 2016). Among them, mutations in 14 PDGs were predicted as gain-of-function 

mutations based on the OncoKB database (Chakravarty et al., 2017) (Figure 4D), suggesting 

that they may serve as oncogenes during tumorigenesis. Other mutation-driven PDGs may 

function as tumor suppressors given that these mutations may lead to partial loss of function 

of these genes. Importantly, we found that kinases and HMEs were significantly enriched in 

the PDGs with recurrent mutations, while GPCRs, ICs, and transporters were significantly 

enriched in the PDGs without recurrent mutations (Figure 4B). This strongly indicates that 

a large portion of kinases and HMEs play causal roles in tumorigenesis, thereby serving 

as potential drug targets in cancer. Notably, kinases showed significant enrichment for 

gain-of-function hotspot mutations, while HMEs had higher percentages of both gain- and 

loss-of-function mutations (Figures 4B and 4E), suggesting that different targeting strategies 

should be designed to drug these two groups of PDGs. Finally, only a small portion of the 

mutation-driven PDGs were classified as Tbio, and no mutation-driven PDGs were classified 

as Tdark for their TDLs (Figures 4F and S5), suggesting that a large effort has been made to 

understand the functions of these genes with recurrent mutations in cancer.

Transcript fusions of PDGs across cancers

A total of 10,811 fusion transcripts (9,554 fusion pairs) involving 3,392 PDGs were 

identified across 33 cancer types. Among them, 7,319 (67.7%), 1,348 (12.5%), 1,400 

(12.9%), and 743 (6.9%) events were defined as tier 1, tier 2, tier 3, and tier 4, respectively 

(Table S7). After applying the Elbow method to determine the cutoff for the fusion events 

whose numbers were significantly higher than background, we found that both overall fusion 

events and recurrent fusion events (which occurred at least twice in the same cancer type) 

were significantly enriched in the families of kinases, druggable TFs, and HMEs (Figure 

S6A), suggesting that these PDG families may play crucial roles in tumorigenesis. Notably, 

only 775 of 10,811 (7.2%) PDG fusion transcripts were recurrent events, representing 186 

of 9,554 fusion pairs. TMPRSS2-ERG (n = 177), FGFR3-TACC3 (n = 36), and RPS6KB1-
VMP1 (n = 29) were the most frequent fusions across 33 cancer types (Figures S6B and 

S7). Although both TMPRSS2 and ERG have been considered as potentially druggable, 

TMPRSS2-ERG fusion has been notoriously difficult to target in the clinic (Wang et al., 

2017). To better assess the targetable potentials of PDGs with recurrent fusions, we further 

analyzed the integrity of PDG partners in each recurrent fusion transcript and found that 

618 of 775 recurrent PDG fusion transcripts contained full or partial coding sequences 

(CDS) of PDG genes (Figure S6C). The most frequent fusion pattern was a joining of CDS 
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regions of both 5′ and 3′ partners in frame, followed by 5′ UTR of 5′ partner joining with 

CDS of 3′ partner and joining of 5′ CDS with 3′ CDS out of frame. After removing the 

fusions without CDS of PDGs, the frequencies of PDGs contained recurrent fusion events in 

each cancer types were obtained (Figure S6D). Taken together, except for TMPRSS2-ERG, 

transcript fusions in PDGs are common but low-frequency genomic events across adult 

cancers.

Cancer dependency of PDGs across cancer cell lines

We retrieved genome-wide RNAi/CRISPR screening profiles from the DepMap (Dempster 

et al., 2019; McFarland et al., 2018; Meyers et al., 2017). Among 5,937 PDGs with 

dependency information, 784 (13.2%) of them were identified as genes required for cancer 

cell growth (“common essential” or “strongly selective” cancer-dependent PDGs) by either 

RNAi or CRISPR screen, including 495 strongly selective PDGs (Table S8). Druggable 

TFs, NRs, kinases, and HMEs were most significantly enriched in the PDGs that were 

defined as cancer-dependent genes (Figure 5A). This indicates that a large portion of PDGs 

in these four categories play crucial roles in cell growth and proliferation, thereby serving 

as potential anticancer (anti-proliferation) drug targets. Notably, more than half of the 

cancer-dependent PDGs (57.5%) were classified as Tbio or Tdark (Figure 5B). Consistently, 

when we searched the PubTator database for the numbers of research publications for 

each PDG, 60.5% of the cancer-dependent PDGs were classified as understudied genes. 

Importantly, the PDGs with recurrent genomic alterations identified from TGCA pan-cancer 

analyses were significantly enriched in the cancer-dependent PDGs (OR = 2.9, p = 2.3 

× 10−24), strongly indicating cancer “driver” roles during tumorigenesis. Consistent with 

previous reports, cancer cell lines harboring hotspot gain-of-function mutations of PDGs 

were significantly sensitive to knockdown of these driver mutations (Figure 5C). A large 

portion of cancer-dependent PDGs (e.g., 40.7% of cancer-dependent PDGs identified from 

RNAi screening) showed a significant correlation between dependency and gene expression 

(FDR < 10%). They were able to be divided into two groups: PDGs for which high 

expression was correlated with increased sensitivity to RNAi knockdown, and PDGs 

for which low expression was correlated with increased sensitivity to RNAi knockdown 

(referred to as groups I and II, respectively) (Figure 5D). Similar behavior was also observed 

in the CRISPR screening (Figure 5E). Among the cancer-dependent PDGs, kinases, NRs, 

and druggable TFs were significantly enriched in group I, while group II contained more 

enzymes (Figure 5F). Next, we analyzed the correlation between dependence and copy 

number alteration for the cancer-dependent PDGs that exhibited recurrent SCNAs in TCGA 

pan-cancer analysis. Among the amplified cancer-dependent PDGs screened by RNAi 

assay, 14/68 (20.6%) showed significantly positive correlations between dependence and 

copy number (i.e., cells with copy number gain were more sensitive to knockdown), and 

13 of them also showed positive correlation between dependence and RNA expression 

(SCNAgain/group I). Unexpectedly, we also identified 13 amplified cancer-dependent PDGs 

whose dependencies were significantly and negatively correlated with both copy numbers 

and RNA expression levels (SCNAgain/group II) (Figure 5G). Among the deleted cancer-

dependent PDGs screened by RNAi assay, 20/47 (42.6%) showed significantly negative 

correlation between dependence and copy number, and 13 of them also showed negative 

correlation between gene dependence and RNA expression (SCNAloss/group II). Only two 
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PDGs showed dependencies that were positively correlated with both copy number and 

RNA expression at a borderline level (SCNAloss/group I) (Figure 5H). These observations 

were further confirmed by an independent CRISPR screen dataset across 739 cancer cell 

lines (Figures 5I and 5J). Importantly, analyses by the GISTIC (Mermel et al., 2011) 

and ABSOLUTE algorithms (Carter et al., 2012) also demonstrated that the copy number 

losses in SCNAloss/group II genes appeared hemizygous, confirming that complete deletion 

of these genes may be lethal for tumor cells. These results suggest that both SCNAgain/

group I and SCNAloss/group II PDGs may serve as potential therapeutic targets for anti-

proliferation, although different strategies should be considered. Supporting this idea, 8/13 

(61.5%) SCNAgain/group I PDGs had targeted therapy drugs that were approved by the 

FDA or are under development in the clinic. However, although it has been proposed for 

over two decades that a gene with hemizygous loss may cause vulnerabilities in cancer 

(Frei, 1993; Kronke et al., 2015; Nichols et al., 2020; Nijhawan et al., 2012; Paolella 

et al., 2017; Rendo et al., 2020), no SCNAloss/group II gene has directly targeted drugs 

approved in the clinic. To experimentally validate that those deletions of SCNAloss/group 

II genes can provide therapeutic windows, we chose CDK7, which showed hemizygous 

loss in 27.3% (2,991/10,950) of patients at a pan-cancer level in TCGA cohort and was 

recurrently deleted in four cancer types. Consistently, as a typical group SCNAloss/group II 

gene, CDK7 was hemizygous deleted in 29.8% of DepMap cancer cell lines, and its copy 

number was significantly and positively correlated with RNA expression (p = 8.3 × 10−73). 

Importantly, both CDK7 copy number losses and lower levels of RNA expression were 

significantly associated with increased sensitivity to CDK7 siRNAs (p = 1.6 × 10−6 and p = 

1.5 × 10−6, respectively). Notably, CDK7-specific inhibitors have been advanced into early 

clinical trials (Hu et al., 2019a). We analyzed a large-scale CDK7i, THZ1 treatment response 

screen in cancer cell lines (n = 580, non-hematological malignant lines) (Kwiatkowski et 

al., 2014), and observed a significant and positive correlation between CDK7 copy number 

loss and increased THZ1 sensitivity (p = 0.037, adjusting for cancer lineage). This was also 

confirmed at the CDK7 RNA level (p = 0.024, adjusting for cancer lineage), and was further 

experimentally validated by colony formation assays in a series of cancer cell lines (Figure 

5K). Finally, using two gRNAs that target the genomic sequences located in the 5′ and 3′ 
UTRs of CDK7 (Figure 5L), we completely deleted a single copy of the full-length CDK7 
gene (42.5 kb) in OVCAR5 cells that harbor neutral CDK7 (Figures 5M and 5N). Notably, 

although >30 clones were examined and multiple hemizygous clones were identified, no 

homozygous knockout clone was found, indicating that CDK7 is an essential gene for 

cell survival. Importantly, we found that the CDK7-deleted clones were significantly more 

sensitive to THZ1 compared with their parental clone (Figures 5O and 5P).

Systematic integration of multidimensional profiles of PDGs across cancers

Our above multi-omics analysis suggests remarkable unexplored opportunities for 

identification of drug targets in oncology; however, the key challenge is how to prioritize 

these potential druggable candidates at a genome-wide scale. We hypothesize that 

integration of expressional, genomic, functionomic, and pharmacological profiles of PDGs 

across cancers can comprehensively identify and prioritize potential therapeutic targets for 

treatment of cancer. In this regard, a PDG cancer drug target score (PCDT score) for each 

PDG was estimated by a systems biology approach (Figures 6A, 6B, and S8A–S8C). First, 
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at both individual cancer type and pan-cancer levels, we integrated the multi-omics profiles 

from healthy individuals (GTEx, n = 7,429), primary cancer specimens (TCGA, n = 11,160), 

and cancer cell lines (DepMap, n = 1,775). Then, we comprehensively collected a total 

of 16 cancer-related features for a given PDG and generated a quantitative measurement 

for each feature (including 12 continuous and 4 discrete variables). Based on intrinsic 

characteristics of these features in oncology, 3 cancer drug target prediction modules were 

built, including an expression module, a genomics module and a dependency module. After 

transformation of the raw data, all features were scaled to have values ranging from 0 to 1 

to facilitate downstream analysis. Finally, to optimize the performance of our PCDT score, 

we applied a grid search procedure to determine the weight of each feature within a module 

and the weight of each module for the PCDT score. Using known targets of FDA-approved 

small-molecule drugs in oncology as positive controls, the grid search procedure iteratively 

assessed the ability of the PCDT score to prioritize known cancer drug targets over a 

range of plausible weight values. Based on the optimized weights, a core PCDT score 

was estimated for each PDG at a pan-cancer level (Figures 6C; Table S9). Compared with 

other target identification score systems that were recently estimated for cancer treatment 

(Behan et al., 2019), the PCDT score not only specifically focuses on druggable genes (more 

practical for drug development), but also comprehensively considers multiple features that 

may contribute to prioritizing target candidates. For example, as expected, the dependency 

module of the PCDT score shows significant and positive correlation with the target 

priority scores, which were based on cancer dependency (Behan et al., 2019), however, 

the expression and genomic modules of the PCDT score provide additional information that 

was not be covered by other score systems (Figure S8D).

Consistent with our analysis on individual profiling platforms, among the PDGs with high 

core PCDT scores (i.e., top 10% of all PDGs, referred as to high PCDT score group), 

kinases, druggable TFs, HMEs, and NRs were significantly enriched, whereas GPCRs, ICs, 

and transporters contributed to smaller fractions to this group (Figures 7A and 7B). Notably, 

even in the high PCDT score group, only 49.8% of PDGs were defined as Tclin and Tchem 

for TDLs, suggesting large opportunities for further drug development in oncology (Figure 

7C). As expected, kinases were the most highly represented PDG family in the high PCDT 

score group and had a considerably higher percentage of genes (81.5%) with chemical 

compounds in both clinical and preclinical stages. Although promising, PCDT scores were 

observed for many HMEs; drug development efforts for these genes are still unmet, and only 

41.1% of HMEs in the high PCDT score group have existing compounds targeted against 

them (Figure 7D). Finally, we collected additional information about our current knowledge 

for each PDG, such as numbers of publications (Wei et al., 2019), approved drugs, and drugs 

in clinical development (Nguyen et al., 2017), as well as predicted tractability (Brown et 

al., 2018). After adding these factors to the core PCDT score, an extension PDG cancer 

drug target score (extension PCDT score) was estimated to further assist prioritization of 

cancer drug targets (Figure 6C). Collectively, by systematically integrating expressional, 

genomic, dependency, and pharmacological profiles, we computationally prioritized PDGs 

for potential application in oncology at a genome-wide scale, which may facilitate the 

development of therapeutics as well as the selection of patients for precision cancer 
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treatment. A publicly accessible database, The Cancer Druggable Gene Atlas (TCDA), has 

also been developed (Figure 7E).

DISCUSSION

After the concept of the druggable genome was proposed in 2002, more than 6,000 

genes have been estimated to be part of PDGs whose activities may be modulated by 

pharmaceuticals (Brown et al., 2018; Campbell et al., 2012; Finan et al., 2017; Hopkins 

and Groom, 2002; Kumar et al., 2013; Overington et al., 2006; Rask-Andersen et al., 2011, 

2014; Russ and Lampel, 2005; Southan et al., 2015). However, <10% of these druggable 

genes are currently targeted by drugs approved by the FDA (Oprea et al., 2018; Santos et 

al., 2017), and a small portion of them have been applied in oncology (Rubio-Perez et al., 

2015; Yap and Workman, 2012), reflecting opportunities for the next generation of drug 

development for cancer treatment. By systematically reviewing six comprehensive PDG 

resources, we observed that the PDG lists have remarkably increased during the past decade, 

indicating that more and more proteins can be modulated by small molecules.

Although the majority of PDGs are reliably detectable in cancer, only 46.9% of them show 

selective expression patterns, including 2,099 lineage-enriched PDGs. Selective expression 

of a PDG not only indicates its potential roles during tumorigenesis, but also provides a 

better therapeutic window for drug development. Supporting this idea, we found that the 

targets of approved cancer drugs were indeed significantly enriched in selectively expressed 

PDGs. In addition, by comparing expression of PDGs in cancer with their expression in 

a large-scale normal tissue cohort (not only corresponding adjacent specimens of a give 

cancer type), we identified 697 caPDGs that are highly expressed in at least one cancer 

type. For example, many DNA damage repair-related PDGs are highly expressed in cancers, 

indicating that tumor cells may rely on their functions for survival. Collectively, a large 

portion of PDGs are expressed in cancers, and their expression patterns, provide rich 

information for target selection and prioritization. The recurrence of genomic alterations 

of a PDG is another strong indicator of its therapeutic potential (Garraway and Lander, 

2013; Vogelstein et al., 2013). We comprehensively characterized genomic alterations across 

cancers, and estimated quantitative scores for recurrent SCNAs, mutations, and transcript 

fusions of each PDG at both individual and pan-cancer levels. PDGs with gain-of-function 

hotspot mutations have been the most widely identified as targets for cancer drugs, although 

these candidates have been largely exhausted during the first wave of development of 

targeted therapy (Huang et al., 2020). Focally recurrent copy number gains serve as the 

second most important resource for target identification. However, a focally amplified 

genomic locus usually contains multiple genes, including both cancer “driver(s)” and 

co-altered “passengers.” Identification of functional drivers is still a challenging step in 

prioritizing SCNA-driven PDGs in cancer. A combination of genomic profiling and genetic 

screening may assist in reducing noise from passenger alterations (Beroukhim et al., 2010; 

Zack et al., 2013). Finally, despite relatively low frequencies of fusions of PDGs in adult 

cancers, recurrent transcript fusion events serve as promising and actionable targets for 

considerable numbers of patients.
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Directly targeting loss-of-function genomic alterations with small-molecule drugs remains 

a challenge (Huang et al., 2020). Recurrent hemizygous copy number loss of an essential 

PDG represents a promising but largely understudied resource for cancer drug development, 

although it has been proposed for two decades that CYCLOPS (copy number alterations 

yielding cancer liabilities owing to partial loss) may cause vulnerabilities that can be 

exploited for treatment (Frei, 1993; Kronke et al., 2015; Nichols et al., 2020; Nijhawan 

et al., 2012; Paolella et al., 2017; Rendo et al., 2020). Recently, a few CYCLOPS genes 

have successfully been evaluated in preclinical models (Nichols et al., 2020; Nijhawan et al., 

2012; Paolella et al., 2017; Rendo et al., 2020). More excitingly, the example of targeting 

a CYCLOPS gene, CK1α, by lenalidomide (Revlimid) has been applied in the clinic to 

treat myelodysplastic syndrome with loss of chromosome 5q (Kronke et al., 2015). Thus, 

identification of druggable CYCLOPS genes may provide an avenue for precision patient 

selection for existing cancer drugs. Although loss-of-function mutations in a considerable 

number of PDGs have been observed, they may not be able to serve as direct drug targets. 

Instead, synthetic lethality may be an efficient approach to target the vulnerabilities induced 

by these loss-of-function alterations (Huang et al., 2020). Finally, genome-scale assessments 

of the effects of each PDG on tumor cell growth (cancer dependency) provide a strong 

functional indicator for target identification and prioritization (Behan et al., 2019; Tsherniak 

et al., 2017), especially when combined with genomic profiles of primary tumors.

A large percentage of the PDGs (69.3%) were defined as Tbio and Tdark for their TDLs, 

and indeed the majority of the PDGs (n = 4,222) were classified as understudied genes based 

on the numbers of related publications. More importantly, many of these less characterized 

PDGs showed dysregulated expression, recurrent alterations, and/or functional dependencies 

in cancers. For example, among the high PCDT score PDGs, 50.2% of them fell into Tbio 

and Tdark categories without existing chemical compounds. This strongly indicates large 

and unexplored opportunities for future drug development in oncology. Notably, potential 

causal events were significantly enriched in a few druggable families, such as kinases, 

NRs, and HMEs, whereas most GPCRs and ICs may play relatively limited functions 

during tumorigenesis. This result is supported by the fact that most currently approved 

targeted therapy drugs in oncology target kinases, NRs or HMEs (Rubio-Perez et al., 2015; 

Yap and Workman, 2012). However, the drug development levels among these different 

families are still unbalanced. Although considerable numbers of kinase inhibitors have 

been developed and many of them are advancing into early clinical trials, the need for 

potent and selective HME modulators is still unmet. Most importantly, unlike kinases, 

HMEs predominantly show ubiquitous expression patterns in normal healthy tissues and 

loss-of-function alterations in cancers. Thus, which patient population should be selected 

and how a therapeutic window can be achieved are key clinical challenges for future drug 

development in oncology. Finally, although many TFs show promising PCDT scores, the 

numbers of predicted druggable TFs have been very limited to date.

Strategies to identify and prioritize druggable targets for cancer treatment would represent 

a significant advance in therapeutic development in oncology (Rubio-Perez et al., 2015; 

Yap and Workman, 2012). However, most current approaches to identify potential targets 

for small-molecule compounds for cancer therapy are largely driven by possibilities from 

a medical chemistry viewpoint rather than by cancer genomic profiles. By an integration 
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of “the druggable genome” and the “cancer genome,” our present study provided a 

comprehensive “blueprint” of PDGs across cancers. Based on this informative blueprint, 

we quantified 16 cancer-related features of PDGs and estimated a core PCDT score to 

prioritize their therapeutic potentials in oncology. In addition, our current knowledge on 

clinical applications of PDGs and their predicted tractability were also integrated into this 

score system as an extension PCDT score. A publicly accessible database, TCDA, was also 

developed through the FCG data portal (http://fcgportal.org/TCDA/).

Limitations of the study

There are some limitations to our study. The list of PDGs may dynamically change in 

advances of medical chemistry. For example, KRAS was previously considered a typically 

undruggable gene, despite its dominant cancer-driver function in tumorigenesis (Moore 

et al., 2020). Recent advances in KRAS (G12C) inhibitors have shifted this paradigm, 

and several KRAS inhibitors are advanced in early clinical trials (Moore et al., 2020). 

Meanwhile, not every PDG is able to be successfully translated to the clinic. Examples 

include TP53 and TMPRSS2-ERG, which have historically been considered attractive PDGs 

in cancer therapy (Vassilev et al., 2004; Wang et al., 2017). The list of PDGs has thus been 

dynamically changing and may continuously increase. For example, proteolysis targeting 

chimera technology may remarkably change the current definition of druggable genes in the 

following years. In addition, as drug development progresses, the definition of “druggable” 

in oncology has expanded from genes targeted by small molecules to genes targeted by 

biotherapeutic drugs such as antibodies and cellular therapies (Brown et al., 2018). More 

than 2,000 genes on the current PDG list encode cell membrane surface proteins (Brown 

et al., 2018), which are potentially targetable by antibody-based drugs. However, the actual 

number of cell surface protein may be far larger than that (Bausch-Fluck et al., 2018; Hu 

et al., 2021). In this study, we integrated the six most comprehensive PDG resources with a 

uniform approach to best reflect our current knowledge on the druggable genome. Finally, 

most current large-scale genetic screens are based on in vitro proliferation assays (Behan et 

al., 2019; Tsherniak et al., 2017). Beyond cell growth, cancer-driven PDGs play functions 

in many distinct cancer-related pathways, such as angiogenesis, metastasis, and immune 

response, leading to additional challenges in selecting and prioritizing drug targets.

STAR★METHODS

Detailed methods are provided in the online version of this paper and include the following:

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents 

should be directed to and will be fulfilled by the Lead Contact Xiaowen Hu 

(xiaowenh@pennmedicine.upenn.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—Information of gene family category and target 

development level were generated by the IDG project, which are publicly available through 
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the PHAROS database (https://pharos.nih.gov/) and the Target Center Resource Database 

(TCRD; http://juniper.health.unm.edu/tcrd/). The genomic profiles of human cancers were 

generated by the TCGA project, which are publicly available through the Genomic Data 

Commons portal (GDC, https://gdc-portal.nci.nih.gov). The RNA expression profiles of 

human normal healthy tissues were by the GTEx project, which are publicly available 

through the GTEx portal (https://gtexportal.org/home/). Genetic screening profiles in human 

cancer cell lines were generated by the DepMap and the Score projects, which are 

publicly available through the DepMap portal (https://depmap.org/portal/), and the Score 

projects (https://score.depmap.sanger.ac.uk/). The genomic data were retrieved, processed 

and analyzed through a master computational protocol developed by the Functional Cancer 

Genome project (FCG, http://fcgportal.org/home/) as described by our previous publications 

(Hu et al., 2019b, 2021; Shan et al., 2020; Yuan et al., 2018) as well as the STAR Method 

section. The data generated by this study are public available through the Functional 

Cancer Genome data portal (http://fcgportal.org/home) and the Cancer Druggable Gene 

Atlas (TCDA) website (http://fcgportal.org/TCDA/). This paper does not report original 

code. Any additional information required to reanalyze the data reported in this work paper 

is available from the Lead Contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines—Cancer cell lines were purchased from the ATCC or NCI Development 

Therapeutics Program. SKOV3, OVCAR5, OVCAR3, OVCAR4, MCF7, HCC1937, 

CAOV3, MDA-MB-468, HCC38 and SKBR3 were cultured in RPMI1640 medium 

(Invitrogen) supplemented with 10% fetal bovine serum (VWR). UWB1.289 was cultured in 

50% RPMI1640 medium and 50% MEGM (Lonza, CC-3150) supplemented with 3% fetal 

bovine serum. All cell lines were maintained at 37°C and 5% CO2.

METHOD DETAILS

Definition of the potentially druggable genes—To define the potentially druggable 

genes (PDGs), candidates from 6 comprehensive druggable gene resources (Carvalho-Silva 

et al., 2019; Finan et al., 2017; Hopkins and Groom, 2002; Kumar et al., 2013; Russ 

and Lampel, 2005; Southan et al., 2015) were integrated. The PDG protein/gene names 

of each resource were retrieved from the Drug Gene Interaction Database (DGIdb; https://

www.dgidb.org/) (Cotto et al., 2018), Open Targets Platform (https://www.opentargets.org/) 

(Carvalho-Silva et al., 2019) or original publications (Carvalho-Silva et al., 2019; Finan et 

al., 2017; Hopkins and Groom, 2002; Kumar et al., 2013; Russ and Lampel, 2005; Southan 

et al., 2015). After converting the protein/gene names to the ENSEMBL gene annotation 

(Version 80), genes annotated by at least 2 sources were defined as PDGs in current 

study. Given rapid advances in epigenetic drug development for cancer treatment, histone 

modification enzymes that were systematically annotated by the Structural Genomics 

Consortium (https://www.thesgc.org/) were included in the PDG list. Information of gene 

family category, target development level and Pubtator score of PDGs were retrieved from 

the PHAROS database (https://pharos.nih.gov/) and the Target Center Resource Database 

(TCRD v5.2.0; http://juniper.health.unm.edu/tcrd/) from the IDG project of NIH (Nguyen et 

al., 2017).
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RNA-seq data processing and gene expression analysis—The poly(A)+ RNA-seq 

data for primary tumors and their adjacent tissues were generated by the University of 

North Carolina and the British Columbia Cancer Agency Genome Sciences Centre as part of 

the TCGA project. The poly(A)+ RNA-seq data for normal healthy tissues were generated 

by the Broad Institute of Harvard and MIT as part of the GTEx project. The poly(A)+ 

RNA-seq data for hematopoietic cells were download from Sequence Read Archive (SRA, 

accession number SRP125125), and the poly(A)+ RNA-seq data for lymphatic tissues were 

download from the Human Protein Atlas (HPA), Illumina’s Human BodyMap 2.0 project, 

and Encyclopedia of DNA Elements (ENCODE). All RNA-seq data were processed through 

a pipeline developed by the UCSC Toil RNAseq Recompute Compendium, which allowed 

us to consistently process large-scale RNA-seq data without computational batch effects 

(Vivian et al., 2017). For TCGA RNA-seq data, if more than one sample existed for a 

participant, one single tumor sample (and matched adjacent sample, if applicable) was 

selected based on the following rules: (1) tumor sample type: primary (01) > recurrent (02) 

> metastatic (06); (2) order of sample portions: higher portion numbers were selected; and 

(3) order of plate: higher plate numbers were selected. Expression of a PDG in a given tissue 

or cancer type was defined as positive if its mRNA expression was reliably detected in at 

least 50% of specimens (i.e., the 50th percentile of fragments per kilobase of transcript per 

million mapped reads [FPKM] value ≥ 1).

Classification of expressional distribution—Genes were classified into 6 categories 

based on their expression levels across the TCGA samples: (I) undetectable genes: genes 

that showed undetectable RNA expression for all 33 TCGA cancer types (FPKM < 1 for 

more than 50% tumor samples of each cancer type); (II) ubiquitously expressed genes: genes 

that were expressed (FPKM > 1) for the majority of tumor samples (95%); (III) lineage-

enriched genes: genes with elevated (five-fold) RNA expression levels in an individual 

cancer type or a group of cancer types (a maximum of seven cancer types) compared to all 

other cancer types; (IV) right-skewed genes: genes whose expression had skewness above 

0.5 and were at least 125 times more likely to have been sampled from a right-skewed 

distribution than a normal distribution (i.e. skewed-LRT value > 125); (V) bimodal-like 

genes: genes whose expression had bimodal index (BI) >1.2 and were at least 125 times 

more likely to have been sampled from a bimodal distribution than a normal distribution 

(i.e. bimodal-LRT value > 125); (VI) unclassified: genes that were not assigned to any 

of the above five groups. The hierarchy of groups used to classify genes: undetectable > 

ubiquitously expressed > lineage-enriched > right-skewed > bimodal-like > unclassified. 

Genes from the “lineage-enriched”, “right-skewed”, “bimodal-like”, and “unclassified” 

groups were considered as selectively expressed genes.

Identification of PDGs specifically expressed in cancers (caPDGs)—caPDGs 

were identified independently for each individual cancer type by comparing mRNA 

expression levels of PDGs between a given cancer type (TCGA) and normal tissues from 

29 organs (GTEx). Because cancer-testis genes often encode immunogenic antigens for 

cancer immunotherapy (Hofmann et al., 2008; Zhang et al., 2016), normal testis tissues 

were excluded from the normal tissue pools (except for analysis on testicular germ cell 

cancer [TGCT]). To reduce false positives, we applied five independent computational 
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algorithms to identify cancer-specific genes: specificity measure (SPM) (Xiao et al., 2010), 

TissueEnrich (Jain and Tuteja, 2019; Uhlen et al., 2015), specificity index probability (pSI) 

(Dougherty et al., 2010), sample set enrichment analysis (SSEA) (Subramanian et al., 2005), 

and differential expression analysis by Mann-Whitney-Wilcoxon test (MWW test). These 

algorithms were categorized into two groups based on their principles: Group I, including 

TissueEnrich and SPM, which calculated a metric to assess the specificity of each gene 

independently; Group II, including pSI, SSEA and MWW test, which required an additional 

step to calculate a rank for each gene across all genes based on the specificity metrics. 

Notably, distinct input data matrices were used by these algorithms: for pSI, SPM and 

TissueEnrich, median FPKM values of a given gene in each tissue or cancer type were 

used to represent the expression levels; for SSEA and MWW test, FPKM values of a given 

gene in each individual sample were used for analysis. For each method, both stringent and 

less stringent criteria were applied to define caPDGs with high and moderate confidence, 

respectively.

SPM: SPM was adopted from TiSGeD (Xiao et al., 2010), by which the specificity measure 

for each gene in a given cancer type was calculated as the cosine value of the intersection 

angle between the gene’s observed expression pattern and a pre-defined artificial expression 

pattern. The observed expression pattern was represented as a vector of expression values of 

the gene corresponding to the given cancer type and each normal tissue type. An artificial 

expression pattern was pre-defined, representing the extreme case in which the gene was 

expressed in the given cancer type while its expression level was zero in all normal tissue 

types. Genes with SPM values greater than 0.99 and 0.9 were considered as highly confident 

(stringent criteria) and moderately confident (less stringent criteria), respectively.

TissueEnrich: The function teGeneRetrieval of TissueEnrich R package (Jain and Tuteja, 

2019) was used to classify genes into six different groups according to pairwise expression 

fold change among tissue types. Genes classified as “Tissue-Enriched” in a given cancer 

type (i.e., its expression level in a given cancer type was at least five-fold higher than 

all normal tissue types) were considered as highly confident (stringent criteria). Genes 

classified as “Tissue-Enhanced” in a given cancer type (i.e., its expression level in a given 

cancer type was at least five-fold higher than the average of all normal tissue types) were 

considered as moderately confident (less stringent criteria).

pSI statistic: The R package pSI, developed by Dougherty et al. (Dougherty et al., 2010), 

was applied to calculate a pSI value for each gene in a given cancer type. Genes with pSI 

values less than 0.001 and 0.01 in a given cancer type were considered as highly confident 

(stringent criteria) and moderately confident (less stringent criteria), respectively.

SSEA: SSEA was adopted from the Gene Set Enrichment Analysis (GSEA) (Subramanian 

et al., 2005): the R package fgsea was applied for testing differential expression between a 

given cancer type and each normal tissue type. For each pairwise comparison (a given cancer 

type vs. a given normal tissue type), all samples were ranked according to expression level 

of a specific gene. Querying the sample set of cancer against the ranked sample list yielded 

a normalized enrichment score (higher score means stronger enrichment of expression in 

cancer). We ranked genes within each pairwise comparison by NES and assigned percentile 
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ranks (e.g., a percentile rank of 0.95 implies the gene ranked in the top 5th percentile of all 

genes analyzed). Each of the percentile ranks obtained from comparisons against different 

normal tissue types were then combined. The genes with an average percentile rank above 

0.99 were considered as highly confident (stringent criteria); the genes with a minimum 

percentile rank above 0.9 were considered moderately confident (less stringent criteria).

MWW test: Differential expression of a gene between a given cancer type and each normal 

tissue type was estimated by the function Wilcox_test of R package coin (Torsten et al., 

2006). For each pairwise comparison (a given cancer type vs. a given normal tissue type), 

the difference in rank position of expression levels of the two groups was estimated (higher 

positive value means stronger enrichment of expression in cancer). We ranked genes within 

each pairwise comparison by difference in rank position and assigned percentile ranks (e.g., 

a percentile rank of 0.95 implies the gene ranked in the top 5th percentile of all genes 

analyzed). Each percentile rank obtained from comparisons against different normal tissue 

types were then combined. The genes with an average percentile rank above 0.99 were 

considered as highly confident (stringent criteria); the genes with a minimum percentile rank 

above 0.9 were considered moderately confident (less stringent criteria).

To integrate the results generated by different methods, we summed the potential caPDG 

lists from all five algorithms based on the confidence levels, then estimated a specificity 

score for each potential caPDG. For each algorithm, 2 = positive by stringent criteria; 1 = 

positive by less stringent criteria; and 0 = negative.

specificity score = ∑
k = 1

5
wk,

where

wk =
2, positive by stringent criteria
1, positive by less stringent criteria .
0, negative

After a cut-off (specificity score ≥ 3) was estimated to define the caPDGs in a given cancer 

type, the caPDGs were further divided into three tiers. Tier 1 (high confident caPDGs): the 

caPDGs were identified by at least two algorithms with stringent criteria; Tier 2 (moderately 

confident caPDGs): the caPDGs were identified by at least one algorithm with stringent 

criteria and one algorithm with less stringent criteria; Tier 3 (low confident caPDGs): the 

caPDGs were identified by at least three algorithms with less stringent criteria. Finally, 

to reduce the expressional interference from tumor-infiltrating immune cells in tumor 

specimens, PDGs that are highly expressed in immune cells were excluded (except for 

analysis on hematopoietic malignancies) based on the RNA-seq profiles from 30 distinct 

types of hematopoietic cells and six lymphatic tissues.

SNP array data collection and processing—Single-nucleotide polymorphism (SNP) 

array data (Affymetrix Genome-Wide Human SNP Array 6.0) in CEL format across 33 

cancer types were retrieved from the TCGA Data Portal (https://tcga-data.nci.nih.gov/tcga/). 
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Segmentation files of TCGA tumor samples processed by circular binary segmentation 

(CBS) algorithm (Olshen et al., 2004) were retrieved from the TCGA GDAC Firehose of 

the Broad Institute (http://gdac.broadinstitute.org/; retrieval date: Jan, 3, 2018). If multiple 

samples existed for a participant, one pair of tumor and matched control was selected for 

ABSOLUTE analysis and one tumor sample was kept for focal SCNA analysis. Sample 

selection was based on the following rules: (1) sample type: for tumor tissues, primary (01) 

> recurrent (02) > metastatic (06); for normal control tissues, blood (10) > solid (11); (2) 

molecular type of analyte for analysis: preference for D analytes (native DNA) over G, W, 

or X (whole-genome amplified); (3) order of sample portions: higher portion numbers were 

selected; and (4) order of plate: higher plate numbers were selected.

Recurrent focal SCNA estimation—The Genomic Identification of Significant Targets 

in Cancer (GISTIC 2.0) algorithm (Mermel et al., 2011) (https://www.broadinstitute.org/

cancer/cga/gistic) was used to identify significantly recurrent focal genomic regions that 

were gained or lost in a given tumor type. Segmentation files retrieved from the TCGA 

GDAC Firehose of the Broad Institute were used as input. GISTIC deconstructed copy 

number alterations into broad and focal events and applied a probabilistic framework to 

identify location and significance levels of SCNAs. For recurrent focal SCNA estimation, 

the significance levels (q values) were calculated by comparing the observed gains/losses 

at each locus to those obtained by randomly permuting the events along the genome. 

Tumors which had more than 2,000 segments were excluded from our analysis. Default 

parameters of GISTIC were used with the confidence level set to 0.99 (by -conf). Focal 

events with q-value below 0.25 were considered as significantly recurrent. Significant 

focal events in individual samples were then classified into four categories according to 

the amplitude threshold of GISTIC: GISTIC status=0, below threshold; GISTIC status=1, 

amplified (gain); GISTIC status=2, highly amplified (amplification); GISTIC status =−1, 

deleted (loss); GISTIC status=−2, highly deleted (deletion). In each cancer type, a GISTIC 

score (G-score), which accounts for both frequency and amplitude of a given SCNA event 

(Mermel et al., 2011), was generated by GISTIC for each gene and separately for gain 

or loss. Genes with a G-score < 0.1 were excluded from downstream analysis due to low 

frequency and/or amplitude. For a given gene, an overall G-score across all cancer types was 

calculated by an unweighted sum of G-scores in every cancer type.

Correlation analysis between copy number and RNA expression—To identify 

genes that had positive correlations between their RNA expression levels and copy number 

alterations, the putative gene-level copy number of a given gene was estimated by the 

GISTIC algorithm. Genes that were detectable in at least 10% of tumor specimens (90th 

percentile of FPKM value ≥1) in a given cancer type were subjected to correlation analysis. 

Pearson correlation analysis was performed by R software and the threshold of significant 

correlation between the estimated copy number and RNA expression level for each gene was 

set to p<0.001 (Pearson’s correlation).

Identification of the putative cancer-associated PDGs driven by SCNAs—At 

the individual cancer type level, we identified putative cancer-associated PDGs driven by 

SCNAs using four criteria: 1) location in a peak region of a significantly recurrent focal 
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SNCA locus estimated by GISTIC (q≤0.25); 2) alteration with high frequency and large 

amplitude (G-score ≥0.1); 3) mRNA expression reliably detected in at least 10% of tumor 

specimens in a given cancer type (the 90th percentile of FPKM value ≥1); and 4) expression 

level of mRNA significantly and positively correlated with the estimated copy numbers 

(p-value of Pearson’s correlation coefficient between log[FKPM+0.001] and log ratio < 

0.001). To estimate SCNAs for these putative cancer-associated GESP genes at a pan-cancer 

level, we calculated an overall G-score by an unweighted numeric sum of G-scores that met 

all four criteria in each individual cancer type.

Whole-exome sequencing data collection and processing—Mutation Annotation 

Format (MAF) profiles for 33 cancer type were downloaded from the TCGA Multi-Center 

Mutation Calling in Multiple Cancers (MC3) project (https://doi.org/10.7303/syn7214402), 

a variant calling project of TCGA (Ellrott et al., 2018). The MC3 data was generated 

through seven independent mutation calling algorithms, including Pindel (INDEL), MuSE 

(SNV), Radia (SNV) (Radenbaugh et al., 2014), VarScan2 (SNV/INDEL), MuTect (SNV), 

Indelocator (INDEL) and SomaticSniper (SNV). Variants from each caller were merged, 

QC filtered and stored in MAF file (Ellrott et al., 2018). If multiple samples existed for a 

participant in the MAF, one single pair of tumor/matched control sample was kept following 

these rules: (1) sample type: for tumor tissues, primary (01) > recurrent (02) > metastatic 

(06); for normal tissues, blood (10) > solid (11); (2) molecular type of analyte for analysis: 

preference for D analytes (native DNA) over G, W, or X (whole-genome amplified); (3) 

order of sample portions: higher portion numbers were selected; and (4) order of plate: 

higher plate numbers were selected. We excluded all mutations that were not tagged with 

PASS or WGA alone in all cancer types.

Recurrent mutation gene estimation—To predict the putative cancer-associated 

genes driven by mutation, five independent methods were integrated and applied 

to identify recurrent mutations: (1) MutSigCV (http://software.broadinstitute.org/cancer/

software/genepattern/modules/docs/MutSigCV), which identifies genes that are significantly 

mutated in cancer genomes using a model with mutational covariates. It analyzes the 

mutations of each gene to identify genes that were mutated more often than expected 

by chance, given the background model; (2) Oncodrivefm (http://bg.upf.edu/group/projects/

oncodrive-fm.php), which computes a metric of functional impact using three well-known 

methods (SIFT, PolyPhen2 and MutationAssessor) and assesses how the functional impact 

of variants found in a gene across several tumor samples deviates from a null distribution 

to detect candidate driver genes; (3) OncodriveCLUST (http://bg.upf.edu/group/projects/

oncodrive-clust.php), which is designed to exploit the feature that mutations in cancer 

genes, especially oncogenes, often cluster in particular positions of the protein and 

change their functions; thus, this feature can be used to nominate candidate driver 

genes; (4) ActiveDriver (http://reimandlab.org/software/activedriver/), which identifies post-

translational modification (PTM) sites in proteins (i.e., active sites such as signaling sites, 

protein domains, regulatory motifs) that are significantly mutated in cancer genomes; and 

(5) HotSpot3D (https://github.com/ding-lab/hotspot3d), which identifies mutation hotspots 

from linear protein sequence and correlates the hotspots with known or potentially 

interacting domains and mutations. MC3 MAF files excluding hypermutated samples were 
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used as input for the above programs, and default parameters were used for all five 

programs. A mutation index x (ranging from 0 to 5) was assigned to genes which passed the 

threshold of x out of five programs for a given cancer type. In addition, a mutation score 

(M-score) was calculated for each mutated gene in a given cancer type, which takes into 

account both the mutation index and frequency of mutation across samples (i.e., M score = 

mutation index × mutation frequency). Genes with mutation index ≥ 2 (identified as positive 

by at least two programs) were considered to be recurrently mutated. An overall M-score 

was generated to measure the recurrent mutation level of a given gene across all cancers, by 

unweighted sum of M-scores estimated for each individual cancer type.

Transcript fusion data collection and analysis—The gene fusion data of TCGA 

were retrieved from TumorFusions data portal (http://tumorfusions.org/), which analyzed 

transcript fusions across 33 cancer types from TCGA (Hu et al., 2018). Transcript fusion 

events were called by Pipeline for RNAseq Data Analysis (PRADA) (Torres-Garcia et al., 

2014), and fusions detected in normal samples were excluded. Six filters controlling for 

sequence similarity of the partner genes, transcriptional allelic fraction, dubious junctions, 

germline events and presence in non-neoplastic tissue were applied (Hu et al., 2018). If more 

than one sample existed for a participant, one single sample was kept following these rules: 

(1) sample type: for tumor tissues, primary (01) > recurrent (02) > metastatic (06); (2) order 

of sample portions: higher portion numbers were selected; and (3) order of plate: higher 

plate numbers were selected.

Definition of genes associated with significant genomic alterations at a pan-
cancer level—Waterfall method described by a recent publication from Cancer Cell Line 

Encyclopedia Consortium (Cancer Cell Line Encyclopedia Consortium and Genomics of 

Drug Sensitivity in Cancer Consortium, 2015) was used to define significant genomic 

alterations at a pan-cancer level. Specifically, the genomic alteration metrics were extracted 

for each protein coding gene (G-score was used for somatic copy number alterations, 

M-score was used for somatic mutations, and number of occurrences was used for transcript 

fusions). Increasing scores were then sorted to generate a waterfall distribution of all protein 

coding genes. The inflection point of the waterfall curve was estimated as the point on 

the curve with the maximal distance to a line drawn between the start and end points of 

the distribution. Genes with genomic alteration metric values above this inflection point 

were classified as significantly associated with the corresponding genomic alteration type. 

In somatic copy number analysis, amplification and deletion were analyzed separately. In 

mutation analysis, hypermutated tumor specimens were excluded for estimation of M-score. 

Given that TP53 showed a remarkably larger M-score value (which was considered as an 

outlier), TP53 was set aside when determining the inflection point. In transcript fusion 

analysis, genes with no fusion events were excluded. Within the PDGs, enrichment of each 

gene family for the genes associated with genomic alterations was calculated by a Fisher’s 

exact test.

Characterization of dependencies of the PDGs in cancer cell growth—Genome-

wide CRISPR/Cas9 and RNAi screening profiles in a large-scale cancer cell line panel were 

retrieved from the Dependency Map (DepMap) portal (https://depmap.org/portal/). Criteria 
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for definition of the “common essential” and “strongly selective” genes were described 

previously by the DepMap team (Dempster et al., 2019; Meyers et al., 2017). Briefly, a 

common essential gene (i.e., a gene universally required for viability of cancer cells in a 

large pan-cancer screen) was defined as a gene which ranks in the top X most depleting 

genes in at least 90% of cell lines. Here, X is chosen empirically using the minimum 

of the distribution of gene ranks in their 90th percentile least depleting lines. A strongly 

selective gene (i.e., a gene whose dependency is observed in a subset of cancer cells in 

a large pan-cancer screen) was defined as a gene whose dependency is at least 100 times 

more likely to have been sampled from a skewed distribution than a normal distribution 

(i.e., skewed-LRT value > 100). Both common essential and strongly selective genes defined 

by either CRISPR/Cas9 or RNAi screening were considered as essential genes for cancer 

cell viability. Assessment of enrichment for essential genes for cancer cell viability was 

performed by Fisher’s exact test across different gene classes. For the PDGs which were 

defined as either “common essential” or “strongly selective” by DepMap, we used the 

Bioconductor Limma package (Ritchie et al., 2015) to estimate the correlation between their 

dependencies (dependency scores) and mRNA expression or DNA copy number levels. The 

processed mRNA expression (RNA-seq) and DNA copy number (whole-exon seq or SNP 

array) profiles of the cancer cell lines were retrieved from the DepMap portal. Cohen’s 

effect size was scaled so that it measured the change in dependency across the interquartile 

range of mRNA expression or DNA copy number. For DNA copy number, log2(relative 

to ploidy + 1) was used. For mRNA expression, log2 transformed TPM values using a 

pseudo-count of 1 were used. P-values were adjusted with the Benjamini and Hochberg 

(BH) method (Benjamini and Hochberg, 1995).

Generation of cancer drug target score—To prioritize anti-cancer drug targets among 

PDGs, multidimensional omics profiles were integrated to estimate a PDG cancer drug 

target score (PCDT-Score) for each PDG. Three modules were established to integrate 

features at the expressional level, genomic level, and functional level, respectively. All 

features were transformed and scaled to have values ranging from 0 to 1 to facilitate 

integration. The expression module was based on the RNA-seq profiles from the GTEx and 

TCGA as well as the clinical annotation information of TCGA. Detailed methods for the raw 

data processing and quantification were described in the method sections of RNA-seq and 

expression analyses. The features in expression module included: 1) Tau tissue-specificity 

index (Yanai et al., 2005) assessing cancer type/tissue specificity across TCGA cancer 

types. 2) Distribution of expression across TCGA tumors. The expressional categories were 

transformed into discrete values: 0 for undetectable genes, 0.5 for ubiquitously expressed 

genes, and 1 for selectively expressed genes. 3) Cancer specific expression (i.e., caPDG, 

detailed method was described in the estimation of caPDG section). Cancer specificity 

score was scaled to range [0, 1]. 4) Prognostic value of gene expression. For each gene 

in a given cancer type, we fit a Cox proportional hazards model and obtained a z-statistic 

to assess whether high expression was associated with favorable or unfavorable overall 

survival. Then, we combined z-statistics for individual cancer types to yield a meta-z-score 

to assess the prognostic value at pan-cancer levels. P-values converted from meta-z-scores 

were log transformed and scaled to range [0, 1], with 1 representing the genes with the 

most significant p-values and 0 representing the genes with p-values of 1. 5) Differential 
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expression in tumors. For each cancer type which had normal tumor-adjacent tissues, 

differential gene expression analysis between tumor tissues and normal tumor-adjacent 

tissues was performed using the DESeq2 package (Love et al., 2014) with the raw count 

matrix as input. A z-statistic was returned for each gene in the specific cancer type to 

assess whether it was up-regulated or down-regulated in tumor tissues. Then, we combined 

z-statistics for individual cancer types to yield a meta-z-score to assess the degree of 

dysregulation at the pan-cancer level. P-values converted from meta-z-scores were log 

transformed and scaled to range [0, 1], with 1 representing the genes with most significant 

p-values and 0 representing the genes with p-values of 1. The genomic module was based 

on the SNP array and WES profiles from the TCGA as well as the clinical annotation 

information of TCGA. The RNA-seq profiles of TCGA were also used to estimate this 

module. Detailed methods for the raw data processing and quantification (e.g., estimation of 

G-score, M-score and recurrent fusion) were described in the method sections of genomic 

alteration analyses. The features in genomic module included: 1) Overall G-score for 

amplification, scaled to range [0, 1]. 2) Overall G-score for deletion, scaled to range [0, 

1]. 3) Prognostic value of copy number. For each gene in a given cancer type, we fit a 

Cox proportional hazards model and obtained a z-statistic to assess whether high copy 

number was associated with favorable or unfavorable overall survival. Then, we combined 

z-statistics for individual cancer types to yield a meta-z-score to assess the prognostic 

value at the pan-cancer level. P-values converted from meta-z-scores were log transformed 

and scaled to range [0, 1], with 1 representing the genes with most significant p-values 

and 0 representing the genes with p-values of 1. 4) Overall M-score, scaled to range 

[0, 1]. 5) Prognostic value of mutations. For each gene in a given cancer type, we fit a 

Cox proportional hazards model and obtained a z-statistic to assess whether presence of 

non-silent mutations was associated with favorable or unfavorable overall survival. Then, 

we combined z-statistics for individual cancer types to yield a meta-z-score to assess the 

prognostic value at the pan-cancer level. P-values converted from meta-z-scores were log 

transformed and scaled to range [0, 1], with 1 representing the genes with most significant 

p-values and 0 representing the genes with p-values of 1. 6) Occurrence of recurrent fusion 

involved events, scaled to range [0, 1]. The dependency module was based on the RNAi 

and CRISPR screening profiles from the DepMap as well as the cancer cell line annotation 

information of DepMap. The RNA-seq, WES and SNP profiles of DepMap as well as 

recurrent genomic alteration information from the TCGA were also used to estimate this 

module. Detailed methods for the raw data processing and quantification were described in 

the method sections of dependency analyses. The features in dependency module included: 

1) Combined essentiality index. Annotation of essential genes (“common essential” or 

“strongly selective”) based on genome-wide RNAi/CRISPR screening was retrieved from 

the Dependency Map (DepMap) portal (https://depmap.org/portal/) (retrieved date: Apr 17, 

2020). An essentiality index was derived as the weighted sum of binary calls of “common 

essential” (weight=1) and “strongly selective” (weight=2), for each of the RNAi and 

CRISPR datasets separately. A combined essentiality index was then summarized and scaled 

to range [0, 1]. 2) Predictive power of copy number for cancer dependencies. We used linear 

regression models (limma) (Ritchie et al., 2015) to reveal the associations between cancer 

dependencies and copy number across all screened cancer cell lines for each of the RNAi 

and CRISPR datasets. A meta p-value was combined from p-values generated on individual 
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datasets for each gene. Meta p-values were log transformed and scaled to range [0, 1], with 

1 representing the genes with most significant p-values and 0 representing the genes with 

p-values of 1. 3) Predictive power of expression for cancer dependencies. We used linear 

regression models (limma) (Ritchie et al., 2015) to reveal the associations between cancer 

dependencies and gene expression across all screened cancer cell lines for each of the RNAi 

and CRISPR datasets. A meta p-value was combined from p-values generated on individual 

datasets for each gene. Meta p-values were log transformed and scaled to range [0, 1], with 

1 representing the genes with most significant p-values and 0 representing the genes with 

p-values of 1. 4) Predictive power of mutation for cancer dependencies. We used linear 

regression models (limma) (Ritchie et al., 2015) to reveal the associations between cancer 

dependencies and gene mutation across all screened cancer cell lines for each of the RNAi 

and CRISPR datasets. Silent mutations were not considered. A meta p-value was combined 

from p-values generated on individual datasets for each gene. Meta p-values were log 

transformed and scaled to range [0, 1], with 1 representing the genes with most significant 

p-values and 0 representing the genes with p-values of 1. 5) Essentiality for fusion involved 

events. Fusion essentiality score and significance calculation were reported by Picco et al. 

(Picco et al., 2019). If multiple fusion transcripts were detected for a pair of fusion genes in 

a specific cancer cell line, the one with most significant essentiality score was kept. Fusion 

pairs present in at least three cell lines were considered for downstream analysis. For each 

gene with assessed fusion transcripts, the significance calculation (p-values) for all fusion 

transcripts across cancer cell lines was combined to yield a meta-p-value. Meta-p-values 

were then log transformed and scaled to range [0, 1], with 1 representing the genes with 

most significant p-values and 0 representing the genes with p-values of 1. A weighted 

average was calculated to summarize all features for each gene within each module. A core 

cancer target score (core PCDT-score) was then calculated as the weighted average of all 

three modules. To optimize the performance of the core PCDT-score in terms of highlighting 

promising cancer targets, we applied a grid search procedure to determine the weights of 

features within each module as well as the weights of the three modules. Using the genes 

that are currently targeted by FDA-approved small molecule drugs in oncology as positive 

controls, the grid search procedure iteratively assessed the ability of the score to prioritize 

cancer drug targets over a range of plausible weight values. A final combination of weights 

was chosen to maximize the discriminative power of PCDT-score.

Colony formation assay—Cells were seeded in 24-well plates one day before a series of 

dosages of THZ1 were added to culture medium. Cells were treated for 6 days with medium 

change every 3 days. After treatment, cells were fixed with methanol and stained with 0.5% 

crystal violet (Sigma, HT901). To quantify the results, crystal violet was dissolved in 10% 

SDS and the colored solution was transferred to 96-well plate for recording absorbance at 

570 nm by using BioTek EL800 microplate reader.

RNA isolation and qRT-PCR—Total RNA was extracted by using TRIzol Reagent 

(Invitrogen) and reverse-transcribed by using a High Capacity RNA-to-cDNA Kit (Applied 

Biosystems) under conditions provided by the supplier. Real-time quantitative polymerase 

chain reaction (qRT-PCR) was performed by using SYBR Green reagents (Applied 

Biosystems) and ABI ViiA 7 System (Applied Biosystems) according to the manufacturer’s 
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instructions. GAPDH (glyceraldehyde3-phosphate dehydrogenase) was used as an internal 

control. Delta delta Ct method was used for quantification. Primers used for qRT-

RCR are as follows: CDK7 forward: GCCCCCGAGTTACTATTTGG, CDK7 reverse: 

GGTCTGAATCTCCTGGCAAA; GAPDH forward: ACACCATGGGGAAGGTGAAG, 

GAPDH reverse: AAGGGGTCATTGATGGCAAC.

Protein isolation and Western blot—Whole cell extracts were prepared by directly 

boiling harvested cells in 6X loading buffer. Proteins were resolved by SDS-PAGE and 

transferred to PVDF-membrane (Millipore, IPVH00010). The membrane was blocked in 

5% blotting-grade blocker (Bio-Rad, 170-6404) and incubated with primary and secondary 

antibodies successively. Immunoreactive proteins were visualized by using the Western 

HRP substrate (Millipore, WBLUF0500). Antibodies used are as follows: anti-CDK7 (Santa 

Cruz, sc-7344), anti-β-tubulin (Cell signaling, 2128), anti-mouse IgG HRP linked (Cell 

signaling, 7076), anti-rabbit IgG HRP linked (Cell signaling, 7074).

CDK7 single allele knockout by CRISPR/Cas9—LentiCRISPRv2 and lentiviral 

packing vectors were purchased from Addgene. Two sgRNAs that targeted the 

flanking regions of CDK7 coding sequence (CDS) were subcloned into LentiCRISPRv2 

vector. LentiCRISPRv2 and packaging vectors were transfected into the packaging 

cell line 293T (ATCC) by using the FuGENE6 Transfection Reagent (Promega). The 

medium containing lentivirus was collected 48h after transfection. OVCAR5 cells were 

simultaneously infected with lentivirus encoding two sgRNAs in the presence of 8 

μg/ml polybrene (Sigma). After puromycin selection, OVCAR5 cells were expanded 

and picked up single clones by limiting dilution. Oligos used for sgRNA constructs 

are as follows: 5’ CDK7 sgRNA forward: CACCGTCAGCCACTAGATACAACTA, 

5’ CDK7 sgRNA reverse: AAACTAGTTGTATCTAGTGGCTGAC; 3’ CDK7 

sgRNA forward: CACCGTCACAAATCTGTAGTAGCAT, 3’ CDK7 sgRNA reverse: 

AAACATGCTACTACAGATTTGTGAC. Genomic DNA was extracted by using 

phenol/chloroform from each clone. PCR was performed to verify CDK7 

wild type (WT) and knockout alleles, whose products were approximately 

1,100 bp and 1,700 bp, respectively. Primers used for PCR verification 

are as follows: CDK7 knockout allele forward: CTAAGGGCTTTGCAG 

GTGTG, CDK7 knockout allele reverse: TGGCCTTGTGAGACCCTAAG; CDK7 

WT allele forward: TTGAGTGCGTGTTTTCCCAG, CDK7 WT allele reverse: 

ACCAACTCCTAATGCCTGCT.

QUANTIFICATION AND STATISTICAL ANALYSIS

Large-scale and multi-dimensional profiling data generated by the publicly accessible 

databases (TCGA, GTEx, CPTAC, and DepMap) were used, therefore statistical analysis 

was not used to predetermine sample size in this study. For TCGA analysis, if more than one 

profiling file existed for a patient in TCGA, only one single file will be selected and used, 

and detailed methods for exclusion of duplicated profiling files are described in the STAR 

Method section. The computational analyses were not randomized, and the investigators 

were not blinded during data analyses of this study. When applicable, enrichment was 

tested using Fisher’s exact test with FDR correction. Linear regression models with different 
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predictor variables (expression or copy number) were applied to fit the dependency profile 

of each target gene across screened cancer cell lines. Benjamini-Hochberg (BH) method was 

used to adjust the p-value (see method details). Cell viability and gene relative expression 

data were shown as means with standard deviation (SD). Comparisons between groups were 

performed using student t-test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We combine 6 druggable genome resources and define 6,083 genes as PDGs

• We characterize the expression, genomic alteration, and dependency of PDGs 

in cancers

• We estimate a PDG cancer drug target score, including 16 cancer-related 

features

• TCDA is developed and available to the public
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Figure 1. Definition of PDGs in the human genome
(A) Venn diagram shows the gene numbers of six resources. Size of circles: the gene 

numbers in each dataset.

(B) Venn diagram shows the numbers of PDGs that overlap among the six resources. From 

the inner to the outer circles, the diagrams represent the numbers of the PDGs shared by six 

(n = 714), five (n = 698), four (n = 1,030), three (n = 755), and two (n = 2,638) datasets, 

respectively.

(C) Heatmap shows the similarity among the six resources, which were ordered by 

unsupervised clustering. The core gene families contributed a considerable number of 

overlapping PDGs.

(D) Classification of PDGs based on gene family category (left) and target development 

level (TDL) (right).

(E) River plot shows the relationships among gene family category, TDL, and PubTator 

scores of the PDGs. The width of the bar is proportional to the number of PDGs in each 

category.

Jiang et al. Page 30

Cell Rep. Author manuscript; available in PMC 2022 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Expression of PDGs across cancers
(A) Mosaic plots show the classification of the PDGs based on their expression patterns.

(B) Expressional distribution of typical examples of selectively expressed PDGs across 

cancers. Cancer type of each sample in the density plots is indicated by color code under the 

plots.

(C) Summary of the numbers of lineage-enriched PDGs and PDGs with relatively higher 

expression in cancer (caPDGs) in each cancer type. Size of circles: number of genes. 

Orange, lineage-enriched PDGs; red, caPDGs.

(D) Percentage of genes in different expression categories for each gene family.
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(E) Workflow of identifying caPDGs. Five principally different computational strategies 

were applied to identify caPDGs.

(F) Expression levels of typical examples of identified caPDGs across normal and tumor 

specimens. Cancer types in which the caPDGs were identified are labeled by colors. Based 

on specificity scores, the identified potential caPDGs were classified into three tiers (high, 

moderately, and low confident).
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Figure 3. Somatic copy number alterations of PDGs across cancers
(A) Workflow of somatic copy number alterations (SCNA) analysis.

(B) Scatterplots show distribution of overall amplification or deletion G scores of all protein-

coding genes, arranged in ascending order of G scores. Heatmaps show PDGs by gene 

families in the same order as the scatterplots. Bar plots (right) show enrichment of amplified 

or deleted PDGs in the corresponding gene families. Purple, enriched; orange, depleted.

(C) Bubble plots show the SCNA G scores of the top 100 PDGs driven by SCNAs across 

cancers. Left, copy number gain; right, copy number loss. Size of bubbles, G score; red, 

gain; blue, loss. Heatmap (left) show the PubTator scores. Green, <150 (understudied 

genes); red, >150. Target development level of each gene is indicted by color codes.

(D) Pie diagrams show the percentage of amplified and deleted PDGs in each gene family. 

Yellow line indicates the overall percentage across all PDGs.
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(E) Mosaic plots show the distribution of amplified and deleted PDGs in each TDL.
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Figure 4. Somatic mutations of PDGs across cancers
(A) Workflow of mutation analysis.

(B) Scatterplots show distribution of overall M scores of all protein-coding genes, arranged 

in ascending order of M scores. Heatmaps show PDGs with (upper) or without (lower) 

hotspot mutations, displayed by gene families and in the same order as the scatterplots. Bar 

plots (right) show enrichment of mutated PDGs in the corresponding gene families. Purple, 

enriched; orange, depleted.

(C) Bubble plot show the mutation frequencies and recurrent mutation indexes of the top 

100 cancer-associated PDGs driven by somatic mutations across cancers. Size of bubbles, 

overall mutation frequency; intensity of color, recurrent mutation index. Heatmap (left) 

shows PubTator scores. Green, <150 (understudied genes); red, >150. Target development 

level of each gene is indicted by color codes.
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(D) Bubble plot show frequencies of hotspot mutations in the PDGs presented in (B) (genes 

are arranged in the same order). Size of bubbles: hotspot mutation frequency. Hotspot 

mutations that were predicted as gain-of-function mutations are indicated as red.

(E) Pie diagrams show the percentage of mutated PDGs with (red) or without (orange) 

hotspot mutations in each gene family. Blue line indicates the overall percentage of mutation 

across all PDGs.

(F) Mosaic plots show the distribution of mutated PDGs for each TDL. Left, overall 

mutation, right, hotspot mutation.
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Figure 5. Cancer dependency of PDGs across cancer cell lines
(A) Bar plot shows enrichment of cancer-dependent PDGs in the corresponding gene 

families. Cancer-dependent PDGs were defined as common essential or strongly selective in 

the DepMap project. Purple, enriched; orange, depleted.

(B) Mosaic plots show the distribution of TDL classes among cancer-dependent PDGs.

(C) Volcano plot summarizes correlations between dependency and gene mutation for 

cancer-dependent PDGs. Each dot represents one cancer-dependent PDG with recurrent 

mutations. Of the genes whose mutations were significantly correlated with either increased 

or decreased sensitivity to RNAi knockdown (purple or green, respectively; FDR < 10%), 

genes with hotspot gain-of-function mutations were highlighted with red circles.
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(D) Volcano plot summarizes correlations between dependency and gene expression for 

cancer-dependent PDGs. At the FDR 10% level, the genes whose higher expression 

levels were significantly correlated with either increased or decreased sensitivity to RNAi 

knockdown were categorized as group I (purple) or group II (green), respectively.

(E) Correlation of gene dependency (x axis, RNAi; y axis, CRISPR) with RNA expression 

for cancer-dependent PDGs. Purple or green, significant in either RNAi or CRISPR; borders, 

significant in both analyses; gray, not significant. Coordinates: “signed log q values” by 

linear regression; negative/positive sign: higher gene expression associated with increased/

decreased sensitivity.

(F) Percentage of group I (purple) and group II (green) genes in each gene family.

(G and H) Correlation of gene dependency (RNAi) with copy number (x axis) and RNA 

expression (y axis) for amplified PDGs (G) and deleted PDGs (H). Points in pink/green or 

orange/blue indicate significance in either copy number or expression analysis; points within 

borders indicate significance in both analyses; points in gray indicate non-significance. 

Coordinates: “signed log q values” by linear regression; negative sign: high gene expression 

or copy number associated with increased sensitivity; positive sign: high gene expression 

or copy number associated with decreased sensitivity; distance from 0: q value; FDR: false 

discovery rate.

(I and J) Correlation of gene dependency (x axis, RNAi; y axis, CRISPR) with copy number 

for cancer-dependent amplified PDGs (I) and deleted PDGs (J). Each dot represents one 

cancer-dependent PDG with recurrent copy number alterations (G score for amplification 

>0.61 or G score for deletion >0.66). Pink/green or orange/blue, significant in either RNAi 

or CRISPR analysis; borders, significant in both analyses; gray, not significant. Coordinates: 

“signed log q values” by linear regression; negative/positive sign: higher copy number 

associated with increased/decreased sensitivity.

(K) Cancer cell lines with hemizygous losses of CDK7 were sensitive to CDK7i. 

Representative colony formation assay of a panel of cancer cell lines treated with a series 

of dosages of THZ1 for 6 days. CDK7 copy number status of each line was assessed by 

GISTIC.

(L) Manipulation of CDK7 copy number by CRISPR-Cas9.

(M) PCR results of wild-type OVCAR5 and two CDK7 hemizygously deleted clones. Bands 

of 1.7 and 1.1 kb indicate CDK7-deleted and wild-type alleles, respectively.

(N) qRT-PCR analysis (top) and western blot (bottom) show CDK7 RNA and protein 

expression among the indicated cells, respectively.

(O and P) Representative colony formation assay (O) and survival fraction (P) of wild-type 

OVCAR5 and two CDK7 hemizygously deleted clones treated with a series of dosages 

of THZ1 for 6 days. All experiments were performed in triplicate. Statistical analysis by 

Student’s t test, *p < 0.05; n = 3. Error bars represent means ± SD.
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Figure 6. Systematic integration of multidimensional profiles of PDGs across cancers
(A) Illustration of generation of a PCDT score for each PDG in cancer.

(B) Workflow of estimation of the PCDT score.

(C) A four-module score system provides comprehensive information for identification and 

prioritization of potential candidates for drug targets in oncology.
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Figure 7. Large and unexplored opportunities for development of anticancer drugs
(A) Density plots show distribution of core PCDT scores among PDGs stratified by gene 

families.

(B) Bar plot shows enrichment of PDGs with high core PCDT scores in the corresponding 

gene families.

(C) Mosaic plots show distribution of TDL classes within PDGs with high core PCDT 

scores.

(D) Word clouds of the high core PCDT score PDGs in three gene families. Size of fonts: 

core PCDT score. Color of fonts: target tractability defined by the Open Targets database; 

red, clinical precedence; pink, discovery precedence; gray, others.

(E) Overview of the TCDA data portal.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-CDK7 antibody Santa Cruz Biotechnoloy Cat#sc-7344; RRID:AB627243

Anti-b-Tubulin antibody Cell Signaling Technology Cat#2128; RRID AB_823664

Anti-mouse IgG, HRP-linked antibody Cell Signaling Technology Cat#7076; RRID:AB_330924

Anti-rabbit IgG, HRP-linked antibody Cell Signaling Technology Cat#7074; RRID:AB_2099233

Chemicals, peptides, and recombinant proteins

THZ1 Selleck Chemicals Cat#S7549

FuGENE 6 Promega Cat#E2691

Crystal violet solution Sigma-Aldrich Cat#HT901

Polybrene infection/transfection reagent Sigma-Aldrich Cat#TR-1003-G

PowerUp SYBR green master mix Applied Biosystems Cat#A25742

Blotting-grade blocker Bio-Rad Cat#1706404

Immobilon forte western HRP substrate Millipore Sigma Cat#WBLUF0500

Critical commercial assays

High-Capacity cDNA Reverse Transcription 
Kit Applied Biosystems Cat#4368813

Deposited data

TCGA genomic profiling TCGA project http://cancergenome.nih.gov

TCGA Affymetrix SNP6.0 array data (CEL) TCGA Data Portal https://tcga-data.nci.nih.gov/tcga/

TCGA Affymetrix SNP6.0 array data 
(segmentation) TCGA GDAC Firehose http://gdac.broadinstitute.org/

TCGA whole exome sequencing data TCGA MC3 project https://doi.org/10.7303/syn7214402

TCGA RNA sequencing data Genomic Data Commons https://portal.gdc.cancer.gov/

TCGA transcript fusion data (Hu et al., 2018) http://tumorfusions.org/

Cancer Cell Line Encyclopedia (CCLE) The Broad Institute https://portals.broadinstitute.org/ccle

Dependency Map (DepMap) portal The Broad Institute https://depmap.org/portal/

Drug Gene Interaction Database (DGIdb) (Cotto et al., 2018) https://www.dgidb.org/

Open Targets Platform (Carvalho-Silva et al., 2019) https://platform.opentargets.org/

Histone modification enzymes (HMEs) 
annotation

Structural Genomics Consortium https://chromohub.thesgc.org/static/
ChromoHub.html

PHAROS database (Nguyen et al., 2017) https://pharos.nih.gov/

Target Central Resource Database (TCRD) (Nguyen et al., 2017) http://juniper.health.unm.edu/tcrd/

Functional Cancer Genome data portal This paper http://fcgportal.org/home

Cancer Druggable Gene Atlas (TCDA) This paper http://fcgportal.org/TCDA/

Experimental models: Cell lines

OVCAR3 ATCC HTB-161

MCF7 ATCC HTB-22

HCC1937 ATCC CRL-2336

CAOV3 ATCC HTB-75
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REAGENT or RESOURCE SOURCE IDENTIFIER

MDA-MB-468 ATCC HTB-132

HCC38 ATCC CRL-2314

SKBR3 ATCC HTB-30

SKOV3 ATCC HTB-77

UWB1.289 ATCC CRL-2945

293T ATCC CRL-3216

OVCAR4 NCI Development Therapeutics 
Program N/A

OVCAR5 NCI Development Therapeutics 
Program

N/A

Oligonucleotides

Primers used for PCR analyses This paper N/A

Oligos used for sgRNA constructs This paper N/A

Recombinant DNA

LentiCRISPRv2 (Sanjana et al., 2014) Addgene #52961

Software and algorithms

ABSOLUTE (Carter et al., 2012) https://software.broadinstitute.org/cancer/cga/
absolute

GISTIC 2.0 (Mermel et al., 2011) ftp://ftp.broadinstitute.org/pub/GISTIC2.0/

MutSigCV (Lawrence et al., 2013) http://software.broadinstitute.org/cancer/software/
genepattern/modules/docs/MutSigCV

Oncodrivefm (Gonzalez-Perez and Lopez-Bigas, 
2012) http://bg.upf.edu/group/projects/oncodrive-fm.php

OncodriveCLUST (Tamborero et al., 2013) http://bg.upf.edu/group/projects/oncodrive-
clust.php

ActiveDriver (Reimand and Bader, 2013) http://www.baderlab.org/Software/ActiveDriver

HotSpot3D (Niuetal., 2016) https://github.com/ding-lab/hotspot3d

fGSEA R package https://bioconductor.org/packages/release/bioc/
html/fgsea.html

Cell Rep. Author manuscript; available in PMC 2022 March 14.

https://software.broadinstitute.org/cancer/cga/absolute
https://software.broadinstitute.org/cancer/cga/absolute
ftp://ftp.broadinstitute.org/pub/GISTIC2.0/
http://software.broadinstitute.org/cancer/software/genepattern/modules/docs/MutSigCV
http://software.broadinstitute.org/cancer/software/genepattern/modules/docs/MutSigCV
http://bg.upf.edu/group/projects/oncodrive-fm.php
http://bg.upf.edu/group/projects/oncodrive-clust.php
http://bg.upf.edu/group/projects/oncodrive-clust.php
http://www.baderlab.org/Software/ActiveDriver
https://github.com/ding-lab/hotspot3d
https://bioconductor.org/packages/release/bioc/html/fgsea.html
https://bioconductor.org/packages/release/bioc/html/fgsea.html

	SUMMARY
	Graphical Abstract
	In brief
	INTRODUCTION
	RESULTS
	Definition of potentially druggable genes in the human genome
	Expression of the PDGs across cancers
	Somatic copy number alterations of the PDGs across cancers
	Somatic mutations of the PDGs across cancers
	Transcript fusions of PDGs across cancers
	Cancer dependency of PDGs across cancer cell lines
	Systematic integration of multidimensional profiles of PDGs across cancers

	DISCUSSION
	Limitations of the study

	STAR★METHODS
	RESOURCE AVAILABILITY
	Lead contact
	Materials availability
	Data and code availability

	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	Cell lines

	METHOD DETAILS
	Definition of the potentially druggable genes
	RNA-seq data processing and gene expression analysis
	Classification of expressional distribution
	Identification of PDGs specifically expressed in cancers (caPDGs)
	SNP array data collection and processing
	Recurrent focal SCNA estimation
	Correlation analysis between copy number and RNA expression
	Identification of the putative cancer-associated PDGs driven by SCNAs
	Whole-exome sequencing data collection and processing
	Recurrent mutation gene estimation
	Transcript fusion data collection and analysis
	Definition of genes associated with significant genomic alterations at a pan-cancer level
	Characterization of dependencies of the PDGs in cancer cell growth
	Generation of cancer drug target score
	Colony formation assay
	RNA isolation and qRT-PCR
	Protein isolation and Western blot
	CDK7 single allele knockout by CRISPR/Cas9

	QUANTIFICATION AND STATISTICAL ANALYSIS

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	KEY RESOURCES TABLE

