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Pan-cancer analysis connects tumor matrisome
to immune response
Su Bin Lim 1,2, Melvin Lee Kiang Chua 3,4,5, Joe Poh Sheng Yeong6,7, Swee Jin Tan8, Wan-Teck Lim7,9,10 and Chwee Teck Lim 1,2,11,12

Recent sequencing efforts unveil genomic landscapes of tumor microenvironment. A key compartment in this niche is the
extracellular matrix (ECM) and its related components –matrisome. Yet, little is known about the extent to which matrisome pattern
is conserved in progressive tumors across diverse cancer types. Using integrative genomic approaches, we conducted multi-
platform assessment of a measure of deregulated matrisome associated with tumor progression, termed as tumor matrisome index
(TMI), in over 30,000 patient-derived samples. Combined quantitative analyses of genomics and proteomics reveal that TMI is
closely associated with mutational load, tumor pathology, and predicts survival across different malignancies. Interestingly, we
observed an enrichment of specific tumor-infiltrating immune cell populations, along with signatures predictive of resistance to
immune checkpoint blockade immunotherapy, and clinically targetable immune checkpoints in TMIhigh tumors. B7-H3 emerged as
a particularly promising target for anti-tumor immunity in these tumors. Here, we show that matrisomal abnormalities could
represent a potential clinically useful biomarker for prognostication and prediction of immunotherapy response.

npj Precision Oncology            (2019) 3:15 ; https://doi.org/10.1038/s41698-019-0087-0

INTRODUCTION
The extracellular matrix (ECM) is a complex multi-spatial mesh-
work of macromolecules with structural, biochemical and
biomechanical cues, influencing virtually all fundamental aspects
of cell biology.1 Although tightly controlled during normal
development, ECM is frequently altered in many diseases,
including cancer.2,3 Despite clear evidence of abnormal tumor
matrix in cancer, characterization and understanding their
functional role in tumors have been challenging, possibly owing
to complex nature of ECM proteins and their associated factors, or
matrisome.4–6 Little is known about the extent to which
matrisome pattern is shared across various carcinomas or unique
in tumors of differing metastatic potential; it remains unknown as
to whether there exist subclasses of tumor matrisome that
modulates tumor initiation and response to therapy, particularly
in the context of immune response.
Tumor matrisome index (TMI) is a 29-matrisome-gene expres-

sion based classifier that has been validated for its predictive value
in prognosis and adjuvant therapy response in early-stage non-
small cell lung cancer (NSCLC).7,8 TMI comprises exclusively of a
small set of matrisome gene signatures, primarily encoding non-
core matrisome proteins, which were found to be most
differentially expressed in NSCLC relative to matched normal
epithelium. In essence, TMI is calculated by the sum of the
expression level that is multiplied by predefined Cox proportional
hazards model coefficient of each TMI gene (see Methods).

Here we hypothesized that this specific pattern of deregulated
matrisome could be a common determinant of tumor aggression
irrespective of tumor origin. Given the prognostic significance of
TMI in predicting the response to adjuvant chemotherapy (ACT) in
NSCLC,8 we investigated if TMI would be associated with
signatures predictive of clinical response to immune checkpoint
inhibitor (ICI) treatments, including total mutational burden (TMB),
PD-L1 expression, tumor-infiltrating lymphocytes (TILs), and
immune gene signatures.9 Through parallel analyses of whole-
transcriptomic and matched proteomic data, we report robust
associations of TMI with TMB, histopathological and clinical
features, and reveal the immune landscape of matrisome-
deregulated tumors. Our resource of curated compendiums of
8,386 genome-wide profiles, and molecular and clinical associa-
tions of TMI may advance our understanding on the underlying
role of biophysical matrix changes that is common across
cancer types.

RESULTS
Matrisome is commonly deregulated in human cancers
The present study was conducted to extend the investigation of
TMI performance into 11 major cancer types (Fig. 1a). To facilitate
multi-platform parallel analyses with RNA-seq-acquired TCGA data,
we first generated a unified, cancer type-specific, merged
microarray-acquired dataset (MMD), comprising 8386 transcrip-
tome profiles of tumor and tumor-free tissues, using our
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previously developed R pipeline7 (Supplementary Data files S1
and S2; see Methods). As TMI biomarkers were derived from lung
cancer, we first queried the extent to which genome-wide
expression patterns of lung cancer would be shared across
various cancers.
Using MMD and TCGA, we found that the differential expression

patterns of lung cancers, relative to non-tumor controls, were
comparable to that of breast, ovarian, bladder, colorectal, and
prostate cancers, regardless of assayed platforms (Tables S1 and
S2), as recently observed in systematic pan-cancer analyses.10,11

Several of the 29 TMI genes were consistently placed in the top
ranked differentially expressed gene (DEG) list across multiple
cancer types at the individual gene level (Fig. 1b and Table S3). We
identified a subset of genes that was significantly enriched in lung
adenocarcinoma (UAD), prostate adenocarcinoma (PRAD), kidney
renal papillary cell carcinoma (KIRP), stomach adenocarcinoma
(STAD), colon adenocarcinoma (COAD), breast invasive carcinoma
(BRCA), liver hepatocellular carcinoma (LIHC) and bladder urothe-
lial carcinoma (BLCA), and we termed it as a generic TMI signature
(Supplementary Data file S3; see Methods). This initial screen
supported our hypothesis that altered matrisome dynamics might
represent a common phenotype across different malignancies.

TMI distinguishes cancers from normal tissues
Except for TCGA PAAD (pancreatic adenocarcinoma), which had
an insufficient number of normal samples (n= 4), all cancer types
demonstrated significant difference in the TMI between tumor
and non-tumor tissues (Fig. 1c and Supplementary Data files S1, S4
and S5). Expectedly, NSCLC-derived TMI achieved near-perfect
diagnostic accuracy in lung cancer datasets, where the area under
the receiver operating characteristic (ROC) curve (AUC) at the
optimal cut-offs was 0.946, 0.999, and 0.999 in lung MMD, TCGA

LUAD, and LUSC (lung squamous cell carcinoma), respectively (Fig.
1d). Across all malignancies, we observed an overall classification
accuracies of 82% and 92% using MMD and TCGA datasets,
respectively (Table S4). Of note, the observed difference between
the two assayed platforms (MMD vs. TCGA) is possibly due to
different number of TMI genes filtered in TCGA for final index
computation (Supplementary Data file S2; see Methods).
To perform a pan-cancer analysis with minimal technical

variability across samples, we next analyzed an independent data
source in which tumors were procured under standard conditions
(Fig. S1 and Supplementary Data file S6; see Methods). Although
over a narrower range than for lung cancer, 1492 carcinomas
spanning 10 cancer types displayed a wide and diverse TMI
distribution, suggesting a varying degree of matrisome abnorm-
alities at different stages of cancer progression and a specific TMI
spectrum for each cancer type.

TMI is predictive of patient survival
We obtained a total of 72 independent validation cohorts
annotated with clinical information, including overall survival
(OS), disease-specific survival (DSS), disease-free survival (DFS),
relapse-free survival (RFS), metastasis-free survival (MFS), and/or
progression-free survival (PFS) data. As previously described,8 a
cut-off index was determined for each dataset to stratify patients
into TMIlow and TMIhigh groups. Univariable survival analyses
revealed a cancer-specific association of TMI in predicting time to
death, recurrence, and distant metastasis (Fig. 2a, b; Supplemen-
tary Data file S7; see our earlier work for lung cancer8). TMIhigh was
an unfavorable prognostic factor for OS in colon, liver, renal, and
breast cancers, whereas it appeared to confer a favorable
prognosis in ovarian and gastric cancers, even after adjustment
for clinical parameters on multivariable analyses using TCGA

Fig. 1 Common matrisome variation in human cancers. a Schematic of the study design: 11 cancer type-specific, merged microarray-acquired
dataset (MMD) were newly generated for parallel analyses with TCGA cohorts. b Circular plot illustrating the ranked position of matrisome
genes based on differential expression (cancer vs. normal) in TCGA cohorts. 1 denotes the most differentially expressed gene (DEG). Black and
gray lines represent the ranked position of generic and lung-specific TMI signature, respectively. c TMI in tumor vs. non-tumor tissues across 11
cancer types. The black horizontal line indicates the mean of the samples. ***Mann–Whitney U-test P < 0.001, **P < 0.01, *P < 0.05. d Area
under the ROC curves (AUCs) of the TMI classifier for all cancer types. Smooth ROC curves are drawn for MMDs (left) and TCGA cohorts (right)
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datasets (Fig. 2c and Supplementary Data file S8). Comparing with
traditional clinical features between TMIlow and TMIhigh patients
from TCGA datasets, we found that the TMIhigh group had a higher
proportion of patients staged pathologically as T3 or T4,
diagnosed as lymph node and distant metastasis positive, and
classified as late stage (Fig. 2d).

TMI is associated with pathological and molecular features
We next asked if there would be a change in TMI during multistep
carcinogenesis. In breast, colorectal, and pancreatic cancers, we
observed increasing TMI values corresponding to the progressive
steps of oncogenesis (normal to adenoma to carcinoma in-situ to
invasive carcinoma; Fig. 3a and Supplementary Data file S9). Next,
we further investigated for an association between TMI and
known prognostic molecular phenotypes in breast cancers
(Luminal A/B, HER2+ and basal subtypes).12,13 Our prognostic
TMI was highest among the most adverse molecular phenotypes
(basal and HER2+ tumors), which were known to harbor the worst
prognosis (Fig. 3b and Supplementary Data file S10).
We also explored if TMI expression would be correlated with

genomic mutational burden, and analyzed matched whole-exome
sequencing-derived data of nine TCGA cohorts (pancreas,
stomach, prostate, colon, lung, breast, liver, kidney, and bladder),
for which TMI has previously been computed (Table S5). TMI was
positively correlated with somatic TMB across cancer types
(Spearman’s rho test rs= 0.23 and P= 1.77E-14 (Breast) to rs=
0.48 and P= 1.41E−11 (Pancreas); Fig. 3c, top; Supplementary
Data file S11). Additionally, based on a previously defined cut-off
for discretization into TMIhigh and TMIlow, the former harbored
significantly higher TMB in all cancers (Fig. 3c, bottom), except for

renal (Mann–Whitney U-test P= 0.104) and liver cancers
(Mann–Whitney U-test P= 0.065).

TMI in the context of immune response
Given the evidence in support of TMB as a robust determinant of
tumor immunogenicity in many solid tumors,14,15 and that TMI is
closely associated with TMB, we next asked if there would be any
direct association of this specified matrisomal pattern with the
cancer immune landscape. Applying machine learning-based
CIBERSORT to MMD and TCGA cancer patient samples (see
Methods), we observed a close correlation between TMI and the
composition of specific TIL populations for several cancers (Fig.
4a). Enrichment of these TILs related to both innate and adaptive
immunity was diverse and cancer type-specific. Relative abun-
dance of M0 and M1 macrophages, neutrophils, activated mast
cells, regulatory T cells (Treg), and T follicular helper (Tfh) cells,
activated CD4+ memory T cells increased, while resting CD4+
memory T cells, mast cells, naive B cells, and resting dendritic cells
decreased with tumor-promoting matrisomal change (Supple-
mentary Data file S12). Impact on immune infiltrates was
particularly pronounced in gastric, lung, colorectal and breast
cancers, having significant positive and negative correlations with
TMI, thus highlighting the influence on the immune contexture
during matrisome remodeling in this subset of cancers.
Early works suggest that signatures of T cell states, particularly

that of CD8+ T cells, may predict clinical response to ICI-based
immunotherapy.16–19 Of all cancer types analyzed, breast (BRCA)
and pancreatic (PAAD) cancers demonstrated pronounced nega-
tive correlation with the estimated abundance of CD8+ T cells,
indicating that TMIlow tumors harbored higher CD8+ T-cell

Fig. 2 Clinical outcomes in correlation with TMI. a Hazard ratio (HR) forest plot for overall survival (OS) and disease-specific survival (DSS)
endpoints (total sample size= 8957). b HR forest plot for other survival endpoints (total sample size= 4502). Abbreviated names of survival
endpoints are provided in Supplementary Data file S7. c Patient stratification based on predefined cut-offs and multivariable HR of each TCGA
dataset. d Comparison of conventional clinical parameters between TMIlow (L) and TMIhigh (H) patients
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infiltration levels in these cancers. To validate their differential
expression at the protein level, we assessed matched proteomes
of TCGA samples provided by the NCI Clinical Proteomic Tumor
Analysis Consortium for breast (BRCA) cancers, for which samples
were previously classified as either TMIlow or TMIhigh at the
transcriptomic level (CPTAC; see Methods).
A matched-cohort assessment of 108 BRCA samples revealed

higher protein levels of CIBERSORT-defined CD8+ T cell signa-
tures, including CD8A, GZMB, LIME1, and RASA3, in TMIlow tumors
(Fig. 4b). Interestingly, differential expression analysis of whole
proteomes comparing the two groups (TMIhigh vs. TMIlow)
identified MAGEA3, a frequently expressed tumor-specific antigen,
as the second most highly expressed protein in TMIlow tumors (Fig.
4c). The functional contribution of spontaneously occurring
MAGEA3-reactive CD8+ T cells to favorable prognosis20 may
explain the better patient outcomes consistently observed in
TMIlow breast tumors.
Abundance of CD8+ T cells has been associated with better

response to immunotherapies.9,17,18 Given the enriched CD8+ T
cell signatures at both transcript and protein levels in TMIlow
tumors, we next investigated the association between TMI and
recent reported predictive signatures for immunotherapy
response. The responder signature comprises 161 genes, which
were highly expressed in anti-PD-1 responding melanoma
patients compared to non-responding patients21 (see Methods).
Intriguingly, TMI was highly negatively correlated with the gene

set variation analysis (GSVA) z-scores of the responder signature for
each breast cancer sample (TCGA BRCA; see Methods); higher
levels of GSVA z-scores of the responder signature were found in
TMIlow tumors, in which CIBERSORT-defined CD8+ T cell
signatures were enriched in these selected tumors (Fig. 4d).
Extending the analysis to the other cancer types, we found that
except for melanomas, TMI had negative correlations between the
two variables, to different extents, with the most pronounced
association seen in lung cancer (Fig. 4e).

B7-H3 as a potential immune target for TMIhigh tumors
We next correlated the index with the expression of 20 potentially
targetable immune checkpoints—that are currently in preclinical
or clinical trial stages, and/or FDA-approved22 (Fig. 5a and
Supplementary Data file S13). Unexpectedly, the data revealed
strong correlations of TMI with B7-H3 expression in all (MMD) and
nearly all (TCGA) tumor samples regardless of cancer types. Having
observed mRNA-protein expression correlation using the pro-
cessed proteomic data in TCGA BRCA cohort (Fig. 5b; Spearman’s
rho test rs= 0.38 and P= 4.19E−05), we found markedly higher
levels of B7-H3 protein expression in TMIhigh breast tumors (Fig.
5c). We thus speculate that the present combined quantitative
analyses may help to unveil specific immune targets that could be
selectively efficacious in a subset of tumors across diverse
carcinomas.

Fig. 3 Tumor pathology and molecular features associated with TMI. a Tumor pathology associations with TMI in breast, colon and pancreas
cancers. b TMI stratified by molecular subtypes in breast cancer. c Correlation of TMI with total mutational burden (TMB) in TCGA cohorts.
Patient samples in each dataset are stratified into TMIlow or TMIhigh group based on the optimal predefined TMI cut-offs. Linear regression lines
are drawn (black line) with 95% CI (gray zone); n= number of samples analyzed; rs= Spearman’s correlation coefficient; Mann–Whitney U-test
P-values are stated. For a and b, Kruskal–Wallis P-values are stated. For a–c, box hinges represent 1st and 3rd quartiles, and middle represents
the median. The upper and lower whiskers extend from hinges up and down indicate the most extreme values that are within 1.5*IQR
(interquartile range) of the respective hinge. The short horizontal lines represent the standard deviations
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Promising predictive value for immunotherapy and other
potential targets
We questioned if TMI could further be associated with innate PD-1
resistance signature (IPRES), including genes involved in immu-
nosuppression, angiogenesis, monocyte and macrophage chemo-
taxis, and EMT,21 comparatively with other commercially available
multi-gene tests (MGTs). Given that TMI signatures were derived
from lung cancer, we chose lung cancer-derived prognostic MGTs
and their predictive values for immunotherapy were assessed
using lung cancer datasets (lung MMD and TCGA LUAD), with
MGT-specific predefined cut-off thresholds for risk stratification
(see Methods). The Myriad myplanTM Lung Cancer and PervenioTM

Lung RS tests are the only currently available prognostic MGTs for
lung cancers, which comprise 31 cell cycle progression (CCP)
genes and 11 cancer-related pathway genes, respectively. For
each validation dataset, IPRES-enriched patients were identified as
previously described21 (see Methods), and demonstrated signifi-
cant differences in TMI, but not in other prognostic indices, with
the exception of PervenioTM in the MMD cohort (Fig. 5d).
To identify potential therapeutic targets for both TMIlow and

TMIhigh groups, we performed differential proteomic analyses

comparing the two groups and investigated if there would be any
overlapping targets identified by other commercially available
MGTs. Of note, as matched proteomic data were available only for
breast cancer (TCGA BRCA), we analyzed two breast cancer MGTs
(Oncotype DX and MammaPrint) in addition to the two lung
cancer MGTs (Fig. 5e; Supplementary Data file S14; see Methods).
Interestingly, while both breast and lung cancer MGTs demon-
strated several differentially expressed proteins between the two
groups, we observed new potential targets that were exclusive to
either lung or breast cancers (Fig. 5f; Supplementary Data file S15).
Further, a total of 4 (CASP14, CENPI, PAX9, and TDRD12) and 12
(FAM174A, UBXN10, BBS5, C9orf40, CACNA2D2, TFF1, UBXN10,
RIPK4, CALHM6, WFDC2, NAGPA) proteins were consistently
enriched in MGThigh and MGTlow tumors in TCGA BRCA cohort,
respectively (Fig. 5g).

DISCUSSION
This work is based on multi-platform evaluation of TMI at multiple
molecular levels across 11 major cancer types. By curating a total
of 8836 patient-derived tumor and tumor-free samples, we

Fig. 4 TMI in the context of immune response. a Heatmaps showing Spearman’s correlations between TMI and the relative abundance of 22
immune cell types estimated by CIBERSORT for 11 cancer types in MMD (left) and TCGA (right). Spearman’s correlation coefficients and P-value
are denoted as rs and Ps, respectively. Columns and rows are ordered by increasing number of correlations with statistical significance found in
each dataset and immune cell type, respectively. b Relative protein abundance of CIBERSORT-defined CD8 T cell signatures in TMIlow vs.
TMIhigh breast tumors (TCGA BRCA). One-tailed t test P-values are stated. Box hinges represent 1st and 3rd quartiles, and middle represents the
median. The upper and lower whiskers extend from hinges up and down indicate the most extreme values that are within 1.5*IQR
(interquartile range) of the respective hinge. The short horizontal lines represent the standard deviations. c Volcano plot depicting
differentially expressed proteins in the two groups stratified by TMI in TCGA BRCA cohort. Red dots represent proteins with fold change (FC) >
1.5 and limma P < 0.05; Blue dots represent proteins with FC < -1.5 and limma P < 0.05; Gray dots represent proteins with either −1.5 < FC < 1.5
or limma P > 0.05. d Heatmap showing gene expression of CIBERSORT-defined CD8 T cell signatures (top). Heatmaps showing GSVA z-score of
the anti-PD-1 immunotherapy responders’ signatures (IPRES) in breast cancer (bottom) and e nine other cancer types using MMD and TCGA
datasets. Columns are ordered by increasing TMI
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generated 11 cancer type-specific MMDs annotated with clinical
features and deposited the data at ArrayExpress (see Data
availability). This approach minimizes biased selection of valida-
tion cohorts and allows parallel analyses with other high-
throughput data sources such as TCGA.
Considering that the index was computed under the assump-

tions of each gene having concordant regulation as observed in
lung cancer, it is noteworthy that tumors with highly dynamic and
constantly remodeling ECM could have ubiquitously altered
expression of matrisome genes across genetically and phenoty-
pically diverse epithelial tumors. The data may imply the presence
of shared signal transduction pathways activated across these
selected tumors, such as recently reported TGFβ or HIF1α/VEGF
pathways, in controlling ECM balance or cell-intrinsic mechanism
regulating the expression of set of ECM genes contributing to
tumor development.23

The functions of TMI matrisome genes, including secreted
factors and metalloproteinases, in forming the pre-metastatic niche
at specific target site remain poorly defined despite their well-
established role in local matrix degradation and regulation.24,25

Exceptions are MMP1, which induces vascular permeability and

mediates breast cancer metastasis to the lung,24,26 and S100
proteins, which generate pro-inflammatory phenotypes and
recruit non-resident, bone marrow-derived cells.24,27,28 Intrigu-
ingly, our survival analyses revealed that TMI was correlated with a
trophism for metastasis development to the lungs, but not to the
bones in breast cancer patients, albeit in a subset of studies (Fig.
2b). This may suggest that the TMI signatures could inform on the
tumor promoting microenvironment that facilitates metastasis to
respective tissue organs. Through a matched proteomic data
analysis, we further identified a small number of specific genes
consistently highly expressed at protein level in both risk groups
classified by TMI and other commercially available MGTs. Although
their expression levels and prognostic values in malignant tumors
remain inconclusive, high expression of CASP1429 and CENPI30

have been associated with poor prognosis in breast cancer,
consistent with our observations in TMIhigh patient group.
In addition to close associations with patient survival, we

provide a comprehensive overview of commonly deregulated
matrisome pattern in the context of tumor genotypes, molecular
phenotypes, and immune response. Particularly, our combined
quantitative analyses of matched proteomes revealed significant

Fig. 5 B7-H3 as a promising pan-tumor immune target for TMIhigh tumors. a Heatmaps showing Spearman’s correlations between TMI and
gene expression of 20 clinically targetable immune checkpoints for 11 cancer types in MMD (left) and TCGA (right) cohorts. Spearman’s
correlation coefficients and P-value are denoted as rs and Ps, respectively. b Correlation between CD276 (B7-H3) gene expression and protein
abundance using TCGA BRCA patient samples; rs= Spearman’s correlation coefficient, Spearman’s Ps < 0.05. c Relative B7-H3 protein level
(iTRAQ signal by CPTAC) in TMIlow and TMIhigh breast tumors (TCGA BRCA); one-tailed t test P-values are stated. d Prognostic indices in IPRES-
enriched vs. the rest of lung cancer patients based on three lung cancer-derived MGTs; Mann–Whitney–Wilcoxon test P-values are stated. e
Patient stratification based on two lung cancer-derived MGTs (myplanTM and PervenioTM) and two breast cancer-derived MGTs (Oncotype DX
and MammaPrint) in relation with TMI. Rows are ordered by increasing TMI. f Distribution of 10,625 proteins in MGThigh vs. MGTlow tumors
with a ± 1.5-fold expression change cut-off based on the limma analysis. g Venn diagram showing overlapping differentially expressed gene
signatures upregulated at the protein-level in MGTlow and MGThigh tumors. For c and d, box hinges represent 1st and 3rd quartiles, and middle
represents the median. The upper and lower whiskers extend from hinges up and down indicate the most extreme values that are within
1.5*IQR (interquartile range) of the respective hinge. The short horizontal lines represent the standard deviations
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enrichment of MAGEA3 and CD8+ T cell signatures in TMIlow
tumors. MAGEA3 is a cancer-germline gene highly expressed in
various carcinomas, but the gene is silent in normal adult tissues,
except for the testis and placenta.31 Independent of tumor
burden, the prognostic value of MAGEA3-reactive CD8+ T cells for
overall survival was reported in esophageal squamous cell
carcinoma.20 Further, the study observed elevated expansion of
functional MAGEA3-specific CD8+ T cells both in vitro and in vivo
upon anti-PD-1 treatment.20 It is thus tempting to speculate that
the genes included in the TMI signature might have functional
roles for immune surveillance in the tumor microenvironment,
given that MAGEA3 was the second most differentially expressed
gene and anti-PD-1 therapy responder signature was highly
enriched in TMIlow tumors.
To assess if the present approach could provide new indications

for immunotherapy, we next associated TMI directly with the
previously reported predictive biomarkers for ICI-based treat-
ments, such as TMB, PD-L1 expression, TIL density, peripheral
blood markers and other immune gene signatures.9 Of 20
targetable immune checkpoints, B7-H3 was the only gene with
higher protein expression in TMIhigh tumors in TCGA BRCA cohort.
Consistent with our findings, increasing evidence suggests B7-H3
as a negative predictor of patient outcomes in solid tumors,
including breast cancer.32–35 Further, its functional contribution to
T cell inhibition and immune evasion is increasingly being
recognized, making the molecule an appealing target as a novel
immunotherapeutic drug.36,37 Beyond its role as an immune
regulator, the functional impact of B7-H3 on cancer progression,
including migration,38 invasion,39 angiogenesis,40 and gene
regulation via epigenetic modifiers have also been suggested in
a variety of cancers.36 Here we demonstrate a potential clinical
utility of TMI as a pan-tumor predictive biomarker to identify a
subset of patients who may benefit from anti-B7-H3 treatment.
This concept could be validated using the same predefined cut-off
for TMI-based risk stratification in a prospective clinical trial of this
potential drug target.
Nonetheless, a clinically important finding in our study relates

to the relative predictive potential of the respective immune
response signatures in specific cancer types. For example, in lung
cancer, the IPRES signatures were enriched in TMIhigh tumors,
which had higher TMB and no significant change in PD-L1
expression level as well as CD8+ T cell density relative to TMIlow
tumors. These data point toward a closer association of IPRES with
matrisomal abnormalities than with other previously reported
signatures predictive of clinical response to ICI-based immu-
notherapy in this subset of tumors. As evidenced by recent clinical
studies, tumors with high PD-L1 expression might not necessarily
have low TIL density, or vice versa – for which either PD-L1 level or
TIL abundance alone might not serve as an ideal predictive
biomarker.9,41,42 However, more recent evidence do suggest that
specific biomarkers such as TMB harbor a broader clinical utility to
predict immunotherapy response across tumor types.14,15 Taken
together, we propose the design of combinatorial approaches
whereby tumor agnostic biomarkers are integrated with tumor-
specific molecular indices, so as to optimize the accuracy of
predicting immunotherapy response in specific cancer types.

METHODS
Data preprocessing and MMD generation
This article and the accompanying data descriptor were previously
published as preprints.43,44 Ethics approval was not required. Public
datasets analyzed in this study are summarized in Supplementary Data file
S1. Preprocessing methods, number of patient sample, platform assayed,
and genes included in the computation of TMI are recorded in
Supplementary Data file S2. Raw data of independent studies were RMA-
normalized using the affy package45 or preprocessed- or author-defined
normalized-data were used (Supplementary Data file S2). Most were

assayed with the full 29-gene platform (i.e., Affymetrix Human Genome
U133 Plus 2.0 Array). Probes having maximum expression values were
collapsed to the genes for subsequent index scoring. Comprising a total of
8,386 samples, 95 independent GEO datasets (http://www.ncbi.nlm.nih.
gov/geo), where raw data profiled on GPL570 platform were preprocessed,
merged, and ComBat-adjusted (batch-effect removed) using the inSilico-
Merging package46 based on cancer type, as previously done for lung
MMD.7

TCGA datasets
Using TCGA-Assembler package,47 the Cancer Genome Atlas (TCGA) data of
11 epithelial cancer types were collected, processed, and annotated with
clinical parameters (Supplementary Data files S1 and S2). Due to lack of
normal tissue samples, OV and SKCM cohorts, representing ovarian and
melanoma cancers respectively, were excluded in differential expression
analyses. TCGA-Assembler R package47 was used to extract normalized
RPKM count values. In each dataset, we excluded genes without minimum
1 counts per million (cpm) or RPMK value in <20% of total number of
samples were excluded using edgeR package.48 These filtered genes were
normalized by Trimmed Mean of M-values (TMM) and were subjected to
the voom function in the limma package49 for further analyses.

Generic TMI signature
We extracted the ranking of 29 TMI genes (Table S3) and visualized their
positions in each DEG list from each cancer-specific TCGA cohort using
circular plots generated via the circlize package.50 To further investigate the
extent to which TMI genes exhibit greater degree of differential expression
variation among 29 lung-specific TMI genes across all tumors, we derived a
generic TMI signature based on a weight computed for each TMI gene
using the following equation (1), which was slightly modified from
equation that was used to derive generic EMT signature in a previous
study51:

weight ðgÞ ¼
XD

d¼1
log2 fcgd

� �
´

2:0
ðPgd þ 1:0Þ ´

ndPD
i¼1 ni

(1)

where D is the total number of diseases (D= 7 in this study; prostate, renal,
gastric, colorectal, breast, liver, and bladder cancer), fcgd and Pgd are the
fold-change and adjusted P value of the TMI gene, g, of disease, d, and nd is
the number of patient samples in each TCGA cohort (Supplementary Data
file S3). As not all 29 TMI genes were present in the final cancer-specific
DEG list due to preprocessing, each gene was computed with different
number of total ni for the weight. Generic TMI signature was then derived
from 17 TMI genes having a weighted sum >3.90 and further visualized for
their position in the ranked DEG list in a circular plot (Fig. 1b). SFTPC gene
was not present in the final DEG list of all TCGA cohorts, except for lung
cancer cohort which was not included in the weight computation.

Prognostic index computation and patient stratification
Our 29-gene TMI signature comprise core and non-core matrisome
components, which have previously been constructed using bioinformatics
approaches7,8; based on the MatrisomeDB database,4 TMI’s core-
matrisome molecules include “collagens” (COL11A1, COL10A1, COL6A6),
“ECM glycoproteins” (SPP1, CTHRC1, TNNC1, ABI3BP, PCOLCE2), and
“proteoglycan” (OGN); non-core matrisome molecules include “ECM
regulators” (MMP12, MMP1, ADAMTS5), “ECM-affiliated proteins” (GREM1,
SFTPC, SFTPA2, SFTPD, FCN3), “secreted factors” (S100A2, CXCL13, WIF1,
CHRDL1, CXCL2, IL6, HHIP, S100A12), and other ECM-related components
(LPL, CPB2, MAMDC2, CD36). Expression level of each 29 TMI gene was
extracted from collapsed normalized data, and was multiplied by
predefined Cox regression coefficient to compute the sum of these values,
or the final index. As previously described,8 preprocessing filtered out
different number of genes depending on TCGA dataset (Supplementary
Data file S2), and cut-off index was determined using the Cutoff Finder
algorithm52 to stratify each patient cohort into TMIlow and TMIhigh groups.
For four other MGTs analyzed in this study, the descriptive list of gene
signatures, computation method, predefined threshold used for patient
stratification and the associated references are stated in Supplementary
Data file S14.

Diagnostic performance of TMI
Complete lists of the patient ID and respective personalized TMI from both
tumor and tumor-free samples across microarray and RNA-seq platforms
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are recorded in Supplementary Data files S4 and S5, respectively. TMI of
tumor and normal groups were compared using the
Mann–Whitney–Wilcoxon test. To further statistically evaluate the diag-
nostic accuracy of the TMI in deciding the presence of the disease, we
computed the area under the receiver operating characteristic (ROC) curve
(AUC), sensitivity, and specificity with the best threshold (Table S4) using
the pROC package.53 All ROC curves generated were subjected to binormal
smoothing for illustration (Fig. 1c).

TMI spectrum quantification
We analyzed the Expression Project for Oncology (expO) data provided by
the International Genomics Consortium (IGC, USA, www.intgen.com) for
TMI spectrum quantification, for tumor samples procured and processed
under standard conditions, resulting in minimal non-biological variations
across multiple cancer types. All tumor specimens annotated with prostate,
lung, renal, liver, gastric, breast, ovarian, pancreatic, colorectal, and bladder
cancer from the expO dataset were included in the spectrum quantifica-
tion (Fig. S1 and Supplementary Data file S6).

Survival analyses
A statistical summary of datasets used in survival analyses is recorded in
Supplementary Data file S7. Kaplan–Meier (KM) survival curves were
derived for OS and DSS and other multiple endpoints using the survival
package in R (http://CRAN.R-project.org/package= survival). Clinical data
for TCGA datasets were collected via the embedded DownloadBiospeci-
menClinicalData function in the TCGA-Assembler package.47 Multivariate
Cox regression analyses were performed to adjust confounding factors
including age, race, gender, pT, pN, and pM status (Supplementary Data
file S8). For all cancer types, patients with available survival data and TMI
were all included in the KM analyses.

Molecular subtyping in breast cancer
Of analyzed datasets, five datasets (BRCA, GSE20711, GSE21653, GSE19615,
and GSE50567) were annotated with either ER, PR, and HER2 status or
predefined molecular subtypes of breast cancers (normal breast-like,
luminal A, luminal B, HER2 positive, and basal-like). Tumors harboring
positive status of ER and/or negative status of HER2 were classified as
luminal cancers while the basal-like tumors were defined as ER-, PR-, and
HER2-negative cancers (Supplementary Data file S10).

Total mutational burden
The mutational load of TCGA tumor samples across nine epithelial cancer
types, for which TMI was previously computed, was obtained from the
National Cancer Institute GDC Data Portal (http://portal.gdc.cancer.gov/
projects/). The portal defines the mutational load as the total number of
simple somatic mutations. Only tumors harboring at least one mutation
were included and log 10 transformed to compute Spearman correlations
between TMI and mutational load. A descriptive statistics including the
number of patient samples available for both TMI gene expression and
mutational load data, cut-off points used for patient stratification, and key
outputs of Spearman correlation tests in each dataset is shown in
Supplementary Data file S11.

IPRES and GSVA
Gene signatures previously associated with resistance to PD-1 immu-
notherapy, termed Innate PD-1 RESistance (IPRES), were obtained from
Broad MSigDB (http://software.broadinstitute.org/gsea/msigdb) and Sup-
plementary Data provided by the original publication.21 The gene set
variation analysis (GSVA) scores of the signatures were computed for each
MMD and TCGA patient sample. GSVA scores were transformed to z-scores,
and were correlated with TMI. As previously described,21 a cut-off of > 0.35
was applied to the mean z-score for a patient to be determined as IPRES-
enriched. As these signatures were derived from non-responder (resistant)
tumors, we further defined responder signatures as 161 highly expressed
genes (log FC > 2 and Mann–Whitney P < 0.1) in responders compared to
non-responders using the list of 693 DE genes provided by the original
work.21

CIBERSORT
The estimated fraction of individual immune cell types was computed
using the beta version of CIBERSORT (http://cibersort.stanford.edu/). For
any given sample, we calculated Spearman correlation between TMI and
relative abundance of each immune cell type using our 11 generated
MMDs and 11 TCGA cohorts (LUAD, OV, SKCM, BLCA, LIHC, BRCA, COAD,
STAD, KIRC, PRAD, and PAAD). As our MMDs of breast, colorectal, and lung
cancer exceeded maximum load capacity (500 MB), 1000 tumors were
randomly selected for input data files. We selected LM22 (22 immune cell
types) for signature gene file, 100 for permutations, and disabled quantile
normalization for all runs.

Quantitative proteomic analysis
Relative protein abundance data of 10,625 protein-coding genes were
generated by the National Cancer Institute Clinical Proteomic Tumor
Analysis Consortium (CPTAC; https://cptc-xfer.uis.georgetown.edu/
publicData/Phase_II_Data/TCGA_Breast_Cancer/). Log ratios (base 2),
representing relative abundance of each sample compared to the pooled
reference sample, were obtained from TCGA_Breast_BI_Proteome.itraq.tsv
for a total of 108 TCGA BRCA breast cancer samples, for which TMI was
previously computed.

Differential expression analysis and heatmaps
R/Bioconductor limma package49 was used to assess differential protein
expression between two patient groups classified by five MGTs. FC > 1.5 or
FC <−1.5 and limma P < 0.05 were applied to determine DE proteins. A
descriptive list of all DEGs at the protein level found in both groups is
provided in Supplementary Data file S15. Heatmaps used in this study were
generated using Morpheus (http://software.broadinstitute.org/morpheus/).

DATA AVAILABILITY
Our generated cancer type-specific MMDs are available at ArrayExpress under
accession codes E-MTAB-6690 (pancreatic cancer), E-MTAB-6691 (ovarian cancer), E-
MTAB-6692 (renal cancer), E-MTAB-6693 (gastric cancer), E-MTAB-6694 (prostate
cancer), E-MTAB-6695 (liver cancer), E-MTAB-6696 (bladder cancer), E-MTAB-6697
(melanoma cancer), E-MTAB-6698 (colorectal cancer), E-MTAB-6699 (lung cancer),
and E-MTAB-6703 (breast cancer). The accession codes of all public datasets analyzed
in this study are listed in Supplementary Data file S1.

CODE AVAILABILITY
The R codes used to preprocess, merge and batch-effect correct datasets for
generation of all 11 MMDs can be found in Figshare (https://doi.org/10.6084/m9.
figshare.7878086).
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