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Diabetes mellitus related bone metabolism and
periodontal disease
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Diabetes mellitus and periodontal disease are chronic diseases affecting a large number of populations worldwide. Changed bone

metabolism is one of the important long-term complications associated with diabetes mellitus. Alveolar bone loss is one of the main

outcomes of periodontitis, and diabetes is among the primary risk factors for periodontal disease. In this review, we summarise the

adverse effects of diabetes on the periodontium in periodontitis subjects, focusing on alveolar bone loss. Bone remodelling begins with

osteoclasts resorbing bone, followed by new bone formation by osteoblasts in the resorption lacunae. Therefore, we discuss the

potential mechanism of diabetes-enhanced bone loss in relation to osteoblasts and osteoclasts.
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DIABETES: INTRODUCTION

Diabetes mellitus is a heterogeneous group of disorders and is char-

acterized by high blood glucose levels.1 Type 1 diabetes mellitus

(T1DM) results from an absolute deficiency of insulin, which is most

commonly due to auto-immunological destruction of the insulin-

producing pancreatic b cells but which can be caused by other etiol-

ogies. In type 2 diabetes mellitus (T2DM), muscle, fat and other cells

become resistant to the actions of insulin. This results in the activation

of a compensatory mechanism that induces b cells to secrete more

insulin. T2DM occurs when the compensatory increase in insulin is

insufficient to maintain blood glucose levels within a normal physio-

logical range.2–3 By 2025, 300 million people are projected to be

afflicted with diabetes worldwide, with a prevalence of 6.4%.4–5 The

countries with the most people suffering from diabetes by the year

2025 are predicted to be India, China and the United States. T1DM

represents 5%–10% of the total number of diabetes cases worldwide6

and is the main type of diabetes in youth, representing 85% or more of

all diabetes cases in individuals younger than 20 years of age world-

wide.7 On average, males and females are equally affected with T1DM

in young populations.8 T2DM accounts for 90% of diabetes cases

globally.4 This disorder has traditionally been considered a metabolic

disorder of adults; however, it has recently become more common in

young adults, adolescents and occasionally, in children.9

PATHOGENIC MECHANISMS OF DIABETES

T1DM is a polygenic autoimmune disease that is characterized by

the destruction of insulin-secreting pancreatic beta cells.10 T1DM

typically occurs as a consequence of a breakdown in immune regu-

lation, resulting in an expansion of auto-reactive CD41 and CD81 T

cells and auto-antibody-producing B lymphocytes and activation of

the innate immune system, which collaborates to destroy insulin-

producing beta cells.11 In an animal model, CD11c1 dendritic cells

and ER-MP231 macrophages are the first cells to infiltrate the pan-

creas of non-obese diabetic mice, at approximately 3 weeks of age. At

the same time, potentially pathogenic T cells can be detected sur-

rounding the islet, resulting in peri-insulitis.12 Genetic susceptibility

and environmental triggers are thought to contribute to the develop-

ment of T1DM.13

T2DM is a metabolic disorder that is characterized by hyperglyce-

mia and altered lipid metabolism, which is caused by the inability of

islet b cells to secrete adequate insulin in response to varying degrees of

insulin resistance caused by over-nutrition, inactivity or obesity.

Metabolic defects that contribute to the development of T2DM

include an inability of islet b cells to compensate for high glucose levels

that are associated with excess food intake, increased glucagon secre-

tion and reduced incretin response, impaired expansion of subcutan-

eous adipose tissue, hypoadiponectinaemia, inflammation of adipose

tissue, increased endogenous glucose production and the develop-

ment of peripheral insulin resistance.14 Chronic caloric excess is the

primary pathogenic event that drives the development of type 2 dia-

betes in genetically and epigenetically susceptible individuals.15–16

PATHOGENIC CHANGES IN BOTH T1DM AND T2DM

Hyperglycemia

Hyperglycemia is due to impaired insulin secretion in T1DM and

insulin resistance in T2DM. Beta cell destruction in T1DM and inad-

equate expression of glucose transporter 2 in T2DM are thought to

contribute to hyperglycemia.17 Several pathways are thought to

exhibit increased activity under hyperglycemic conditions and to con-

tribute to oxidative stress via the polyol pathway,18 the hexosamine
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pathway 19–21 and activator of protein kinase C.22 Hyperglycemia also

leads to greater activation of the pro-inflammatory transcription fac-

tor, nuclear factor-kappa B (NF-kB), by protein kinase C in vitro.19

Hyperglycemia also results in the oxidation of sorbitol by NAD1,

thereby increasing the cytosolic NADH:NAD1 ratio and consequently

inhibiting glyceraldehyde-3-phosphate dehydrogenase activation.

Advanced glycation end products

Advanced glycation end products (AGEs) are formed by the non-

enzymatic reaction of glucose and other glycating compounds that

are derived from glucose and increased fatty acid oxidation.

Intracellular hyperglycemia is the primary initiating event in the

formation of both intracellular and extracellular AGEs.23 AGEs are

derived from the intracellular auto-oxidation of glucose to glyoxal,24

decomposition of the Amadori product (glucose-derived 1-amino-1-

deoxyfrutose lysine adducts) and fragmentation of glyceraldehade-3-

phosphate and dihydroxyacetone phosphate to methylglyoxal.25

These reactive intracellular dicarbonyls (glyoxal, methylglyoxal and

3-deoxyglucosone) react with the amino groups of intracellular and

extracellular proteins to form AGEs. Intracellular proteins that are

modified by AGEs exhibit altered function. Extracellular matrix com-

ponents that have been modified by AGE precursors interact abnor-

mally with other matrix proteins and their receptors on cells. Several

AGE receptors are linked to increased inflammation, including recep-

tor for AGE (RAGE). Proteins can be structurally modified by glyco-

sylation, thereby affecting their function. Alternatively, AGE binding

to AGE receptors can induce the production of reactive oxygen spe-

cies, the production of inflammatory cytokines such as tumour nec-

rosis-alpha (TNF-a), and the activation of NF-kB.26

Lipotoxicity

Due to the presence of long-chain free fatty acids in the plasma, lipo-

toxicity is often increased in states of insulin resistance, thereby

impairing b-cell secretory function 27–28 and contributing to b-cell

apoptosis 29–30 and insulin resistance.31 Muscle cells and hepatocytes

are negatively affected by excessive amounts of fatty acids, which cause

increased ceramide accumulation, activate inflammatory pathways,

and increase the release of reactive oxygen species (ROS) and enhance

apoptosis.32

Oxidative stress

Oxidative stress is central to the development of insulin resistance and

diabetic complications.33–34 Oxidative stress plays a critical role in

diabetic complications. Hyperglycemia leads to the overproduction

of superoxides in mitochondria. This increase in superoxide produc-

tion activates several pathways that contribute to diabetic complica-

tions, including polyol pathway flux, increased AGE formation and

RAGE expression, and activation of protein kinase C and the hexosa-

mine pathway.18 Inflammation induced by increased intracellular

ROS also contributes to diabetic complications.35 After ROS, are cre-

ated, they deplete cellular antioxidant defences, rendering the affected

cells and tissues more susceptible to oxidative damage.36 It has been

shown that ROS not only play a role in the destruction of cells and

tissues but also function as intracellular second messengers that regu-

late signal transduction cascades and gene expression. Oxidative stress

can also induce the activation of multiple serine kinases, which impair

the capacity of insulin to stimulate protein kinase B activation and

glucose transport. NF-kB, p38 MAPK and the JNK/SAPK pathway are

sensitive to oxidative stress, which is linked to impaired insulin action

and the development of the late diabetic complications.33

Immune response

Neutrophils play a crucial role in several autoimmune diseases, such as

systemic lupus erythematosus and rheumatoid arthritis. Some studies

have noted the involvement of neutrophils in T1DM; a mild neutro-

phil reduction has been associated with T1DM subjects;37–38 however,

neutrophil counts in T2DM patients are normal.37 The reduction in

circulating neutrophils that is observed in T1DM might be due to

impaired neutrophil differentiation and output from bone marrow,

increased neutrophil apoptosis or anti-neutrophil-specific antibodies,

and increased recruitment into tissues.39 The functional alteration of

mononuclear phagocytes has also been reported in diabetic subjects,

including altered superoxide (O2
2) production, defective chemotaxis,

and phagocytosis.40 A study has shown that infiltrating monocytes in

T1DM subjects spontaneously secrete pro-inflammatory cytokines,

which are known to induce and expand Th17 cells.41 Evidence also

shows that the classically activated macrophages initiate insulitis and

b-cell death in T1DM subjects and play a role in insulin resistance in

T2DM by triggering an inflammatory response. In contrast, alterna-

tively activated macrophages exert a protective effect in DM by attenu-

ating tissue inflammation.42

Pro-inflammatory factors

Adipose tissue appears to be a major site for inflammatory mediator

production as a result of cross-talk between adipose cells, macrophages,

and other immune cells that infiltrate the expanding adipose tissue.43

Inflammatory mediators might play a dual role in T2DM, contributing

to hyperglycemia-induced insulin resistance and contributing to dia-

betic complications.44 Pro-inflammatory factors, such as tumor necro-

sis factor (TNF)-a, interleukin (IL)-1b, IL-6 and IL-18, are reportedly

increased in diabetes mellitus and contribute to insulin resistance by

both JNK and the IKKb/NF-kB pathway.45–46 Enhanced production of

inflammatory cytokines is thought to contribute to insulin resistance

and the destruction of beta cells in the pancreas and is thought to be a

major factor in the development of diabetic complications.47–48

Anti-inflammatory factors

The role of pro-inflammatory cytokines in the destruction of pancre-

atic b cells and the development of T2DM has been investigated; how-

ever, our knowledge about anti-inflammatory proteins is rather

limited, and an imbalance between pro- and anti-inflammatory cyto-

kines might be essential for the development of DM.49–50 IL-1 receptor

antagonist is a naturally occurring anti-inflammatory antagonist of the

IL-1 family of pro-inflammatory cytokines.51 Evidence shows that

blocking IL-1b signals reduces the expression of inflammatory cyto-

kines, and IL-1 receptor antagonist improves glycemic control and

counteracts b-cell destruction.52 Acting as a hormone with anti-inflam-

matory insulin-sensitizing properties, adiponectin reportedly associates

with a decrease in the risk of T2DM.53 However, increased circulating

levels of adiponectin are found in T1DM patients, this might be

explained by the dependence of T2DM on insulin resistance.50

COMPLICATIONS OF DIABETES

T1DM and T2DM have many possible long-term complications.

Epidemiological studies indicate that the severity of diabetic compli-

cations is generally proportional to the degree of hyperglycemia.54

Macrovascular complications

The injurious effects of diabetes on the vascular system are tradition-

ally divided into macrovasular and microvascular complications.55

Evidence suggests that diabetic patients are three times more likely
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to suffer cardiovascular events than are non-diabetic subjects.56

Cardiovascular disease is the most common cause of death in diabetic

patients.57 The central pathological mechanism in macrovascular dis-

ease is atherosclerosis. Atherosclerosis is thought to result from

chronic inflammation of the arterial wall in the peripheral or coronary

vascular system. One mechanism is the stimulation of lipid oxidation

of low-density lipoprotein in diabetes mellitus, which accumulates in

the endothelial wall of arteries.

Microvascular complications

High serum glucose levels affect endothelial cells that line blood vessels

and cause the basement membrane to become thicker and less effec-

tive.58 Microvascular complications are a significant part of diabetic

retinopathy, nephropathy and neuropathy.59 Diabetes-enhanced TNF

induces the loss of microvascular endothelial cells and pericytes by

activating the transcription factor FOXO1.60–61

Retinopathy

Diabetic retinopathy is clinically classified into non-proliferative and

proliferative disease stages. Only intraretinal microvascular changes

are present in non-proliferative diabetic retinopathy, whereas new

blood vessels are formed on the retina or on the optic disk in prolif-

erative diabetic retinopathy.62 Diabetic retinopathy is characterized by

several common and unique features, including thickening of the

vascular basement membrane, pericyte and endothelial cell death,

microaneurysms, vascular occlusion and pathological neovascularisa-

tion, which advance to retinal haemorrhage, retinal detachment, and

vision loss.63 TNF has been shown to play an important role in stimu-

lating the early events of diabetic retinopathy.60

Neuropathy

Diabetic neuropathy is characterized by progressive neuronal loss,

demyelination, and impaired nerve regeneration, with ultimate nerve

fibre dysfunction.62 Diabetic neuropathy can affect sensory, motor and

autonomic nerve fibres in any part of the body.64 Although diabetic

neuropathy has been widely studied for over 20 years, the pathogenesis

of this disease remains unclear; diabetic neuropathy is thought to result

from the diabetic microvascular injury of small blood vessels that supply

nerves, as well as oxidative injury, AGEs and insulin deficiency.65

Nephropathy

Hyperglycemia induces cellular changes in various kidney cell types.

Nephropathy is a progressive kidney disease that is caused by the

angiopathy of capillaries in the kidney glomeruli and is characterized

by glomerular hypertrophy, thickening of basement, tubular and

glomerular membranes and the accumulation of extracellular matrix

in these membranes; these changes finally cause tubulointerstitial and

glomerular fibrosis and sclerosis.66 AGEs, hyperglycemia and vascular

inflammation are thought to cause these pathogenic changes.67–68

DIABETES-RELATED BONE DISEASES

In addition to the complications mentioned above, diabetes affect

bone metabolism. A considerable amount of evidence has accumu-

lated indicating that metabolic and endocrine alterations caused by

diabetes affect bone quantity and quality over the last decades of life.69

Increased fracture risk

T1DM and T2DM are associated with higher fracture risk. A large case

control study in Denmark reported a relative risk for any site fracture

of 1.9.70 The relative risk of hip fracture is estimated as 6.9 in T1DM

patients and as 1.38 in T2DM patients.71 Women with T2DM have a

threefold higher risk of vertebral fracture compared to women who are

non-diabetic.72 In the women’s health initiative study, the risk of

proximal humerus, foot, and ankle fractures was found to be higher

among women with type 2 diabetes than among healthy controls.73

Changed bone mineral density

Bone mineral density (BMD) is reduced in T1DM.72,74 Decreased

BMD and diabetic vascular complications are associated with an

increased risk of fractures. In T2DM, BMD is equal or increased

according a meta-analysis,71 but the fracture risk is increased despite

this increase in BMD.75 The paradoxical increase in fracture rate in

patients with T2DM with increased BMD might result from an

increased rate of falling.76 In addition, decreased bone formation with

decreased bone quality is thought to contribute to a higher fracture risk

in T2DM. Rodent models also support the hypothesis that diabetic

bone has reduced mechanical strength, regardless of bone density.77

Lower bone turnover rate

Decreased bone turnover rate might explain the increased bone fra-

gility in patients with diabetes. Older bone is not replaced by new bone

with decreased bone turnover rate, thus decreasing bone mechanical

strength. This is reflected in studies indicating that diabetic patients

exhibit decreased osteoblast activity.78 Low bone turnover accompa-

nied by reduced mineral content was found in T1DM models.79 Leptin

receptor-deficient mice, a T2DM model, also exhibit decreased bone

turnover.80–81 The impact of diabetes on bone resorption has yielded

contradictory findings, with some studies indicating increased osteo-

clast activity under perturbation.82–83

Delayed fracture healing

Fracture healing is delayed in diabetic patients. A study of 5 966 cases

of hip fracture in patients with diabetes reported that these patients

required longer in-hospital stays.84 Moreover, diabetic patients under-

going ankle fusing procedures exhibit an increased incidence of non-

union outcomes (from 27% to 38%).85 In diabetic mice that were fed a

high fat diet, fracture calluses were significantly smaller and had mark-

edly increased adiposity.86 In streptozotocin-induced diabetic mice,

fracture calluses exhibited reduced bone formation, which was associ-

ated with premature cartilage resorption.87

POTENTIAL MECHANISMS BY WHICH DIABETES

AFFECTS BONE

Bone formation and resorption affect bone, and diabetes mellitus

affects both bone formation and resorption.

Effect of diabetes on osteoblasts

Diabetes has a significant effect on osteoblasts. It has consistently been

noted that diabetes causes a reduction in the number of bone-forming

cells.88 One of the mechanisms through which diabetes affects osteo-

blasts is increased apoptosis. For example, AGEs induce osteoblast

apoptosis through the MAP kinase pathway.89 Diabetes also interferes

with bone formation by reducing the expression of transcription fac-

tors that regulate osteoblast differentiation.90 In rat models of T1DM

and T2DM, osteoblasts exhibit lower alkaline phosphatase activity and

mineralized matrix formation.91–92 When AGEs are applied to

wounds in normal animals, the rate of healing is reduced by half,

suggesting that AGEs, which are present at higher levels in diabetes,

contribute to impaired bone healing.93 In addition, the receptor for

AGEs, RAGE, is expressed at higher levels in osteoblasts in diabetic
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conditions, thus rendering diabetic animals even more sensitive to the

effects of AGEs.93

Inflammation also has a significant effect on bone.94 Elevated levels

of inflammatory mediators, particularly TNF, are among the striking

features of diabetes.95 Diabetic animals exhibit higher levels of TNF in

bone, and enhanced TNF levels are associated with reduced bone

healing. Thus, diabetes-enhanced TNF contributes to an increase in

bone cell apoptosis, which reduces osseous healing.96 Moreover, dia-

betes causes a more than two-fold induction of more than 70 genes

that directly or indirectly regulate apoptosis during inflammation-

induced bone injury and that significantly enhance caspase-8, -9 and

-3 activity.97 A significant effect on bone, which was induced by cell

death in diabetic animals, was shown by treating mice with a pancas-

pase inhibitor. Treatment with this inhibitor increased the number of

bone-lining cells and enhanced new bone formation.97 Profiling of

mRNA expression during diabetic fracture indicates that gene sets that

are related to apoptosis are significantly upregulated.98 The increased

expression of apoptotic genes is associated with elevated TNF-a levels,

increased chondrocyte apoptosis and increased activity of the pro-

apoptotic transcription factor, FOXO1. Inhibition of TNF signifi-

cantly reduces each of these effects in diabetic fracture healing but

has little effect in normoglycemic mice.98

Mesenchymal stem cells represent a precursor pool of osteoblasts,

which are bone-forming cells. Inflammation, which is elevated in dia-

betic bone healing,96 has a significant effect on reducing mesenchymal

stem cell (MSC) differentiation.99 Inflammation affects MSC through

the induction of NF-kB activation. Increased NF-kB activity interferes

with wnt-stimulated MSC differentiation by increasing beta-catenin

degradation.100 Moreover, TNF suppresses Osx promoter activa-

tion,101 thus interfering with the differentiation of MSCs to osteoblasts

because osterix is required during the early steps of differentiation.

AGEs also inhibit MSC differentiation. One mechanism by which this

occurs involves the upregulation of ROS by AGEs in MSCs, leading to

a decrease in MSC differentiation.102–103 In human mesenchymal stem

cells and mouse stromal ST2 cells, AGEs suppress the osteogenic dif-

ferentiation of both cell types by increasing TGF-b expression.104 In a

T2DM mouse model, the diabetic mouse has fewer MSCs, and these

MSCs exhibit poor ability to target the injury site.105 In a T1DM rat,

more numerous apoptotic cells were present in hyperglycemic bone

marrow, and the size of the osteoprogenitor pool was significantly

reduced.92 Thus, elevated levels of TNF and the effects of AGEs might

interfere with the production of osteoblasts that are formed by inhibi-

ting the differentiation of MSC to osteoblasts.

Effect of diabetes on osteoclasts

Human studies of diabetes mellitus generally indicate that osteoclas-

togenesis is enhanced. Humans with T2DM exhibit increased circulat-

ing levels of tartrate-resistant acid phosphatase, which is indicative of

increased osteoclast activity.82 In patients with T1DM or T2DM, poor

glycemic control leads to increased bone resorption and bone loss.78 In

patients with T2DM, levels of the bone resorption marker tartrate-

resistant acid phosphatase are increased in serum, indicating increased

osteoclastic function, which might be due to the diabetic polyol path-

way.106 However, some studies indicate that bone resorption markers

are decreased in individuals with T2DM.107

Animal studies generally indicate that osteoclast activity is increased

in diabetic patients.108–109 In streptozotocin-induced T1DM rats,

cathepsin K expression is elevated compared to a control group, indi-

cating increased osteoclast activity.110 In T2DM rats, osteoclastic bone

resorption is enhanced compared to normoglycemic controls.111 In

diabetic mice, TNF-a, macrophage-colony stimulating factor, recep-

tor activator of nuclear factor kappa-B ligand (RANKL) and vascular

endothelial growth factor-A are upregulated; this upregulation can

directly promote osteoclast differentiation and activation.87,112

Patients with T2DM exhibit elevated mitochondrial ROS levels, which

promote RANKL-mediated osteoclast differentiation and function.113

Increased fatty acid levels in patients with diabetes mellitus can induce

osteoclastogenesis by TNF-a.114 T2DM mice exhibited enhanced

osteoclast formation in response to M-CSF and RANKL.82 In vitro

studies suggest that hyperglycemia predisposes patients to increased

osteoclast formation.115 AGEs might also increase osteoclast activ-

ity.116 Mice that lack the receptor for AGE, RAGE, exhibit increased

bone mass and decreased osteoclast numbers compared to wild-type

mice,117 supporting the concept that AGEs contribute to osteoclast

formation in patients with diabetes.

PERIODONTAL DISEASE: INTRODUCTION

Periodontitis is one of the most widespread oral diseases and is chara-

cterized by the loss of connective tissues within the periodontium and

the destruction of alveolar bone support.118–119 Severe periodontitis,

which can result in tooth loss, is found in 5%–20% of most adult

populations worldwide. The latest data from the 2009 and 2010

National Health and Nutrition Examination Survey cycle estimates

that over 47% American adults have had periodontitis.120 An epidemi-

ology study shows that almost 25% of adults in Australia aged 35–54

years have moderate or severe periodontitis, and 34% of 30- to 39-

year-old adults living in Pomerania have periodontitis.121 Children

and adolescents can have any of the several forms of periodontitis,

such as aggressive periodontitis, chronic periodontitis and periodon-

titis as a manifestation of systemic diseases.122 However, estimates of

the global prevalence of periodontitis differ based on the distribution

of the disease and the methodologies used to assess it.123

PATHOGENIC MECHANISMS OF PERIODONTAL DISEASE

Microorganisms

The chronic inflammatory condition of periodontitis is induced by

pathogenic biofilms or dental plaque, which accumulates on the tooth

surface. Over 500 bacterial species have been detected in periodontal

plaque; however, the composition of the causative bacterial species is

still under debate.123–126 ‘Red complex’ Gram-negative bacteria, com-

prising Porphyromonas gingivalis, Tannerella forsythia and Treponema

denticola, have been proposed as the primary aetiological agents of

periodontitis.127 Recent studies have identified Filifactoralocis and

many species of Spirochetes as being closely linked to periodontitis.128

As the best characterized periopathogen, P. gingivalis is a minor con-

stituent of the total microbiota but can trigger changes in the amount

and composition of the oral commensal microbiota that can disrupt

homeostasis and cause inflammatory periodontal bone loss.129 Gram-

positive bacterial and oral commensal bacteria might also play a sig-

nificant role in the development of periodontitis 128,130–131.

Modern high-throughput techniques indicate that the subgingival

microbial profiles from periodontitis patients differ according to age,

pocket depth, gender and race.128,132–133 Interestingly, bacteria com-

munity diversity has been shown to increase with a history of period-

ontitis, which runs counter to most bacterial infectious processes,

which are generally associated with decreased diversity.128

Host response

Although bacteria are necessary for periodontal disease to occur, a

susceptible host is also needed.123 The inflammatory process occurring
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in periodontitis is characterized by the infiltration of leukocytes, which

limit the level of bacterial invasion and can be harmful to the peri-

odontal tissue.134 Periodontal ligament and bone destruction is

thought to be caused by a disruption of the homeostatic balance

between the host response and bacteria, which causes inflammation

in close proximity to bone.129,134–135 The process is thought to involve

the host immune response to bacterial infection through the stimu-

lation of osteoclastogenic factor production by immune cells, which

then help to cause the periodontitis-related bone loss. Our laboratory

has recently shown that the production of factors by osteoblasts and

osteocytes also contributes to osteoclast formation and activity in

periodontal disease (unpublished data). Evidence that the host res-

ponse plays a critical role has also shown by studies in which treatment

with a prostaglandin inhibitor reduced periodontitis-related bone

loss136 and studies involving the inhibition of inflammatory cytokines,

such as IL-1 and TNF.137–138 Thus, periodontitis is a complex disease

in which multiple causal risk factors play simultaneous and interactive

roles; these risk factors include the immune-inflammatory status and

genetic background of individuals, and the presence of environmental

stressors and/or systemic diseases, such as diabetes.139–141

Effects of diabetes on periodontitis

Diabetes and chronic periodontitis are chronic diseases that have long

been considered to be biologically linked.142–143 In fact, diabetes is one

of the primary risk factors for periodontitis.144–145 Cross-sectional and

longitudinal studies identified that the risk of periodontitis is approxi-

mately 3–4 times higher in people with diabetes than in non-diabetic

subjects.144 Periodontitis was found in 57.9% of T1DM patients and in

15.0% in controls without diabetes.146 In another study on the peri-

odontal status in children and adolescents with T1DM, a prevalence of

20.8% of gingivitis and 5.9% of periodontitis was observed.147 Patients

with T2DM were also at higher risk of having severe forms of period-

ontitis compared with non-diabetic subjects.148 A study in African

Americans found that 70.6% of patients with T2DM had moderate

periodontitis, and 28.5% had a severe form of the disease; this value is

significantly higher than the prevalence of 10.6% among control sub-

jects without diabetes.149 A direct relationship exists between the level

of glucose control and the severity of periodontitis.146,150 The odds

ratios of T2DM with periodontal destruction in comparison to non-

diabetics are 1.97, 2.10 and 2.42 in well, moderately and poorly con-

trolled diabetics, respectively.151

EFFECTS OF DIABETES ON PERIODONTIUM TISSUES

Gingiva/gingivitis

Periodontitis is preceded by various stages of gingival inflammation,

which are referred to as gingivitis. The prevalence of gingivitis in

children and adolescents with T1DM is nearly twice that observed in

children and adolescents without diabetes.152 Evidence shows that the

gingival index was 1.54 in a 5- to 9-year-old diabetic group and 1.14 in

the control group; however, in the corresponding 10- to 14-year-old

group, the gingival index was 1.98 in diabetic subjects and 1.17 in

control subjects.153 Furthermore, gingival bleeding index is signifi-

cantly correlated with age and the level of glycosylated hae-

moglobin.154 Similarly, the rates of gingival inflammation in adults

with T2DM are higher than those in adults without diabetes. Nearly

64% of patients with T2DM have gingivitis; however, only 50% of

subjects without diabetes have the disease.152 The degree of metabolic

control of diabetes is an important factor in the development and

progression of gingivitis; good control significantly reduces the pre-

valence of gingivitis.155–156 In animal models, diabetes leads to the

increased production of TNF in the epithelium and connective tis-

sue.157 Periodontal infection causes an increase in epithelial cell and

connective tissue fibroblast apoptosis, which is significantly enhanced

by diabetes through a caspase-3-dependent mechanism.157 This is

significant because increased diabetes-enhanced inflammation and

apoptosis are thought to negatively impact the gingiva by causing a loss

of epithelial barrier function and inhibiting repair processes.158–159

Animal studies have demonstrated that high levels of TNF-a can stimu-

late the expression of pro-apoptotic genes, which induce apoptosis.96,160

In vivo studies have demonstrated that the inhibition of TNF-a reduces

connective tissue cell apoptosis.161

Periodontal ligament/loss of attachment

Periodontitis involves the loss of tooth-supporting structures com-

prising connective tissue attachment and bone. A statistically signifi-

cant association is observed between diabetes and loss of attachment,

and the level of glycemic control is an important determinant of this

relationship.146,162 The odds ratio of T1DM patients with attachment

loss is 3.84 compared with non-diabetic subjects.163 In addition, more

than 25% of T1DM patients with poor metabolic control exhibit sites

with clinical attachment loss of o5 mm, compared with 10% of sub-

jects with good metabolic control.152 Subjects with T2DM also exhibit

a significantly higher number of sites with clinical attachment loss of

o3 mm as well as loss of o5 mm. Furthermore, the prevalence of

sites with moderate to severe attachment loss is proportional to the

duration of diabetes.150,164

Alveolar bone/loss of bone

Diabetes potentiates the severity of periodontitis and accelerates bone

resorption. The percentage of sites with bone loss in poorly controlled

T1DM individuals is 44% compared to 28% and 24% in well-con-

trolled and non-diabetic subjects, respectively.165 Animal studies also

demonstrate that alveolar bone loss in rats with STZ-induced T1DM

with periodontitis was threefold higher than in normal rats.166–167 The

risk and degree of alveolar bone loss is positively correlated with lack of

metabolic control.168–169

MECHANISMS OF DIABETES ENHANCED PERIODONTAL

BONE LOSS

The process of bone remodelling starts with the resorption of bone by

osteoclasts, followed by new bone formation by osteoblasts in the

resorption lacunae. Under physiological conditions, these two activ-

ities are coupled; however, the two processes are uncoupled in patho-

logical processes.118,134 Diabetes affects osteoclast and osteoblasts in

the periodontium in different ways, such as by increasing the express-

ion of inflammatory mediators and RANKL/osteoprotegerin (OPG)

ratios and by enhancing the levels of AGEs and ROS (Figure 1).

Effect of diabetes on osteoclasts in periodontitis

Diabetes has been shown to enhance osteoclast formation in inflamed

areas. Rats with T2DM exhibit a two- to four-fold increase in osteo-

clast number after bacterial infection by oral inoculation of a peri-

odontal pathogen ligature that induces periodontitis compared with

control rats.111,157,170 Rats with T1DM and periodontitis also exhibit a

two- to four-fold increase in the number of osteoclasts compared to

non-diabetic rats with periodontitis.171

A higher degree of inflammation and a more persistent inflam-

matory response following periodontitis are reported in rats with

T1DM and T2DM in response to the same inoculation of periodontal

pathogen.172–173 Diabetes impairs the resolution of periodontal
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inflammation. The importance of resolving inflammation has been

demonstrated by treating animals with periodontitis with resolvins174

or by treatment of diabetic animals with TNF inhibitors.160,170

Diabetes-enhanced TNF has been shown to prevent the downregula-

tion of genes that are associated with host defence, apoptosis, cell

signalling and activity, and coagulation/homeostasis/complement.175

Similarly, patients with periodontitis and diabetes were found to have

significantly higher levels of local inflammatory mediators such as IL-

1b, TNF-a and prostaglandin E2, which result in more prolonged

osteoclast formation and activity.176 Enhancement of IL-17 and IL-

23 in periodontitis in subjects with T1DM and overexpression of IL-1b

and IL-6 in patients with T2DM have been reported; and these con-

ditions result in osteoclastogenesis and a prolonged duration of

inflammatory responses.177–178 Patients with T2DM and periodontal

disease exhibit increased levels of TNF-a and IL-6, which are also

associated with increased dyslipidemia and lipid peroxidation.179

These results suggest that there is an important association between

T2DM, dyslipidemia and the severity of the local inflammatory res-

ponse to bacteria.179

The interaction of RANKL with receptors (RANK) on the surface of

osteoclasts is one of the most potent inducers of osteoclast formation

and activity, and OPG inhibits osteoclast formation binding to RANK

and then blocks the activity of RANKL.169–170,180 A number of studies

focusing on osteoclastogenesis-related factors have reported an elevated

expression of RANKL and TNF in diabetes-associated periodontal tis-

sues.180 Studies with animals suggest that RANK-RANKL/OPG ratios

and the level of other inflammatory cytokines, such as TNF, are critical

mediators of the enhanced osteoclastogenesis in diabetes with peri-

odontal disease.170–171,181 TNF levels and the RANKL/OPG ratio in

periodontitis sites in humans are negatively influenced by poor glycemic

control in subjects with diabetes.179,182

Diabetes enhances the formation of AGEs in the periodontium and

increases the expression of RAGE.183 Gingiva AGEs are increased in

both T1DM- and T2DM-associated periodontitis; however, there is

evidence that subjects affected with T1DM presented a significantly

higher percentage of AGE-positive cells in the epithelium and fibro-

blasts than did subjects affected with T2DM.184 Osteoclast-like cells

express RAGE, which serves as a positive factor that regulates osteo-

clast formation.117 AGE accumulation and the interaction of AGEs

with RAGE may contribute to osteoclastogenesis via an increased

expression of the receptor activator of RANKL and OPG downregula-

tion.185 It has been shown that the AGE-RAGE interaction on mono-

cytes activates transcription factor NF-kB, which alters the phenotype

of monocytes/macrophages and results in the increased production of

pro-inflammatory cytokines.186

ROS are known to be one of causes of diabetes-related periodontitis.

The invading bacteria trigger the release of inflammatory cytokines,

leading to increases in the number and activity of neutrophils, which

release ROS in periodontitis.187 During bone resorbtion, osteoclasts

that contain NADPH-oxidase actively produce superoxide.188

Simultaneously, neutrophils in diabetic patients produce more super-

oxide than neutrophils from normal subjects.26 The imbalance

between ROS production and antioxidant defences result in increased

oxidative stress.189 In addition, the formation of AGEs also increases

oxidative stress in periodontium tissue. It has been shown that certain

ROS (such as superoxide and hydrogen peroxide) activate osteoclasts

and promote osteoclast formation.190 A related process, lipid peroxi-

dation, is also associated with increased periodontal disease-T2DM
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Figure 1 A potential mechanism of diabetes-related alveolar bone loss in periodontal disease. Diabetes increases the RANKL/OPG ratios and enhances the

expression level of AGEs, ROS and inflammatory mediators, which induce osteoblast apoptosis and osteoclastogenesis. This cascade of events contributes to both

increased bone resorption and reduced reparative bone formation leading to greater alveolar bone loss in periodontal disease that is caused by bacterial pathogens.

AGE, advanced glycation end product; IL, interleukin; OPG, osteoprotegerin; PDL, periodontal ligament; RANKL, receptor activator of nuclear factor kappa-B ligand;

ROS, reactive oxygen species; TNF, tumor necrosis factor.
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and a greater inflammatory response in periodontal tissues in

humans.179,191

Effect of diabetes on osteoblasts in periodontitis

Evidence exists that both diabetes and bacterial infection in period-

ontitis enhance the apoptosis of osteoblastic cells, thereby reducing

osseous coupling.161,192 It is likely that both the innate and adaptive

immune responses that are induced by bacterial infection cause osteo-

blastic cell loss.96,193 Diabetes also increases the loss of periodontal

ligament (PDL) cells that is induced by periodontal infection by

increasing the apoptosis of these cells.111,194 This loss is significant

because the PDL is a rich source of cells that are capable of differenti-

ating into osteoblasts. Studies in diabetic animals indicate that dia-

betes causes a more than 2-fold induction of genes that regulate the

apoptosis of osteoblasts and fibroblasts following bacterial infection

and a fivefold increase in osteoblast apoptosis.97,195 The apoptosis of

osteoblasts is a significant component of the failure of diabetic animals

to form new bone after the induction of periodontal disease, as shown

by a significant increase in bone formation when diabetic animals are

treated with a specific blocker of apoptosis following periodontal

infection.161

Diabetes leads to the upregulation of pro-apoptotic factors for

osteoblasts, including advanced TNF-a, AGEs and the formation of

ROS, each of which can contribute to apoptosis.161 Animals with

T1DM and T2DM exhibit higher levels of TNF-a in response to a

bacterial stimulus than normoglycemic controls.170,184 Enhanced

TNF-a levels have been directly linked to cellular changes in dia-

betes-enhanced periodontitis.196 TNF-a impairs the function of

osteoblasts by blocking the differentiation of osteoblasts when inflam-

mation is thought to be present. Furthermore, TNF-a can induce

apoptosis by binding to TNF receptor-1, which triggers the initial

events in apoptosis.158

It has been shown that increased bacterial infection-induced alve-

olar bone loss in diabetic subjects is accompanied by the enhanced

expression of RAGE and inflammatory AGEs in gingival tissue.197

AGEs have been shown to interfere with osteoblast differentiation

and to induce the apoptosis of osteoblasts in diabetes via the mito-

gen-activated protein kinase and cytosolic apoptotic pathway.89

Elevated levels of AGEs are found in the periodontium of diabetics,

and the AGE–RAGE interaction results in an increase in pro-inflam-

matory cytokine expression and induces osteoblast apoptosis.186,198–199

CML-collagen, an AGE that is found in bone and serum, stimulates the

apoptosis of bone-lining cells in vivo and in various osteoblastic cell

cultures, which is mediated by RAGE.200

ROS production is another mechanism by which diabetes increases

apoptosis. Persistent inflammation and hyperglycemia leads to cel-

lular ROS accumulation, which is linked to diabetic complica-

tions.199,201 Moreover, increased oxidative stress in periodontal

tissue has been shown to induce osteoblast apoptosis.202 It has been

demonstrated that ROS causes the activation of caspase-3,203 which

mediates osteoblast apoptosis.

CONCLUSION

In summary, diabetes mellitus and periodontal diseases are closely

associated and exhibit similarities to other chronic diseases. Persis-

tent hyperglycemia leading to exaggerated immune-inflammatory res-

ponses that are induced by periodontal pathogens is likely to be

responsible for the greater risk and severity of periodontal disease in

diabetics.134,199 Moreover, severe periodontitis that results in alveolar

bone loss is likely to involve the effect of inflammation on both

osteoclasts and osteoblasts. Diabetes has an important effect on

enhancing osteoclastogenesis and on increasing osteoblast apoptosis.

Interestingly, the effect of diabetes on bone loss and coupled bone

formation is likely to involve the impact of diabetes on both the innate

and adaptive immune responses.47,134
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