
Genome Sequence of Halomonas sp. Strain A3H3, Isolated from
Arsenic-Rich Marine Sediments

Sandrine Koechler,a Frédéric Plewniak,a Valérie Barbe,b Fabienne Battaglia-Brunet,c Bernard Jost,d Catherine Joulian,c

Muriel Philipps,d Serge Vicaire,d Stéphanie Vincent,b Tao Ye,d Philippe N. Bertina

UMR7156 Université de Strasbourg/CNRS, Génétique Moléculaire, Génomique, Microbiologie, Département Micro-organismes, Genome, Environnement, Strasbourg,
Francea; Laboratoire de Finition, CEA-IG-Génoscope, Évry, Franceb; BRGM, Orléans, Francec; Plateforme Biopuces et Séquençage, IGBMC, Illkirch, Franced

We report the genome sequence of Halomonas sp. strain A3H3, a bacterium with a high tolerance to arsenite, isolated from mul-
ticontaminated sediments of the l’Estaque harbor in Marseille, France. The genome is composed of a 5,489,893-bp chromosome
and a 157,085-bp plasmid.
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Halomonas sp. strain A3H3, a slightly halophilic bacterium (0.5
to 9% NaCl) (1), was isolated from the harbor sediments of

l’Estaque in the south of France. These sediments are highly contam-
inated with various metals, metalloids, and organic compounds,
particularly with arsenic (653 �g/liter in sediment interstitial
water and 165 mg/kg in solid phase) (2, 3). A 16S rRNA-based
phylogenetic analysis revealed close similarity to Halomonas
neptuniae strain Eplume1 (GenBank accession number
NR_027218.1).

The genome of Halomonas sp. A3H3 was sequenced from one
paired-end and one 500-bp mate-paired library of 5-kb inserts.
The resulting reads were assembled into 131 contigs using SOAP-
denovo and GapCloser assemblers, achieving 150-fold coverage.
The sequence assembly completed by optical mapping (4) re-
sulted in two scaffolds representing a total of 5,646,978 bp. The
genome consists of a 5,489,893-bp chromosome with a 54.59%
average GC content and 5,143 coding sequences (CDS) and a
157,085-bp plasmid with a 61.97% average GC content, 221 CDS,
and a coding density of 89.38%. The size of the plasmid was ex-
perimentally validated using Wheatcroft’s method (5). A total of
5,568 CDS, 48 tRNAs, 13 miscellaneous RNAs, and 4 rRNA genes
were predicted and annotated using the MicroScope platform (6).
A total of 31.55% of CDS are of unknown function.

Best synteny and gene conservation were found with Halomo-
nas sp. strain HAL1 (7), Halomonas boliviensis LC1 (8), and Halo-
monas sp. strain TD01 (9) genome sequences, with 64.7, 63.7, and
58.9% of genes in syntons, respectively. Remarkably, the genome
of Halomonas sp. A3H3 is about 1.5 Mb larger, suggesting the
acquisition of functions allowing better adaptation to its environ-
ment, e.g., genes coding for tripartite ATP-independent periplas-
mic (TRAP) transporters for substrate uptake (10) or salicylate
degradation. In contrast, no car or bph operon was identified,
although Halomonas sp. A3H3 uses aromatic compounds such as
biphenyl and carbazole as sole carbon sources, which suggests the
possible use of alternative degradation pathways. The presence of

numerous transposases or phage-related CDS throughout the ge-
nome sustains a large number of rearrangements.

Halomonas sp. A3H3 tolerates up to 29 mM As(III) and more
than 106 mM As(V). Four ars operons (two on the chromosome
and two on the plasmid) containing arsD, arsA, acr3, arsC, arsH,
and/or arsR genes (11, 12, 13) were identified. Importantly, aioBA
genes (14) located on the plasmid may also have been acquired by
horizontal transfer. The bacterium oxidizes 100 mg/liter arsenite
under aerobic conditions or under anaerobic conditions in the
presence of nitrate used as an alternative final electron acceptor, as
supported by the presence on the chromosome of the narGHJI
operon (15). Halomonas sp. A3H3 is motile by means of peritrichous
flagella, the genes of which are clustered in a large chromosomal re-
gion. The motility of the bacterium increases with arsenite, as shown
by swarming assays, which further supports the use of arsenite oxida-
tion in the energy metabolism of Halomonas sp. A3H3.

Further studies will provide insights into the strategies evolved
by Halomonas sp. A3H3 to deal with the toxic compounds present
in marine anaerobic harbor sediments.

Nucleotide sequence accession numbers. The whole-genome
sequence has been deposited at DDBL/EMBL/Genbank under the
following accession numbers: contigs, CBRE010000001 through
CBRE010000131; scaffolds, HG423310 through HG423342; and
chromosomes, HG423343 and HG423344.
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