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Development of a Novel Pharmacophore Model Guided by
the Ensemble of Waters and Small Molecule Fragments
Bound to SARS-CoV-2 Main Protease
Pawan Kumar[a] and Debasisa Mohanty*[a]

Abstract: Recent fragment-based drug design efforts have
generated huge amounts of information on water and small
molecule fragment binding sites on SARS-CoV-2 Mpro and
preference of the sites for various types of chemical
moieties. However, this information has not been effectively
utilized to develop automated tools for in silico drug
discovery which are routinely used for screening large
compound libraries. Utilization of this information in the
development of pharmacophore models can help in
bridging this gap. In this study, information on water and
small molecule fragments bound to Mpro has been utilized
to develop a novel Water Pharmacophore (Waterphore)
model. The Waterphore model can also implicitly represent

the conformational flexibilities of binding pockets in terms
of pharmacophore features. The Waterphore model derived
from 173 apo- or small molecule fragment-bound structures
of Mpro has been validated by using a dataset of 68 known
bioactive inhibitors and 78 crystal structure bound inhib-
itors of SARS-CoV-2 Mpro. It is encouraging to note that,
even though no inhibitor data has been used in developing
the Waterphore model, it could successfully identify the
known inhibitors from a library of decoys with a ROC-AUC
of 0.81 and active hit rate (AHR) of 70%. The Waterphore
model is also general enough for potential applications for
other drug targets.
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1 Introduction

The recent outbreak of SARS-CoV-2 has necessitated efforts
by the scientific community to design potent drugs
targeting proteins that play essential roles in the viral life
cycle and its survival within the host.[1] One of the best-
characterized drug targets is the Main Protease (Mpro), also
called 3CLpro (3-chymotrypsin-like cysteine protease) that is
involved in the multiple cleavage process of the polypro-
teins ORF1a and ORF1ab encoded by the viral genome.[2]

Main protease is a cysteine protease having a non-canonical
Cys-His catalytic dyad. It has a high degree of sequence and
structural similarity to Mpro proteins from other
Coronaviruses.[2] The current anti-Mpro inhibitor develop-
ment project reports that the PF-00835321 compound,
which was earlier identified for SARS Mpro, is also active
against SARS-CoV-2 Mpro protein.[3] The Pfizer team is now
conducting a clinical trial for this compound to determine
the safety profile (https://www.pfizer.com/science/coronavi-
rus). The curative potential of anti-HIV drugs Lopinavir-
Ritonavir (Kaletra®) which have been identified by drug
repurposing studies, remains minimal.[4] High-throughput
screening (HTS) of FDA-approved anti-viral drugs and
focused collection of proteases inhibitors have identified
HCV drugs, Boceprevir and telaprevir, GC-376 and calpain
inhibitors II and XII as promising Mpro inhibitors having
activity in the low micromolar range.[5,6] To assist in finding
new drug candidates for Mpro, several in silico studies have

also been reported.[7–9] However, most of them have used
standard drug discovery or molecular modeling software-
based generic criteria for inhibitor design and a consid-
erable volume of structural information on SARS-CoV-2 Mpro

has not been fully utilized.
The binding affinity of a ligand or inhibitor to a given

receptor depends on several factors like conformational
flexibility of the ligand/receptor,[10] shape/geometry of the
binding pocket and available specificity determining resi-
dues in the binding site[11] etc. Out of the available
interaction space for the ligand in a specific receptor,
binding hotspot regions significantly contribute to the
overall binding energy.[12] Several computational ap-
proaches have been successfully developed[13] for different
well-known target proteins to characterize major binding
hotspots critical for ligand/inhibitor binding.[14,15] Apart from
binding pocket residues, water molecules also play an
important role in ligand recognition and stability of the
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protein-ligand complex.[16] Bound water molecules in the
ligand-binding sites of protein crystal structures emulate
the key element of interactions, thereby provide important
information and understanding that a ligand should
possess for high-affinity binding to a targeted protein.[17,18]

Furthermore, a water-filled cavity compels potential small
molecules to compete with occupied water molecules at
the binding site and consequently, their displacement to
the bulk solvent affects the thermodynamic signature of
the binding free energy.[19] Since pharmacophore-based
methods are more versatile and straightforward to imple-
ment as per the requirement,[20] Pharmacophore modeling
can, in principle, be used to utilize structurally conserved
water binding sites in inhibitor design studies. However, in
most cases, 3D-pharmacophore models are developed
using inhibitor-bound crystal structures, while water or
small molecule fragment-bound crystal structures are not
used. Only a limited number of studies have reported apo-
receptor based pharmacophore models.[21–24] Such models
can also incorporate receptor flexibilities by utilizing multi-
ple conformations of receptors, as shown in the case of HIV-
integrase, HIV-Protease and DHFR.[25,26] Similarly, novel
methods like pharmacophore modeling using Site-Identi-
fication by Ligand Competitive Saturation (SILCS)
approach[23,24] can utilize apo-protein structures to include
protein flexibility and desolvation effects.

In this study, we have utilized the available crystal
structures of ligand-free as well as ligand-bound crystal
structures of Main protease (Mpro) from SARS-CoV-2 to
analyze the distribution of the water molecules in the
substrate-binding site and other small fragment molecules
to map potential hotspot regions in the substrate-binding
site of Mpro. The identified water-binding clusters have been
further utilized to define displaceable water binding sites
and corresponding pharmacophore features. Based on
these results, a novel rule-based protocol, Crystal Water/
Fragment Ensemble-based Pharmacophore (CWFEP) or
Waterphore, has been developed. Since the waterphore
model does not use any information from inhibitor bound
crystal structures of SARS-CoV-2 or other known inhibitors
of Mpro identified by biochemical assays, the waterphore
model has been benchmarked using these data as
independent test sets. After establishing high prediction
accuracy of the waterphore model, its utility in identifying
new high-affinity inhibitors for Mpro has been investigated
by prediction of novel Mpro inhibitors from DrugBank,
Protease inhibitor library and anti-viral compound library.

2 Materials and Methods

2.1 Compilation and Preparation of Crystal Structures of
Mpro

As of 20th January 2021, a total of 251 crystal structures of
SARS-CoV-2 Mpro were available in the Protein Data Bank

(https://www.rcsb.org/). Downloaded structural data were
manually scrutinized for missing residues information in the
substrate-binding site and further divided into three
categories, 1) Apo structures – Mpro structures having no
ligand bound in the substrate-binding site 2) small frag-
ment bound structures – all structures having bound small-
fragment molecule in the substrate-binding site and 3)
ligand-bound complexes – Mpro structures having inhibitor
like bound ligand molecules in the substrate-binding site.
To differentiate the fragment molecules from ligand/
inhibitor molecules, criteria based on molecular weight
(MW) was employed. From the bimodal MW distribution
(Figure S1), small molecules having MW less or equal to
300 Da were selected as fragment molecules and the rest
compounds were classified as ligand/inhibitor molecules. A
significant collection of the fragment-bound complexes
were deposited by Diamond Light Source employing
XChem crystallographic fragment screening platform.[27]

Explored fragment molecules span the whole substrate
binding site and can be used to understand the all-possible
available interaction pattern to design inhibitors with
improved binding affinity.

Out of the 251 Mpro structures, 79 were classified as apo-
Mpro structures, 94 as fragment-bound Mpro structures and
78 were selected as ligand/inhibitor bound complexes.
Among the 94 fragment-bound complexes, 54 fragments
were covalently bonded with the catalytically essential Cys-
145 residue of Mpro. Along with the small molecules, Mpro

structures also had a large number of bound water and
Dimethyl Sulfoxide (DMS) molecules around the substrate
or inhibitor binding region (Table S1). All selected PDB
structures were prepared using the ‘Prepare Proteins’
module of the DS2020.[28] This module takes care of the
alternative conformations, the addition of missing hydrogen
atoms, the correctness of the bond order and correct
protonation states of titratable residues. This module also
optimizes the hydrogen bond network at selected pH and
this optimization includes assigning hydrogen atoms
according to the calculated pK values, optimize tautomeric
forms of histidine residues, flipping amide groups of Asn/
Gln and the carboxyl group of protonated Asp/Glu to get
lowest energy conformer.

2.2 Pharmacophore Modeling Guided by the Ensemble of
Bound Water and Fragment Molecules

In order to identify structurally conserved water binding
sites and favorable hotspot regions in the substrate-binding
site of Mpro, a pharmacophore modeling protocol was
designed in which both fragment-bound and apo-Mpro

structures were utilized. This ensemble-based pharmaco-
phore modeling protocol was used to determine the Crystal
Water/Fragment Ensemble-based Pharmacophore (CWFEP)
features for the SARS-CoV-2 main protease (Figure 1). It
consisted of three major steps.
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In the first step, a total of 173 structures were optimally
superimposed onto the reference Mpro structure 5R8T
(resolution 1.27 Å) using coordinates of Cα atoms. The
structural superimpositions were carried out using UCSF
Chimera[29] software. The number of bound water molecules
on a given Mpro structure typically ranged from 24 to 927.
After determining the center mean position (CoM) of the
substrate-binding site of Mpro, all superimposed structures
were analyzed to extract the water molecules lying within a
distance of 8 Å from the CoM position (Figure S2). Binding
site waters were further filtered to select only those which
were at a minimum distance of 1.5 Å from the solvent
accessible surface residues of the protein and formed
hydrogen bonds with protein residues (Figure 1, panel 1).
The minimum distance of 1.5 Å criterion was adopted
because 1.4 Å water probe radius is generally used to mark
the protein surface. So, any water molecule which is likely
to be replaced by a ligand should not be part of the protein
surface or buried in the interior of the protein.

The second step involved the identification of sites
where bound water molecules can be displaced by the
incoming ligand (Figure 1, panel 2). The ensemble of water
and small molecule fragment binding sites were analyzed
after they were transformed from different Mpro structures
to the reference structure. The visual analysis of the
ensembles revealed that they formed three distinct ensem-
bles in the substrate-binding site of Mpro. One ensemble
consisted of bound waters which were consistently found
in the vast majority of the Mpro crystal structures, while the
second ensemble corresponded to sites which were
occupied by small-molecule fragments in significant num-
ber of Mpro structures in our dataset, hence this ensemble

will preserve less number of water molecules at those sites.
This second category can be called “displaceable water
ensemble” and the corresponding binding sites can be
occupied by ligand molecules in ligand/fragment bound
Mpro structures. The third ensemble corresponded to sites
where only small molecule fragments were found to be
bound in the apo-Mpro structures.

In the third step, all the water molecules in the
“displaceable water ensemble” were clustered using an
automated computational approach to identify displaceable
water clusters which map to various sub-sites in the
substrate-binding pocket of Mpro (Figure 1, panel 3). Scipy
package was used for euclidean distance metric-based
hierarchical clustering using 3D coordinates of water
molecules in the cluster. The complete linkage algorithm
was used with an inconsistency cutoff of 2.2 Å. The clusters
corresponding to water-binding sites occupied in a mini-
mum of 27 out of the 173 apo- or fragment-bound overlaid
Mpro crystal structures were annotated as displaceable water
clusters (Table S2). These cutoffs were selected to ensure
that known subsites (S1, S2, S4 and S1’) of Mpro mapped to
displaceable water clusters. The centers and the radii of
these significantly populated displaceable water clusters
were calculated from the coordinates of the water mole-
cules which mapped onto a given cluster. The center of
each such cluster was set to the average position of the
oxygen atoms, and the radii were set based on the average
RMSD of water molecules in the corresponding cluster.
These clusters were used as features of water/fragment
ensemble-based pharmacophore characterized by their
positions and radii.

Figure 1.Waterphore identification protocol developed using crystal structure-bound waters and small molecules.
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In the fourth step, the feature type (H-bond donor,
acceptor etc.) of each water site was determined after
analyzing the type of features projected by the fragment
molecules at any particular water site (Figure 1, panel 4). All
pharmacophore features encompassed by fragment mole-
cule were calculated using the Rdkit package[30] and water
sites were annotated based on the maximally occupied
feature type from the fragment molecules. This criterion
was used to annotate the identified water cluster as a
conserved sub-site in terms of pharmacophore feature
types. For further analysis and representation purposes,
waterphore features were represented in Catalyst query[31]

format and imported to the Discovery Studio 2020[28] for all
the analyses carried out in this study.

2.3 The Favorable Interaction Energy of the Water
Feature

In order to quantify the interaction energy of each
identified feature of the Waterphore, probe-based Molec-
ular Interaction Field (MIF) was calculated using the Grid
software[13] from Molecular Discovery (https://www.moldis-
covery.com). MIF calculation helps in finding favorable
interaction energy spots accessible by different sizes and
types of chemical probes. For MIFs analysis, the apo-
structure of the Mpro (PDB ID: 6YB7) was selected and as a
preprocessing step, the structure was examined for missing
residue information and all bound crystallographic water
molecules, small molecules (such as DMS) and ions were
removed. The prepared apo-structure was used for the MIF
calculations by 22d version of GRID software. As per the
standard protocol proposed by Goodford et al[32] for
processing the receptor for molecular interaction field
calculation, GRIN module of the GRID package was used to
examine the correctness of the structure and to add
hydrogens. An appropriate number of counterions were
further added to neutralize the total charge of the receptor
protein. The positions of the counterions were near the
protein surface and three sodium ions were added to
neutralize the total charge of Mpro protein. The GRID box
was centered around the Mpro binding site and its
dimensions were chosen to encompass all relevant binding
site residues.

Two polar probes (Neutral Amide, Carbonyl) and a water
probe were used to calculate MIF. The first two probes were
selected because most protease inhibitors are peptide-like
molecules and are very rich in these chemical groups. They
are primarily involved in hydrogen bonding with residues in
the binding pocket of the protease. Amide group can have
a hydrogen bond donor (HBD) feature, while carbonyl can
have a hydrogen bond acceptor (HBA) feature of the
pharmacophore. The grid box of size 27 Å×35 Å×25 Å was
used with a grid spacing of 1 Å. Other GRID input
parameters were selected as default values. In this way, for
each selected probe molecule, GRID had calculated the

23625 MIF points. One hundred grid points having the
most favorable interaction energies from two polar probes
were used to color the binding surface. On the other hand,
a water probe was utilized to characterize the favorable
interaction energies of the Waterphore features. Distance-
based criteria were used to find the closest grid point for
each feature.

2.4 Comparison of CWFEP with Interaction-based
Pharmacophore Modeling

Interaction-based Pharmacophore (IBP) modeling is a well-
known approach to identify bound ligand-dependent 3D-
pharmacophore features.[33] Though this approach deter-
mines the receptor-based features; feature exhaustiveness
can be limited by the availability of only a few bound
ligands/inhibitors from among diverse possible scaffolds of
potential inhibitors. In order to analyze the comprehensive-
ness of CWFEP approach and compare its performance with
interaction-based pharmacophore modeling, static protein-
ligand interaction-based Pharmacophore (IBP) modeling[20]

was also performed for a set of 78 inhibitors bound protein
complexes using the Discovery Studio (DS) 2020 software.[28]

This modeling aimed to identify which feature combina-
tions are utilized more frequently in the inhibitor designing
process while neglecting the other combinations. All
complex structures were processed to add hydrogens and
fix ionization states of amino acid residues using the Protein
Prepare protocol of DS. The binding site sphere was defined
as having a 10 Å radius to accommodate all surrounding
residues. IBP module in DS was used to generate minimum
of four and maximum ten pharmacophore feature sets with
the default settings. The top pharmacophore model from
each protein-ligand complex collectively was used for
features comparison with CWFEP water pharmacophore
model. All selected IBP models from each protein-ligand
complex were overlaid with the Waterphore model to
understand the distribution of the feature between two
feature modeling approaches.

2.5 Generation of the Feature Availability Map of Mpro by
Analysis of the Known Inhibitor Dataset

Rigorous model validation is an essential requirement for
enhancing the applicability of any pharmacophore model.
To test how well Waterphore features can be mapped to
the known inhibitors, known inhibitor-based profiling was
done to understand feature types present in the bound
inhibitor poses. This analysis also helped in identifying the
pharmacophore features that were not explored yet among
known inhibitors of Mpro. For this feature profiling, 78 crystal
bound and 68 assayed compounds extracted from the
literature[5,34–37] were used for features mapping using the
Ligand Pharmacophore Mapping module of the DS2020.[28]
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For waterphore features mapping, the crystal-bound pose
of ligands was used if available. For assayed compounds,
3D-chemical structures were prepared and up to 250
conformers for each compound were generated using the
‘BEST’ protocol of DS2020. All ten Waterphore features were
used for feature mapping and a ligand with at least five
features was analysed. In order to visualize the distribution
of the features, a binary string named PharmString consist-
ing of ‘1’ for feature element mapped and ‘0’ for absent/
non-available feature, was created. PharmString will clearly
depict which feature combinations are consistently utilized
and which are the unexplored ones in the design of Mpro

inhibitors.

2.6 Assessment of Performance of Waterphore and
Interaction Based Pharmacophores

Assessments of the performances of Waterphore as well as
selected IBP models were carried out by calculating three
different evaluation metrics such as enrichment factor
(EF),[38] which is a key parameter to understand the early
enrichment during the virtual screening experiment. Active
hit Rate (AHR) was used to report active compound retrieval
rate and receiver operating characteristic (ROC) and corre-
sponding area under curve (AUC)[39] value was employed to
depict as a global hit performance over the screen hit
collection by calculating the true positive rate (TPR) as a
function of false-positive rate (FPR) for different score cutoff.
In general, EF reports the enrichment of hits against
random screening, however, it is evident that EF depends
on the number of Active compounds considered and the
total size of the decoy dataset.[40] Conversely, ROC-AUC is a
well-known and commonly employed approach in machine
learning to assess model performance.

Two different active compound datasets were collected.
The first dataset consisted of 146 SARS-CoV-2 Mpro inhib-
itors, out of which inhibitor-bound crystal structures were
available for 78. The remaining 68 were known inhibitors of
SARS-CoV-2 Mpro as per experimental studies reported in
the literature. The second dataset consisted of 70 known
inhibitors of SARS-CoV-1 Mpro, out of which SARS-CoV-1 Mpro

bound crystal structures were available for 30, while 40
were known inhibitors of Mpro as per biochemical studies
(Table S4&5). Decoy compounds were fetched from the zinc
database using the Decoyfinder program.[41] A maximum of
20 decoys were selected against each active compound
having 20% or lower chemical structure similarity with
respective active compounds in terms of Tanimoto score.
No two decoys had more than 20% similarity in chemical
structures. However, all physicochemical properties of the
decoys were similar to the corresponding active com-
pounds (Figure S3). The total number of compounds in the
active and decoy dataset were 2778 targeting SARS-CoV-2
Mpro, while SARS-CoV-1 set had 1378 active and decoy
compounds. It may be noted that, due to the high degree

of sequence and structural similarities between Mpro

proteins from SARS-CoV-1 and SARS-CoV-2, several of the
inhibitors of SARS-CoV-1 Mpro have been shown to have
inhibitory activity against Mpro of SARS-CoV-2.[6,35,42] There-
fore, we designed the SARS-CoV-1 inhibitor dataset as an
additional validation set. For all these compounds, 3D
structures were generated using DS2020 software by
considering their stereochemistry, ionization and tautomer-
ic states, and a maximum of 250 conformations generation
for each compound. The pharmacophore query for the
waterphore was searched against these active/decoy com-
pounds to investigate how well the waterphore model can
distinguish between actives and decoys. Using the com-
pounds identified by pharmacophore search in the decoy
database, EF as well as AHR were calculated.

AHR=

Where Hitssampled is the number of known active compounds
in the hit list, Nsampled is the number of compounds in the hit
list, Hitstotal is the number of known actives in the full
database and Ntotal is the total size of the database. Ranking
of the screening hits was done based on the features fitting
score. We have reported the EF at 1%, 5% and 10% of the
full decoy library hits. ROC-AUC value has been calculated
using the ranked compound hits dataset.

2.7 Chemical Library Selection and Virtual Screening for
Novel Mpro Inhibitors

Three different chemical libraries, namely DrugBank,[43]

Protease inhibitors from PubChem[44] and antiviral library
from the Enamine (https://enamine.net/hit-finding/focused-
libraries/antiviral-library) were selected for identifying novel
Mpro hit compounds by screening with the Waterphore
model. ‘Prepare Ligands’ module of the DS2020 software
was used to prepare the compound libraries for virtual
screening. All compounds were prepared at biological pH
with all possible stereoisomers. In order to generate
conformers for the prepared compounds, maximum of 250
conformers were generated with 20 kcal/mol energy thresh-
old using the BEST module of the DS 2020. A two-step
protocol was followed for efficient chemical library screen-
ing. In the first step, Discovery Studio specific Catalyst query
was designed to have the core features (A1, D3, A6, A7, H8
and D9) along with binding shape information to identify
the initial hit compounds. So, this query will ensure that all
retrieved hits will explore the core catalytic region features
and will be accommodated in the protease binding site. In
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the second step, hits from the previous step were further
screened using all Waterphore features to identify the hits
having the maximum number of mapped features. In this
way, compounds with the core catalytic features were
extended to have the other features. All the Catalyst query-
based screening has been performed using the ‘Ligand
Pharmacophore Mapping’ module of Discovery Studio.
Compound hits were collected from three different libraries
and sorted based on the number of features mapped.
Selected hits were further processed to narrow down the
hit space based on the known inhibitors-based Physico-
chemical properties driven threshold.

3 Result and Discussion

3.1 Crystal Water/Fragment Ensemble Pharmacophore
(CWFEP) Modeling

The major objective of this work was to investigate whether
the pharmacophore model derived from the analysis of
water and small molecule fragment binding sites in the
dataset of 173 apo- and fragment-bound crystal structures
of SARS-CoV-2 Mpro can identify the inhibitors from the
decoys and also predict their bound conformations. The
superimposition of 173 apo- and fragment-bound crystal
structures on the reference structure (PDB ID: 5R8T) using
backbone Cα atoms revealed low RMSD values in the range
of 0.07 Å to 0.66 Å, thus indicating a high degree of
structural conservation in general and also conservation of
the overall geometry for the substrate-binding site (Fig-
ure S2). However, detailed analysis of the residue-wise
RMSD values for each pair of superimposed structures
revealed the presence of loop regions ASL1 (residues 22–
53) and ASL2 (residues 184–194)[45,46] in S4-subsite which
exhibits much higher flexibilities compared to other regions
in the substrate-binding cavity (Figure S4). The higher
flexibility of the S4-subsite is also reflected in the
corresponding water cluster, which has a much higher
(3.6 Å) cluster radius than other water clusters. These results
indicate the ability of the Waterphore model to include the
inherent flexibilities present in the structures of receptor
proteins.

Around the substrate-binding pocket, the subsites
where water molecules bound in at least 27 crystal
structures were annotated as conserved water binding sites.
A total of nine such conserved water binding sites could be
identified by the developed protocol (Table S6). All nine
conserved displaceable binding sites were also occupied by
the bound fragment molecules (Figure S5). These conserved
water binding sites predominantly overlapped with the S1,
S2, S4 and S1’ subsites of the peptide-binding pocket of
Mpro.

After implementing the rule-based Pharmacophore
annotation protocol, water sites are categorized as hydro-
gen bond donor (HBD) and hydrogen bond acceptor (HBA).

One water cluster is classified as having a hydrophobic/Ring
feature as this water cluster is mainly occupied by a ring
containing moieties in the fragment-bound crystal struc-
tures of Mpro (Figure S5). As can be seen, five HBA, three
HBD and one hydrophobic feature are identified. One more
feature (hydrophobic) is placed manually at the S2 position
as this feature position is occupied by the hydrophobic
group of the most fragment molecules. So, a total of ten
features were identified (Figure 2). Among these features,
inter-features distance ranges from a minimum of 2.6 Å
between A6 and D9 to maximum of 16.6 Å between D4
(near S1’ subsite) to A10 (S4 subsite).

3.2 Molecular Interaction Fields (MIFs) Calculation

With the help of GRID software, MIF was calculated using
the three different probe types, namely neutral amide,
carbonyl and water. To decode the favorable interaction
energy of each Waterphore feature, the MIF interaction
energy of the water probe was examined within the 0.8 Å
distance. The interaction energy of the nearest water probe
is annotated as the interaction energy of each Waterphore
feature (Table S6). This calculation shows that features
located at the S1 and S4 positions have the most favorable
interaction energies and while S2 position is more favour-
able for the hydrophobic interaction. This quantification
further reflects that incoming ligands with corresponding
features will contribute significantly to the binding energy
upon displacement of the bound water clusters.

To further characterize the MIF-based binding hotspots
in the protease binding site, one hundred MIF points with
the most favorable interaction energies were selected for all
three probes and shown in Figure S6. Water probe-based
MIFs interaction energies range from� 11.7 to� 6.2 kcal/mol
and mainly occupied the S1, S1’ and S4 subsites. Catalytic
dyad Cys-145 and His-41 are more populated with the
water-MIF points. On the other side, polar probe such as
amide (N) also follows the same pattern while carbonyl
probe is distributed at the catalytic dyad site. Though MIF
calculation is based on the single protease structure,
theoretical descriptors (different probes-based MIF) agree
with consensus water sites.

3.3 Waterphore vs. Ligand Interaction-based
Pharmacophore Models

Ligand Interaction-based Pharmacophore (IBP) models
depend on the single protein-ligand complex information
for perceiving the pharmacophore features. IBP models
from the multiple complexes of the particular target
proteins will only highlight which features are more
frequent and least frequent; however, this approach cannot
discriminate which feature is more important than others.
In order to compare the water-based hotspot guided
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pharmacophore features (Waterphore features) with recep-
tor-ligand interaction-based pharmacophore features, IBP
models were developed for available 78 inhibitor bound
crystal structures of SARS-CoV-2 Mpro. Of the 78 complexes,
only 73 have features ranging from four to ten (Table S3),
while the remaining five had less than four features. IBP
models derived from peptide bound complexes N3,
Telaprevir, TG-0203770, GRL-2420, and Boceprevir bound
Mpro complexes have perceived maximum of ten features.
Among all the available features for these complexes, only
five features have made maximum consensus across the
five IBP models (Figure S7). Figure 3 shows a comparison
between waterphore and Interaction-based Pharmaco-
phores (IBP) derived from bound ligand crystal structures.
To decipher which feature is dominantly available among
the IBP models and how well they overlaid with Waterphore
features, features of IBP models were superimposed over
the later one (Figure 3B). As can be seen, core features A1,
D3, A6, H8, D9 are commonly occurring in both types of
pharmacophore models, while A2, D4, R5, and A10 are
among the features which are either absent or least
frequent in the IBP models. This suggests the use of the
Waterphore model has advantages over IBP in the case of
Mpro pharmacophore searches. Hence, usage of Waterphore
can potentially help in identifying novel inhibitors.

3.4 Search for Waterphore Features in Known Mpro

Inhibitors

To highlight the availability of the CWFEP pharmacophore
features among the known Mpro inhibitors, inhibitor-bound
crystal structures of Mpro were used. Profiling of donor,
acceptor and hydrophobic groups in known inhibitors was
carried out to understand the feature types and size present
in various inhibitor poses. The set of 78 crystal structures of
the inhibitor bound with SARS-CoV-2 Mpro and 68 assayed
compounds were used for feature mapping. As shown in
Figure 3C, pharmacophore feature numbers A1 and D3, A6,
A7, H8, and D9 are very consistent and form the core group
occupying the S1, S1’ and S2 subsites features while A2 and
D4 are not covered at all. A10 feature at the subsite S4
derived from the most populated water cluster site and has
the most favorable interaction energies were found to be
least utilized among SARS-CoV-2 Mpro inhibitors. Thus,
feature mapping onto the known inhibitors suggests
designing of improved non-peptide inhibitors by employing
pharmacophore features absent in known inhibitors.

Figure 2. (A) Identified conserved water clusters in the substrate-binding cavity of the Mpro(B) Depiction of different pharmacophore features
of waterphore and distances between them (C) Binding site residues interacting with Waterphore (D) Waterphore features mapped onto the
Mpro bound crystal structure ofN3 peptide inhibitor.
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3.5 Enrichment and ROC-AUC Calculation for Assessment
of the Utility of Waterphore in Virtual Screening

Before carrying out the actual virtual screening of com-
pound libraries using Waterphore, an assessment was done
to evaluate the performance of the Waterphore model
developed in the current study. Because of the sequence
homology and structural similarity between Mpro of SARS-
CoV-2 and SARS-CoV-1, several inhibitors of SARS-CoV-1
Mpro have also been shown to have activity against Mpro of
SARS-CoV-2. Therefore, we used known inhibitors of both
SARS-CoV-2 and SARS-CoV-1 Mpro to benchmark the
predictive power of the Waterphore model. As mentioned
in the methods section, two active compound datasets,
SARS-CoV-2 (146 compounds) and SARS-CoV-1 (70 com-
pounds) were combined with decoy set consisting of
maximum of 20 decoy compounds per inhibitor to
construct a decoy library of 2778 and 1387 respectively. The
developed decoy library was further used for enrichment
factor (EF), Active hit Rate (AHR) and ROC-AUC analysis.
Both libraries were screened using the Waterphore model
and five IBP models that encompassed all ten pharmaco-
phore features. These IBP models corresponded to pharma-
cophores derived from crystal structures of Mpro bound to
N3, Telaprevir, TG-0203770, GRL-2420 and Boceprevir. All
hits were collected having a minimum any five features
mapped out of ten features. FitValue score, which depends
on the number of features mapped and feature fitting

tolerance,[47] calculated by Discovery Studio, was used as a
criterion to sort the hits for all metrics calculation.

As can be seen from Figure 4, for the SARS-CoV-2 decoy
library, the Waterphore model has achieved more than 19-,
11-, 11-times enrichment at EF1, EF5 and EF10, respectively
with an Active hit rate (AHR) of around 70%. These results
unambiguously demonstrate that the waterphore model
predictions are highly enriched by actives over decoys.
Compared to EF at different subsets, AUC represents the
overall performance at different score cutoffs for predicting
actives and ROC curve shows sensitivity or true positive rate
(TPR) as a function of false-positive rate (FPR). As can be
seen from Figure 4C waterphore model offers an AUC value
of 0.81 and at optimum score cutoff, this model can predict
active compounds with a sensitivity or TPR of above 77% at
FPR of close to 20%. In contrast to the Waterphore model,
the IBP models achieved lesser enrichment, AHR and ROC-
AUC values (Figure 4), thus indicating the superior perform-
ance of Waterphore over IBP.

For SARS-CoV-1 dataset, the waterphore model also has
EF1, EF5 and EF10 values 19, 10 and 8, respectively with
AHR of 61% and ROC-AUC of 0.75 (Figure S8). This suggests
that the waterphore model can efficiently identify potential
inhibitors of SARS-CoV-2 Mpro from among known inhibitors
of SARS-CoV-1. These results are incredibly encouraging
because the waterphore model has neither used any
information from inhibitor bound crystal structures of Mpro

from SARS-CoV-1/2 nor information about known inhibitors

Figure 3. A) Both Waterphore and N3-Mpro complex-based pharmacophore models have generated ten feature elements. Figure A) shows
the 3D distribution of the Waterphore and N3 features overlaid with N3 peptide inhibitor in the protease binding cavity. Feature A1 and A2
are located near the Cys-145 which is catalytically essential and known to form the covalent bond with the inhibitor having the aldehyde or
keto warhead. B) Depiction of the feature comparison between the CWFEP vs. static IBP models. 62 out of 78 complexes have generated the
IBS models. All IBS features are overlaid to the CWFEP features to empathize with the comparative difference.CWFEP feature number A1, D3,
A6, D7, D8 and D9 are mostly explored in the inhibitor designing however, A2, D4, R5, A10 features are either not utilized or least utilized.
Further CWFEP features are used to profile the known inhibitors from the CoV-2 and figure C) shows that 1, 6, 7, 8 and 9 features as
determined in figure B), are the most explored features.
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of Mpro. The Waterphore model derives its predictive power
by utilizing water and fragment binding sites in substrate
binding region obtained from XChem crystallographic frag-
ment screen. The data on inhibitor-bound crystal structures
of Mpro and other known inhibitors of Mpro serve as
completely independent test sets. Therefore, it is encourag-
ing to note that EF, AHR and ROC-AUC clearly demonstrate
high prediction accuracy of Waterphore model on inde-
pendent test set of compounds. Thus, the waterphore
model can be used to screen large compound libraries
quickly to identify novel inhibitors or repurposed molecules
from among known drugs.

3.6 Virtual Screening and Hit Mining: Finding Compounds
Having Unexplored Waterphore Features

In silico high throughput screening against a particular
target protein is a powerful approach to identify the novel
inhibitors encompassing the required pharmacophore fea-
tures. In the present study, Waterphore features were
employed in two steps to identify novel inhibitors of Mpro

protein from DrugBank, Protease inhibitor library and
antiviral compound library. As discussed in the methods
section, the first round of compound hits was collected
from three different chemical libraries using the Catalyst
query containing the core pharmacophore features coupled
with the cavity shape information. Every ligand conforma-
tion was fitted to the pharmacophore features and sorted
based on the calculated highest fit values. The pharmaco-
phore-based screening reduces the chemical database to a
large extent by implementing the required number of
features and inter-feature distances criteria (Figure S10) and
ensuring that compounds carry the right features at the
appropriate position. In the second step, hits from the
previous step were further screened to get the final list of
potential Mpro inhibitors (Table S7). It is encouraging to note

that 68 out of 109 hits from DrugBank corresponded to
approved drugs. Mapped features range from 5 to 7 for
DrugBank, 6 to 8 for proteases, and 6 for the antiviral
compound library. A list of 230 selected compounds from
the waterphore based search of the PubChem Protease
inhibitor library are provided in Table S8. These results
demonstrate that the Waterphore approach developed in
this work can be a powerful tool for drug repurposing
studies.

Waterphore based virtual screening hits identified from
the DrugBank consisted of ten protease inhibitors which
had been developed as anti-HIV and anti-HCV agents. A
Survey of the literature revealed that a set of 10 compounds
of the identified protease inhibitors had been experimen-
tally tested recently for their inhibitory activity against the
SARS-CoV-2 (Table 1). As shown in Table 1, many of these
protease inhibitors have EC50 values in the micromolar
range. These experimental studies provide indirect support
that the Waterphore model can identify high-affinity
inhibitors. We also performed the virtual screening of the
DrugBank chemical library using the N3-peptide-protein
complex (PDB-ID: 6LU7) driven IBP model and 22 hits were
identified from the approved drug category out of which 12
hits belong to the antibiotics class of compounds and only
one protease inhibitor Remikiren was identified. Hits
comparison from the two models suggests that Waterphore
features represent the key interaction elements that
enhance its ability to successfully identify repurposed drugs
or new inhibitors for SARS-CoV-2 Mpro protein. Along with
hit analysis, we have also compared the screened hit poses
of Boceprevir and Telaprevir with the corresponding poses
in the known crystal structures and find good agreement in
terms of orientation and conformation (Figure S9).

In order to analyze in detail the types of chemical
scaffolds identified by waterphore model based on search
in DrugBank and Protease libraries. A total of 298 hit
compounds obtained from waterphore search in DrugBank

Figure 4. Comparison of the Enrichment Factors (EF) (A), Active Hit Rates (AHR) (B) and ROC curves (C) for the Waterphore (in dark red color)
and IBP models on the dataset consisting of 146 known SARS-CoV-2 inhibitors and 2920 decoys. Among the top five IBP models, N3-peptide
containing Mpro complex (in dark green color) has the maximum AUC value of 0.75, while SV6 (Telaprevir) (purple color) and U5G
(Boceprevir) (cyan color) received the minimum AUC value of 0.60. The ROC curves for V7G (GRL-2420) and TG3 (TG-0203770) are shown in
light green and blue colors respectively.
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and PubChem protease library were clustered. A topological
fingerprint was calculated and used for Butina algorithm-
based clustering using the RDKIT package.[30] At 80%
similarity cutoff, chemical clusters were identified in which
the largest cluster had the ten compounds while 170
singleton clusters occurred (Figure S11). All the S-hetero-
cyclic compounds were occurred together in the first
cluster, while second and third clusters consisted of ethyl
sulfamoyl derivatives and peptide derivatives respectively.
Representative compounds from top twelve highly popu-
lated clusters have been shown in Figure S11 and they
provide a snapshot of the diversity in chemical scaffolds
identified by waterphore model. In order to evaluate the in
silico binding affinity of the identified compounds for Mpro

representative compounds having the maximum number of
mapped features from each cluster were further minimized
in complex with the receptor using the in situ Ligand
Minimization module of Discovery Studio followed by
binding energy calculation of each minimized pose using
CHARMm-like force field with Generalized Born implicit
solvent model.[48] So, in this way in silico binding affinities of
the pharmacophore-screening based poses were evaluated
and eleven novel Mpro inhibitors compounds were selected
from different compound clusters having known tested
bioactivity against protease class of proteins (Figure 5). The
known biological activity of these selected compounds are
shown in Table S10. It is encouraging to note that they
consist of inhibitors of HIV protease, thermolysin, renin,
matrix metallopeptidase MMP9 and bone morphogenetic
protein BMP1 and have low nM activity. These compounds

are potential novel Mpro inhibitors predicted by our Water-
phore model and are good candidates for experimental
validation.

4 Conclusions

Even though large number of in silico prediction studies
have reported inhibitors for SARS-CoV-2 Mpro using standard
drug discovery tools or simulation methods, information is
available on large number of Mpro crystal structures about
water and drug-like fragment binding sites have not been
effectively used in most of the in-silico screening studies.
Since water molecules play a crucial role in the catalysis and
substrate recognition of several enzymes, earlier studies
have used information about bound water molecules in
lead optimization of ligand-receptor systems.[49] In this
work, we have utilized the recently available crystal
structures of large number of electrophilic fragment bound
of Mpro from PanDDA and XChem platform[50] to systemati-
cally analyze the water and fragment binding sites in the
active site pocket region. Using this information about
conserved water binding sites and fragment binding sites,
we have identified binding hotspots. The binding hotspots
have been further utilized to develop a novel Crystal Water/
Fragment Ensemble-based Pharmacophore (CWFEP) or
Water pharmacophore (Waterphore) modeling protocol,
which can quickly screen large compound libraries to
identify novel inhibitors for Mpro. Waterphore approach only
utilizes the apo-protein structure and bound water and

Table 1. Protease inhibitor drugs from the DrugBank which are predicted by Waterphore model to be potential inhibitors of SARS-CoV-2.
The experimental activity of the identified compounds against SARS-CoV-2 in cell line-based assays or activity against Mpro based on a
literature survey is indicated. Results of cell line-based assay indicated as EC50 and biochemical inhibition study against M

pro indicated as IC50
values.

DrugBank ID Drug Name MW Number of features mapped Experimental Activity*

DB00220 Nelfinavir 567.31 6 EC50: 1.13 μM
DB01601 Lopinavir 628.36 5 EC50: 5.73 μM

IC50: >20 μM
DB01232 Saquinavir 670.38 6 EC50: 8.83 μM

IC50:31.4 μM
DB00932 Tipranavir 602.20 5 EC50:13.34 μM

IC50: 27.66 μM
DB00701 Amprenavir 505.22 5 EC50: 31.32 μM

IC50: >20 μM
DB01264 Darunavir 547.23 6 EC50: 46.41 μM

IC50: 36.1 μM

DB00224 Indinavir 613.36 6
EC50: 59.14 μM
IC50: >200 μM

DB08873 Boceprevir 519.34 5 IC50: 4.13 μM
IC50: 2.5 μM

DB00212
Remikiren 630.34 6 NA

DB05521
Telaprevir 679.40 6 IC50: 10.7 μM

*Table S9 provides information on publications reporting the experimental EC50/IC50values.
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fragment molecule information to derive displaceable water
molecules driven by pharmacophore features. Many of
these pharmacophore features map onto the subsites (S1,
S1’ and S4) in the active site pocket of Mpro, which have the
most favorable interaction energies could potentially be
explored for the design of novel inhibitors. Waterphore
model also implicitly represents conformational flexibilities
of certain regions of binding site in terms of the higher
radius of some of the pharmacophore features. Benchmark-
ing analysis of the predictive power of Waterphore on a
dataset of 146 known inhibitors in terms of enrichment
factor (EF), hit rate (HR) and ROC-AUC reveal that it can
successfully identify known inhibitors from among decoy
compounds. Our benchmarking study also demonstrates
the superior performance of Waterphore compared to
interaction-based pharmacophores derived from ligand-
bound crystal structures. This result is especially encourag-
ing because, even though no known inhibitor information
has been utilized in deriving the waterphore features, the
ROC-AUC values are higher than some of the machine
learning models[51] which have been trained using known
inhibitors data. Comparison of Waterphore features with
crystal structure bound known inhibitors of SARS-CoV-1 and
SARS-CoV-2 indicate that not all high scoring features of
Waterphores have been explored in the design of known
inhibitors of Mpro. Virtual screening of DrugBank, protease
inhibitor and antiviral compound libraries using Waterphore
reveal that its performance is superior to Interaction-based
pharmacophore (IBP) models derived from inhibitor bound
crystal structures of Mpro. Results from virtual screening by
Waterphore demonstrate that, it can not only identify
known drugs for repurposing against Mpro, but also aid in
experimental studies by predicting diverse lead compounds
which could be tested for their biological activity. Water-

phore approach developed in this work is general enough
for its potential application to other drug targets. However,
it is necessary that sufficient number of water and frag-
ment-bound crystal structures should be available for the
corresponding target. Therefore, there will be limitations in
its application for less well-studied drug targets.
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