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Abstract: Cancer genome analysis has recently attracted attention for personalized cancer treatment.
In this treatment, evaluation of the ratio of cancer cells in a specimen tissue is essential for the precise
analysis of the genome. Conventionally, the evaluation takes at least two days and depends on the
skill of the pathologist. In our group, a terahertz chemical microscope (TCM) was developed to
easily and quickly measure the number of cancer cells in a solution. In this study, an antibody was
immobilized on a sensing plate using an avidin-biotin reaction to immobilize it for high density and
to improve antibody alignment. In addition, as the detected terahertz signals vary depending on the
sensitivity of the sensing plate, the sensitivity was evaluated using pH measurement. The result of
the cancer cell detection was corrected using the result of pH measurement. These results indicate
that a TCM is expected to be an excellent candidate for liquid biopsies in cancer diagnosis.

Keywords: terahertz; cancer genomic medicine; cancer cells

1. Introduction

Cancer genes have been identified using next-generation sequencing (NGS) technol-
ogy [1]. Therefore, cancer genomic medicine has recently been recognized as a promising
option for cancer treatment to reduce the physical burden of cancer patients during treat-
ment. Cancer genomic medicine provides personalized treatment to each patient by
precisely analyzing the genomes. The precision of genome analysis largely depends on the
ratio of cancer cells to normal cells in a sample specimen tissue. Therefore, quantitative mea-
surements of cancer cells in the sample specimens are essential for analysis. Conventionally,
the ratio of cancer cells to normal cells is evaluated as follows [2]: first, the specimen tissue
is fixed to make formalin-fixed paraffin-embedded (FFPE) [2–6] by replacing water with
formalin, which takes between 24 and 48 h [7]; subsequently, the tissue is degreased with
alcohol, followed by paraffin embedding; the tissue is then sliced and stained. The stained
tissue is visually observed using an optical microscope by pathologists. However, this
evaluation process takes at least 2 days, and largely depends on the skill of the pathologist.

On the contrary, a terahertz wave refers to an electromagnetic wave with the frequency
components between 0.1 and 10 THz [8]. Terahertz sources are generally used as optical
sources for imaging and spectroscopy [9–13]. Recent progress in terahertz technology has
enabled the use of this technology for medical and/or biosocial measurements [9,12,14–16].

Previously, our group developed a terahertz chemical microscope (TCM) and proposed
to measure chemical reactions in the solution on the sensing plate [17–21]. The TCM can
evaluate the number of cancer cells in a solution without the fixing process [19,20]. When
using a TCM, the only pretreatment required is to drop the solution containing cancer cells
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and stir it. A TCM can take measurements within 25 min, including the pretreatment time,
and it is therefore expected to be an easier and faster evaluation method. In addition, as the
TCM can evaluate the number of cancer cells quantitatively, it can be evaluated without
depending on the pathologists’ skill. TCMs can selectively detect cancer cells in solution
using the immune reaction of cells and antibodies on the sensing plate. Therefore, it is
important to immobilize antibodies on the sensing plate at a higher density without losing
antibody function.

In this study, biotin-labeled cytokeratin was conjugated with avidin immobilized on a
sensing plate to detect lung cancer cells [19]. Since one avidin molecule can be conjugated
with several biotins, there is a higher immobilization of cytokeratin compared to that when
the cytokeratin is on the sensing plate. To compensate for the variability of the sensitivity
of the sensing plate, the pH dependence of the amplitude of the terahertz wave from the
sensing plate and the obtained data were normalized by the pH dependence.

2. Detection Principle and Experimental Setup of TCM

Figure 1 shows a schematic diagram of the sensing plate used as a terahertz emitter.
The sensing plate consisted of a silicon oxide (SiO2) film (a few nanometers thick) and a
silicon (Si) layer (500 nm thick) on a sapphire substrate (500 µm thick). The dimensions
were 10 × 10 mm. A terahertz wave was generated in the Si layer and radiated to the free
space by irradiating a femtosecond laser pulse into the sensing plate from the sapphire
substrate side. The radiated terahertz wave does not interact with materials on the sensing
plate; therefore, the TCM can measure the sample even in the water solution, which absorbs
the terahertz wave.
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The amplitude of the radiated terahertz wave is expressed as follows:

ETHz(t) ∝
∂J(t)

∂t
∝ e

∂n(t)
∂t

v + en
∂v(t)

∂t
, (1)

where ETHz(t) is the electric field of the terahertz wave, J(t) is the instantaneous current
density in the Si layer, e is the elementary charge, n(t) is the carrier density of the Si
layer, and v(t) is the velocity of the carriers accelerated in the Si layer. The first term in
Equation (1) is proportional to the time variation of the carrier density, and the second
term is proportional to the time variation of the carrier velocity, i.e., the acceleration of the
carriers. Therefore, this equation indicates that ETHz(t) is proportional to the electric field
in the Si layer, which forms naturally within the depletion layer of the Si layer. Cancer
cells in solution react with antibodies immobilized on the sensing plate, and the electric
potential is changed by the charge of cancer cells; simultaneously, the electric field in the Si
layer changes in magnitude. Thus, the reaction between the cancer cells and antibodies
on the sensing plate can be measured by measuring the amplitude of the terahertz wave.
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Currently, because of the variability in the properties of the sensing plates, calibration of
the sensitivity is essential for accurate measurements.

According to [21], the sensing plate can measure pH values in solutions because
protons react with the SiO2 surface of the sensing plate according to the following equation,
which changes the electric field of the sensing plates:

SiOH+
2 ↔ SiOH + H+ (2)

SiOH↔ SiO− + H+ (3)

To evaluate the sensitivity of each sensing plate, buffer solutions with pH values of
10.01 and 1.68 were initially measured to calibrate the measured amplitude of the terahertz
waves.

Figure 2 shows the optical system diagram of the TCM. A femtosecond laser (FemtoFiber
Ultra 780, TOPTICA Photonics AG, Munich, Germany) was used as the optical source.
The center of wavelength and pulse width were 780 nm and 100 fs, respectively, at full
width at half-maximum (FWHM). The average output power was 500 mW with a repetition
frequency of 82 MHz, which corresponds to 6.25 nJ/pulse. The spot size was approximately
1 mm in diameter on the sensing plate. The femtosecond laser was divided into a pump
beam and probe beam by a beam splitter. The pump beam was focused on the substrate
side of the sensing plate using a condenser lens to generate a terahertz wave. The terahertz
wave was collimated and focused on a terahertz detector by a pair of off-axis parabolic
mirrors. A bow-tie-type photoconductive antenna (PCA) made from a low-temperature-
grown GaAs was used as the terahertz detector. The probe beam was focused on the PCA
in order to trigger it, and the arrival time of the probe beam to the PCA was optimized by a
time delay stage to detect the peak amplitude of the terahertz waves. The intensity of the
pump beam was modulated by an optical chopper at a frequency of 2 kHz; thus, the signal
was lock-in detected after being amplified by a current amplifier with a magnification factor
of 108 V/A. The sensing plate was mounted on the stepping-motor-drive x-y stage to scan
the femtosecond laser across the surface of the sensing plate, to visualize the amplitude
distribution of the radiated terahertz wave.
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3. Materials and Methods

Figure 3 shows the process of measuring the cancer cells in solution. First, avidins
(affinity-purified, Vector Laboratories, Inc., Burlingame, CA, USA) were immobilized on
the SiO2 film of the sensing plate using the amine coupling method [22,23]; the surface of
the SiO2 film on the sensing plate was ultrasonically cleaned for 2 min with acetone (99.5%,
Sigma-Aldrich Japan G.K, Tokyo, Japan) and ethanol (99.5%, Hayashi Pure Chemical
Ind., Ltd., Osaka, Japan). The SiO2 film was modified with ester groups for 1 h at −21 ◦C,
soaking in toluene containing 0.5 mM 2-(carbomethoxy)ethyl-trichlorosilane (FUJIFILM
Wako Pure Chemical Corporation, Osaka, Japan). The ester groups were carboxylate
soaked in hydrochloric acid (35%–37%, FUJIFILM Wako Pure Chemical Corporation, Osaka,
Japan). The carboxyl groups were activated by soaking in pH 7.4 solution. This solution
consisted of pH 7.4 PBS (Thermo Fisher Scientific Inc., Waltham, MA, USA), containing
3 mM N-hydroxy succinimide (NHS) (98.0%–102.0%, FUJIFILM Wako Pure Chemical
Corporation, Osaka, Japan) and 1 mM 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide
hydrochloride (EDC) (>99.9%, FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan)
to facilitate the reaction of the amino groups in avidin and the carboxyl groups within
the SiO2 film on the sensing plate. Avidin (10 µg/mL) was added to each well of 30 µL
and was immobilized on the SiO2 film on the sensing plate for 24 h at 4 ◦C. To prevent
non-specific adhesion of proteins on the sensing plate, 1 mM 2-amineethanol (>99.0%,
Tokyo Chemical Industry Co., Ltd., Tokyo, Japan) was combined with the pH 7.4 PBS and
was applied to each well of 30 µL. It was then reacted with the surface of the sensing plate
for 15 min at 18–25 ◦C. Subsequently, biotin-labeled cytokeratin AE1/AE3 (Protein A or G
purified, Novus Biologicals, Briarwood Avenue, Centennial, CO, USA) was conjugated as
an antibody with the avidins by applying the solution with an AE1/AE3 concentration of
10 µg/mL and shaking the sensing plate using an orbital shaker for 30 min at 18–25 ◦C,
with a rotation speed of 45 rpm.
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Figure 3. Schematic diagram of an experimental process to detect cancer cells in solution.

After immobilizing the AE1/AE3, the distribution of the terahertz amplitude was
measured as a background signal. In this study, cultivated human lung adenocarcinoma
cells (PC9) were used as sample cells. The concentrations of cancer cells in the culture
medium were 103, 104, and 105 cell/mL, which were measured using an automated cell
counter (Countess 2, Thermo Fisher Scientific, Tokyo, Japan). Figure 4a,b show the sensing
plate with four wells and the cross-section of the sensing plate, respectively. The sample
solutions with cells were infected in each well at a volume of 30 µL. The concentration
of cells is shown in Figure 4a. The cells were incubated with the immobilized antibodies
for 15 min at room temperature at 45 rpm. Thereafter, the non-reacted cancer cells were
removed by washing 10 times. The distribution of the terahertz amplitude after reacting
the cancer cells was measured using the TCM.
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4. Results and Discussion

Figure 5 shows the distribution of the change in the terahertz amplitude on the sensing
plate after the reactions, which was obtained by subtracting the data from the background.
Black rectangles in the image represent the area of the wells. The total measurement
time of the image was approximately 20 min, which was determined by the number of
points to measure and the signal-to-noise ratio. The terahertz amplitude was increased
by increasing the concentration of cells in the wells. There is a clear irregularity of the
terahertz distributions in each well, which is because of the non-uniformity of the reactions.
Therefore, the averaged values of the terahertz amplitude in each well were calculated
and plotted as a function of the concentration of cells in solution, as shown in Figure 6.
The error bar represents the standard division of the data measured by the three different
sensing plates. To cancel the offset along the vertical axis, the data were fitted by a double
exponential function, given by the following equation:

S = S0 + A1

(
1− e−

c
t1

)
+ A2

(
1− e−

c
t2

)
, (4)

where S is the average change in terahertz amplitude; S0 is the terahertz amplitude at
0 cell/mL; C is the concentration of cancer cells; and A1, A2, t1, and t2 are constants to be
determined. After determining the value of S0, the data were subtracted from S0. Thus, we
found that the changes in the terahertz amplitude from the background were 0.047 ± 0.018,
0.54 ± 0.22, and 0.77 ± 0.38 mV for 103, 104, and 105 cell/mL, respectively.
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Figure 6. Average value of change in terahertz amplitude for each well in the black rectangles shown
in Figure 5 as a function of the concentration of PC9 in solution. The error bar is the standard
deviation for the data obtained by three independent sensing plates. The vertical axis was offset by
fitting the data.

Figure 7 shows the change in terahertz amplitude between pH 1.68 and 10.01 for the
three sensing plates. The value was calculated by averaging the values of the four wells of
each sensing plate.
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Figure 7. Average value of the change in terahertz amplitude in four wells between pH 1.68 and
10.01, for three independent sensing plates. The error bar shows the standard deviation of the average
change in terahertz amplitude of the four wells on the same sensing plate. This indicates that the
sensitivity was slightly deviated on the same sensing plate.

The error bars in Figure 7 indicate the standard deviation of the values of the four wells
in the same sensing plate. The change in terahertz amplitude between pH 1.68 and 10.01
was 6.27 ± 0.21, 6.43 ± 0.66, and 4.27 ± 0.54 mV for sensing plates 1, 2, and 3, respectively.
It is clear that the sensitivity of each sensing plate varies, owing to the variation in the
properties of the sensing plates, which ultimately leads to a variation in the sensitivity
of cancer cell detection. Therefore, the results shown in Figure 6 may be affected by the
differences in the sensing plates. The data shown in Figure 6 was consequently normalized
by the average value of the change in the terahertz amplitude, the results of which are
shown in Figure 7.
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To study the normalization effect on cancer detection, the coefficient of variation (CV)
was calculated and is plotted in Figure 8. CV was calculated using the following equation:

CV =
SSD

SAVG
× 100 (5)

where SSD is the standard deviation of the change in terahertz amplitude and SAVG is
the average change in the terahertz amplitude. Without pH correction, the CV values
were 36.9%, 40.6% and 49.2% for 103, 104 and 105 cell/mL, respectively. Contrarily, with
pH compensation, the values were 19.1%, 23.4% and 34.7% for 103, 104 and 105 cell/mL,
respectively. Therefore, the variation was reduced by a factor of 1.9, 1.7 and 1.4 at 103, 104

and 105 cell/mL, respectively. This result indicates that pH compensation of the sensitivity
of the sensing plates was effective for accurate measurement of cancer cells.
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5. Conclusions

Lung cancer cells in a solution were measured with an antibody immobilized on the
sensing plate using the avidin-biotin reaction. The sensitivity of the sensing plate was
evaluated using the change in the terahertz amplitude in the pH measurement. The result
of lung cancer cell detection was corrected using the results of the pH measurements. The
sensitivity correction of the sensing plate was found to be effective for detecting cancer
cells. These results indicate that a TCM is expected to be an excellent candidate for liquid
biopsies in cancer diagnoses.
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