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ABSTRACT
Objective: This paper incorporates the concept of acceleration to fatalities caused
by the coronavirus in Brazil from time series data beginning on 17th March 2020 (the
day of the first death) to 3rd February 2021 to explain the trajectory of the fatalities for
the next six months using confirmed infections as the explanatory variable.
Methods: Acceleration of the cases of confirmed infection and fatalities were
calculated by using the concept of derivatives. Acceleration of fatality function was
then determined from multivariate linear function and calculus chain rule for
composite function with confirmed infections as an explanatory variable. Different
ARIMA models were fitted for each acceleration of fatality function: the
de-seasonalized Auto ARIMA Model, the adjusted lag model, and the auto ARIMA
model with seasonality. The ARIMA models were validated. The most realistic
models were selected for each function for forecasting. Finally, the short run
six-month forecast was conducted on the trajectory of the acceleration of fatalities for
all the selected best ARIMA models.
Results: It was found that the best ARIMA model for the acceleration functions
were the seasonalized models. All functions suggest a general decrease in fatalities
and the pace at which this change occurs will eventually slow down over the next
six months.
Conclusion: The decreasing fatalities over the next six-month period takes into
consideration the direct impact of the confirmed infections. There is an early increase
in acceleration for the forecast period, which suggests an increase in daily fatalities.
The acceleration eventually reduces over the six-month period which shows that
fatalities will eventually decrease. This gives health officials an idea on how the
fatalities will be affected in the future as the trajectory of confirmed COVID-19
infections change.
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INTRODUCTION
Background
The coronavirus (COVID-19) outbreak caused by a virus known as severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), originated in Wuhan, China and as of
30th June 2020, there have been 10.6 million confirmed cases, 5.8 million recovered cases,
and 513 thousand deaths recorded worldwide. On 30th June 2020, Brazil recorded the
2nd highest number of confirmed cases of the coronavirus in the world and the 2nd highest
number of fatalities in the world. This record shows that Brazil had 1.4 million confirmed
cases, 790 thousand recovered cases and 59 thousand deaths from the coronavirus
(World Health Organization, 2020).

During the pandemic, various countries have implemented stringent strategies in their
fight against the virus. Since the novel coronavirus started to spread across the world,
governments have issued lockdowns, stay-at-home orders, and curfews to help contain the
outbreak. However, in Brazil, there was a more relaxed approach from the country’s
president which in turn has affected the spread of the virus (McLaughlin, 2020).

Statement of the problem
To assess the possible future of the pandemic, in particular the fatalities, it is helpful to look
not just at the number of cases, but also at how quickly they are increasing (Cohn et al.,
2020). Most research focuses on modelling the changes in the death toll due to the
coronavirus by observing its behavior based on socioeconomic and demographic factors
and not necessarily on the impact of the confirmed infections.

Objective of study
This paper incorporates the concept of acceleration on the fatalities caused by the
coronavirus in Brazil from time series data beginning from 17th March 2020 (the day of the
first death) to 3rd February 2021 to explain the trajectory of fatalities for the next six
months using the confirmed infections as the explanatory variable, that is, the impact of
confirmed infections on the number of deaths. Thereafter, forecasting is done to observe
the behavior of deaths based on the number of confirmed infections over the next six
months.

Velocity and acceleration
Velocity is the rate of change of fatalities which is the first order derivative of the number of
deaths per day (Utsunomiya et al., 2020; Chen & Yu, 2020). However, measuring the
speed of the fatalities provides little information about the acceleration in the fatalities.
The acceleration functions are much more sensitive and can be better utilized to provide
useful information in real time to monitor, evaluate and forecast the COVID-19 epidemic
in Brazil (Chen & Yu, 2020). Acceleration is the slope of the velocity as a function of
time, which is the second derivative. It explains how rapid the change in velocity of
fatalities is (Muncaster, 1993). Multivariate linear models as well as the calculus chain rule
for composite functions were used to explain the acceleration of fatalities with respect to
acceleration of confirmed infections. The chain rule gives us a way to calculate the
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derivative of a composite function. The chain rule principles state that if fatalities and
confirmed infections are two functions then to get the derivative (velocity) of the
composite function (death as a function of confirmed cases) simply divide the derivative of
fatalities by the derivative of confirmed infections. Similarly, this theory is applied to derive
the acceleration function by dividing velocity functions (Nykamp, 2020).

Auto regressive integrated moving average (ARIMA)
The Auto Regressive Integrated Moving Average (ARIMA) time series model is a reliable
method frequently used in data analysis to forecast times series data and as a result, the
acceleration of fatality functions can be used to produce ARIMA models for forecasting
purposes. ARIMA models are used for non-stationary data and is made up of the Auto
Regression model, AR(p), which uses the dependent relationship between Yt and p number
of lagged observations included in the model, also called the lag order. The model also
includes the Integrated (I) aspect, which is the differencing of raw observations, d times to
allow for the time series to become stationary. Making the time series data stationary is
necessary since stationary series are relatively easier to predict. Most statistical forecasting
is based on the fact that the times series can be approximately stationarized through the
use of mathematical transformations. The predictions for the stationarized series can then
be “untransformed” by reversing whatever mathematical transformations used, to
obtain predictions for the original series (Nau, 2020). If a time series dataset has a stable
long-run trend and tends to revert to the trend line following a disturbance, it may be
possible to stationarize it by de-trending (removing the effects of trends). However, in such
a dataset like the corona virus in Brazil, sometimes even de-trending is not sufficient to
make the series stationary, in which case it may be necessary to transform it into a series of
period-to-period and/or season-to-season differences. That is, differencing the time
series. Stationarizing a time series through differencing (where necessary) is an important
part of the process of fitting an ARIMA model. The difference order, d, is the differences
between consecutive observations. The last aspect of the ARIMA model includes the
Moving Average model MA(q) which uses the dependency between Y1t and a residual
error from a moving average model applied to q lagged observations. Hence, the time series
model is denoted as ARIMA (p,d,q) model (Chen, 2019; Stock & Watson, 2007; Box et al.,
2016).

Purpose of the study
The acceleration of fatality ARIMA models were used for forecasting the pandemic to
come to a reasonable understanding of the trajectory of deaths in the short run. Short-term
forecasts generated can be useful to guide the allocation of resources that are critical to
bring the epidemic under control (Roosa et al., 2020).

Review of literature
Throughout the period of the pandemic, numerous studies have been conducted to better
analyze and make predictions regarding the end of the pandemic. Researchers have
developed models to make forecast about the fatalities due to the coronavirus.
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Researchers have used the count of daily cases to formulate ARIMA models to predict
the end of the pandemic (Bayyurt & Bayyurt, 2020; Dehesh, Mardani-Fard & Dehesh,
2020). One study adopted three kinds of mathematical models, that is, logistic model,
Bertalanffy model and Gompertz model where the logistic model was the best fit among
the three models. In this research, the epidemic trends of SARS were first fitted and
analyzed to prove the validity of the existing mathematical models. The results were then
used to fit and analyze the situation of COVID-19. This is the case since COVID-19 and
SARS virus are both variants of coronaviruses and the infection pattern may be similar
(Jia et al., 2020). The logistic model was used to explore the risk factors and predict the
probability of occurrence of the disease according to the risk factors. It can predict the
development and transmission law of epidemiology.

Many other study designs have made predictions based on compartmental models,
with the population divided into classes and with assumptions being made about the
rate of transfer from one class to another. These models are mostly differential equation
prediction models. They employed mathematical modeling techniques to study the
transmission and spread of COVID-19 to predict the magnitude and timing of the
epidemic peak and the final epidemic size under various intervention strategies. Carcione
et al. (2020) used the Susceptible-Exposed-Infectious-Removed (SEIR) model to describe
the spread of the virus and compute the number of infected and dead individuals.
Their model aimed to compute the number of infected, recovered, and dead individuals
based on the number of contacts, probability of disease transmission, incubation
period, recovery rate and fatality rate. Okhuese (2020) used a similar approach to propose
a mathematical model for the end in the spread and subsequent elimination of the
virus by using a new deterministic endemic model (Susceptible-Exposed-Infectious-
Removed–Undetectable-Susceptible: SEIRUS). The study combined quarantine
observatory procedures and behavioral change social distancing in the control and
eradication of the disease in the most exposed sub-populations.

Veloso & Ziviani (2020) conducted a study by modelling the country level death toll
velocity and acceleration. They used factors such as the daily COVID-19 death toll curve in
each country, country’s countermeasures in response to the COVID-19 pandemic,
community mobility reports, estimations of critical care beds available for and needed by
COVID-19 patients in each country, and country’s development indicators.

Another researcher conducted a study on the velocity and acceleration, utilizing the
concept of motion to observe the confirmed cases in China to explain the spread of the
epidemic. This was then compared to the spread after massive interventions that took
place in China (Chen & Yu, 2020).

Most studies used socioeconomic and demographic factors to explain the pandemic and
thereafter, make projections based on these factors. However, this study seeks an
alternative approach, by observing the confirmed infections since it is highly correlated to
the fatalities. It is assumed that if the number of the confirmed infections can determine
the nature of the fatalities, then better predictions can be made about the pandemic.
This study borrows the concept of motion used by Chen & Yu (2020) and applies it to data
from Brazil. This study does not make comparisons with the interventions that took place
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in Brazil to come to conclusions like most of the previously mentioned studies.
The derivative functions represent the velocity and acceleration of fatalities based on the
velocity and acceleration of confirmed infections, respectively. Our study has used the
confirmed infections as the explanatory variable for fatalities. In addition, the concept of
time series ARIMA modeling has been used to produce forecasts.

MATERIALS & METHODS
Data
The data repository for the 2019 Novel Coronavirus was retrieved online from the Center
for Systems Science and Engineering (CSSE) at Johns Hopkins University (Dong, Du &
Gardener, 2020; Johns Hopkins University, 2020). The dataset contains data on the
cumulative confirmed infections, cumulative recovered cases and the cumulative fatalities
in Brazil starting from the 17th of March 2020, the day of the first recorded death. This is 21
days after the first recorded confirmed infection in Brazil. On the 17th of March 2020,
Brazil already had a total of 321 confirmed infections and two recovered cases.
The cumulative confirmed infections and cumulative fatalities show an upward trend.
The dataset contained the COVID-19 cases for a period of approximately 11 months
(46 weeks) in Brazil until the 3rd of February 2021 which is 344 days from the first
confirmed infection and 324 days from the first death in Brazil. At the end of the study
period, Brazil had already recorded 9,339,420 confirmed infections, 8,311,881 recovered
cases and 227,563 fatalities. However, there are 799,976 active cases. Therefore, at this
point there exist 89% of the patients recovered, 2.4% deaths and the remaining 8.6% still
active cases.

Velocity and acceleration of the confirmed infections and fatalities
Time series data on the cumulative confirmed infections and cumulative fatalities were
observed where each xi and zi are the daily confirmed infections and daily fatalities,
respectively, for i = (21, 22, … t). i = 21 is the 21st day since the first recorded confirmed
infection which is the day of the first recorded fatality in Brazil. Equation (1) below shows
the general equation for the cumulative confirmed infections and cumulative fatalities.

Y yð Þ ¼
Z t

i¼21

yi ¼
Xt

i¼1

yi (1)

where Y yð Þ = {F(x) confirmed infections, H(z) confirmed fatalities}
However, F xð Þ and H zð Þ being extremely insensitive to changes in the pandemic, the

first derivatives of Eq. (1) produces the general function, Y 0 yð Þ; in Eq. (2) (Chen & Yu,
2020). These functions are said to be velocity functions which explains the change in the
confirmed infections and change in fatalities caused by the pandemic in Brazil. That is,
the new cases each day. This explains the speed of the confirmed infections and fatalities
for i = (21, 22,… t). i = 21 is the 21st day since the first recorded confirmed infection which
is the day of the first recorded fatality in Brazil.
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Y 0 yð Þ ¼
Ztþ1

i¼21

yi �
Z t

i¼21

yi ¼
Xtþ1

i¼21

yi �
Xt

i¼21

yi (2)

where Y 0 yð Þ = {F0 xð Þ velocity of confirmed infections, H0 zð Þ velocity of fatalities}
Although F0 xð Þ and H0 zð Þ can measure the speed of the pandemic, they do not give any

information regarding the acceleration, which is much more sensitive than the velocity
functions (Chen & Yu, 2020). Thus, the second derivatives, F00 xð Þ and H00 zð Þ produced the
general Eq. (3) below (Utsunomiya et al., 2020). This represents the acceleration of the
confirmed infections and acceleration of fatalities each day in Brazil due to the pandemic,
respectively (Chen & Yu, 2020). The acceleration explains how rapid is the change in
velocity. If the acceleration functions produce zero, this is an early indication of neither
acceleration nor deceleration of the pandemic. Where the acceleration functions produce
values greater than zero, it is an early indication of acceleration of the pandemic and
producing values less than zero indicates deceleration.

Y 00 xð Þ ¼ Y 0 xi þ 1ð Þ � Y 0 xið Þ (3)

where Y 00 yð Þ = {F00 xð Þ acceleration of confirmed infections,H00 zð Þ acceleration of fatalities}

Multivariate linear fatality function
Correlation analysis using ggpairs in R Programming software were used to produce the
best fit multivariate linear functions from the data produced by the functions (Schloerke
et al., 2020). Log transformation was done to meet the linear functions assumptions for
normality (Feng et al., 2014). These functions were used to explain and forecast the velocity
and the acceleration of the fatalities due to the coronavirus.

Velocity of fatality composite functions
Due to the obvious relation the confirmed infections have on the number of fatalities,
the velocity of fatality composite functions of confirmed infections was utilized to
formulate the rate at which deaths were occurring each day with respect to new confirmed
infections named dH zð Þ

dF xð Þ as shown in Eq. (4). This term explains the speed in the deaths
influenced by the confirmed infections. The term begins at the date of the first recorded
death, i = 21 which is the 21st day since the first recorded confirmed infection.

dH zð Þ
dF xð Þ ¼ H0 zð Þ � F0 xð Þ ! dH zð Þ

dF xð Þ ¼ H0 zð Þ � F0 xð Þ½ ��1 (4)

Acceleration of fatalities composite functions
The derivatives of the above velocity of fatality composite function formed the acceleration
of fatality composite function as seen in Equation (5). That is, the term dH0 zð Þ

dF0 xð Þ, explains the
rate at which the deaths accelerate with respect to the acceleration of the confirmed
infections. This rate was used to explain and forecast the acceleration of fatalities caused by
the pandemic. The term starts at the date of the first recorded death, i = 21 which is the 21st

day since the first recorded confirmed infection.
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dH0 zð Þ
dF0 xð Þ ¼ H00 zð Þ � F00 xð Þ ! dH zð Þ

dF xð Þ ¼ H00 zð Þ � F00 xð Þ½ ��1 (5)

Time series analysis
The data for acceleration of fatality functions were plotted using months as the horizontal
axis. Data cleaning is often the first step that data scientists and analysts take to ensure
statistical modelling is supported by good data (Hyndman, 2014). Therefore, the behavior
of the acceleration of the fatalities within each month were then observed by plotting a
monthly breakout of the data for fatality functions. This was done to observe the range of
possible outliers within each month. Tsclean function in R programming software was
used on the time series data for each of the acceleration of fatality functions to identify and
replace any outliers or blanks with estimated values from the time series data using series
smoothing and decomposition (Hyndman et al., 2020; Dalinina, 2017). Outliers are
residuals that lie outside the range ±2(q0.9 – q0.1) where qp is the p quantile of the residuals.
The residuals are identified by fitting a loess curve for non-seasonal data and via a periodic
STL decomposition for seasonal data (Hyndman, 2014). However, this cleaned time
series data, now referred to as the cleaned function, was graphed and observed. Only where
there were extreme variances and volatility with the clean data, monthly (every 30 days
from start) and weekly (every 7 days from start) moving averages (MA) were formed
and compared to the cleaned data. Moving average is used to analyze data points by
creating a series of averages of different subsets of the full data set to mitigate the impact of
random short-term fluctuations over a specified timeframe (Hayes, 2020). That is to
smooth out any noise or possible random outliers still present and to emphasize long term
trends (Ross, 2019). However, given that the acceleration functions have cyclical patterns
at most (bouncing upward and down) moving averages are not likely to capture
meaningful trends thus over-smoothing the data (Smith, 2020). Hence, with the moving
averages being too smooth, the cleaned data was used to form ARIMA models to forecast
the trajectory of the velocity and acceleration of fatalities. The graphs produced from
the two acceleration of fatality functions were plotted using months as the unit on the
horizontal axis. Thereafter, the time series data was decomposed by splitting it into three
components: seasonality, trends, and remainder. These intuitive components capture
the historical patterns in the series and deconstructing a series into these components can
help understand its behavior and prepare a foundation for building a forecasting model
(Dalinina, 2017). Seasonality refers to patterns that repeat with a fixed period, trends are
the underlying trend of the metrics and the remainder also known as the noise is the
original time series after the seasonal and trend series are removed (Anomaly, 2020). This
was done using the stl function in the R programming software (Cleveland et al., 1993).
Seasonality over time, the trend line and the remainder of the models selected for
forecasting in the previous step were observed. ARIMA models can be fitted to both
seasonal and non-seasonal data. However, seasonal ARIMA requires a more complicated
specification of the model structure. For this cause, we first attempted to de-seasonalize
the series and use a non-seasonal ARIMA model (Ghosh, 2018; Dalinina, 2017).
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The function seasadj in the R programming software accomplishes this where it returns the
seasonally adjusted data constructed by removing the seasonality (Hyndman et al., 2020).

The Augment Dikey Fuller Test (ADF) was then conducted on the selected cleaned
data to test for stationarity using the adf.test function in the R programming software
(Trapletti & Hornik, 2019). The ADF null hypothesis is that the variable has unit root
(non-stationary) and the alternative hypothesis is that the variable does not have a unit
root (Holmes, Scheuerell &Ward, 2020). If the p-value of the ADF test is small, it concludes
stationarity of the data. On the other hand, where the printed p-values were large, we fail to
reject the null hypothesis which means that the data is non-stationary (Hua, 2016).
Stationarity and seasonality of the dataset can be further analyzed by using autocorrelation
function (ACF) and partial autocorrelation function (PACF) graphs (Taspinar, Celebi &
Tutkun, 2012). The cleaned data are plotted by using the ACF and PACF functions in
R Programming (Hyndman et al., 2020). This plot shows the correlation between the time
series and its lagged value. When the lines are outside the bounds of the ACF and
PACF graphs, this suggests serious lags. According to how drastic the lag is, this will
suggest non-stationarity. However, with the series being non-stationary, the data will be
differenced until stabilization starting with a difference order of one and re-evaluation on
whether further differencing is needed. This therefore eliminates (or reduces) trend
and seasonality and converts the non-stationary series to a stationary series. Fitting an
ARIMA model requires the series to be stationary since modeling a stable series with
consistent properties involves less uncertainty. Hence, stationarity is required because only
if the time series data is a deterministic (non-random) pattern, the research can use the
ARIMA time series model (Hua, 2016). The ADF test is then conducted again but on the
differenced data to test for its stationarity. ACF and PACF were plotted on the differenced
data and the lags were observed.

Fitting the ARIMA model
The auto fit ARIMA model was produced on the de-seasonalized (without seasonality)
cleaned data. This function uses a variation of the Hyndman-Khandakar algorithm which
combines unit root tests, minimization of the Akaike Information Criterion (AIC) and
Maximum Likelihood Estimation (MLE) to obtain an ARIMA model (Hyndman et al.,
2020; Hyndman & Khandakar, 2008). The auto fit ARIMA model can produce a forecast,
however, it must be checked to see if the model order parameter and structure are correctly
specified ensuring that there are no significant autocorrelation present. This was done
using the ACF and PACF plots, observing lags and adjusting the p or q to ensure that there
are no significant autocorrelations present. That is, ensuring all lines were within the
bounds of the PCF and PACF graphs. Additionally, models were also selected based on the
Akaike Information Criterion (AIC). The AIC value for each model was observed and
comparisons were made. This is a widely used measure of a statistical model. It basically
quantifies the goodness of fit and the simplicity/ parsimony, of the model into a single
statistic. When comparing models, the one with the lowest AIC is generally “better”
(Keshvani, 2013; Kourentzes, 2016). The AIC was observed and compared amongst the
auto ARIMA model and the adjusted model.
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The adjusted model was validated for each of the functions using the holdout method by
dividing the time series data into a training set and a testing set. The training set is
what the model is trained on and the testing set is used to evaluate how well the model
performs on unseen data (Kapil, 2018). A subset of the dataset (20%) was omitted from the
ARIMA model. That is, a subset of 65 was set out of the dataset starting from case 260 to
324 to be used as the test set to see how well the model performs. It provides a final
estimate of the machine learning model’s performance after it has been trained and
validated. The remaining 80% of the data (no hold out) were then plotted. This is the
training set, and it is what the model will be trained on. The selected ARIMA models for
both acceleration functions were then forecasted for the rest of the study period using the
forecast function in the R programming software to observe how the 95% and 80%
forecasting interval fits the actual data points (Hyndman et al., 2020). The lines of the time
series of the de-seasonalized counts were also plotted to compare the forecast with the
actuals. Thereafter, we observe how the 95% and 80% forecasting interval fits the actual
data points. If the validation shows that the model is not a good one, seasonality on the
de-seasonalized cleaned data will be re-introduced and an ARIMA model would be
produced on this. A model is not good if the line does not fall within the forecast interval
and if the expected forecasts on the de-seasonalized model is too linear too soon, which is
unlikely given the past behavior of the series (Dalinina, 2017). The AIC for each model
was observed and comparisons were made. Based on this validation, the better ARIMA
models for each function were used for forecasting the trajectory of the acceleration of
fatalities for the next six months. A 30-day forecast was also done on the ARIMA models
for each validated acceleration functions, mainly for comparison and observational
purposes amongst the respective models. The ARIMA models for each validated function
were the auto ARIMA model without seasonality, the adjusted lag model, and the Auto
ARIMA model with seasonality. The most realistic ARIMA model for each validated
function was then selected for forecasting the next six-month period.

RESULTS
Acceleration of confirmed infections and fatalities
Figures 1A and 1B show the acceleration functions F00 xð Þ and H00 zð Þ derived in Eq. (3) and
are the second derivative of F xð Þ and H zð Þ, respectively using the ggplot function in the
R programming software (Wickham et al., 2019). The acceleration of confirmed infections,
F00 xð Þ, shows continuous fluctuations in acceleration and deceleration where the
magnitude of these changes increased until approximately the 119th day since the first
confirmed infection (23rd June 2020). Thereafter the curve maintained its magnitude until
195th day since the first confirmed infection (7th September 2020) until 279th day (30th

November 2020). Within such period there were random distinct spikes. The curve then
gradually increased in magnitude throughout the rest of the study period, Fig. 1A.

The acceleration of fatalities, H00 zð Þ, have fluctuations where the horizontal axis
represents the number of days from the first fatality, Fig. 1B. H00 zð Þ, shows fluctuations
between the acceleration and deceleration of fatalities about the zero line that gradually
increased in magnitude until the 98th day since the first confirmed infection (2nd of June
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2020) where this magnitude was then maintained until the 203rd day since the first
confirmed infection (15th September 2020). Thereafter, the curve decreased in magnitude
with few distinct spikes and then gradually increased throughout the rest of the study period.

Multivariate linear functions
The distributions and correlations on the raw data produced from the acceleration
function in Eq. (3) were explored. This was done to understand the relationship amongst
functions to conduct multivariate linear regressions for the acceleration of fatalities.
However, producing linear functions requires the data for all functions to meet the
normality assumptions previously mentioned. As a result, log transformation was done on
the functions formed from Eq. (3) before producing linear functions. Due to the negatives
produced in the acceleration function from Eq. (3), a common technique was used by
adding a constant value to the data before applying the log transformation (Wicklin, 2011).

Figure 1 Acceleration. (A) Confirmed infections. (B) Fatalities
Full-size DOI: 10.7717/peerj.11748/fig-1
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The transformation for the acceleration of confirmed infections and fatalities was,
therefore, log(F00 xð Þ þ a1Þ and log(H00 xð Þ þ a2Þ, respectively where a1 and a2 are constants.
These constants were chosen so that the min(F00 xð Þ þ a1Þ, and min(H00 xð Þ þ a3Þ will be a
small positive number, 0.001. As a result, the data was then transformed to log
(F00 xð Þ þ 51285:001Þ and log(H00 xð Þ þ 974:001Þ. Thus, the distribution and correlation on
the transformed data was observed and normality of the functions were checked.
The correlation between functions were used to form the multivariate linear function listed
below.

The following acceleration of fatality linear function were produced using the
acceleration of confirmed infections as the explanatory variables (Gardener, 2019):

Death Acceleration1ðF00 xð ÞÞ ¼ 0:630929log F00 xð Þ þ 51;285:001ð Þ

R ¼ 0:9956 (6)

Death_Acceleration1 function has a coefficient of determination R2 = 99.56%. That is,
99.56% of the independent variable explains the acceleration of fatality suggesting that it is
a good function.

The acceleration of fatality linear function designed in Eq. (6) was plotted over the study
period which is approximately 46 weeks from the 9th to 54th week Fig. 2. The first week is
when the first recorded confirmed infection took place whereas the 9th week is when
the first recorded death occurred. Figure 2 shows that the Death_Acceleration1 function
initially has a constant acceleration at zero until 1st April 2020, but the curve’s magnitude
gradually increased until 3rd June 2020 where it maintained this average magnitude
until 15th September 2020. The acceleration started reducing its magnitude thereafter until
24th November 2020 and then started largening throughout the rest of the study period.

Acceleration of fatality composite functions
Figure 3 shows dH0 zð Þ

dF0 xð Þ, the acceleration of deaths as confirmed infections accelerate, and
this function generally fluctuates a little above the zero line with three distinct pulses on
27th March 2020, 26th August 2020 and 22nd October 2020 that shows drastic
deceleration of the fatalities and then the curve rapidly accelerated, returning to its average
nature. The other noticeable pulses on 5th May 2020 and 5th June 2020 show sharp and
large acceleration at first with an immediate deceleration back to its average nature.

Explanatory data analysis
Breakout of the data
A monthly breakout on the time series data produced from the above acceleration
functions was done to observe the range of any possible outliers in the data points. Each of
the functions of acceleration showed that there were very few noticeable outliers
throughout the study period.

Cleaned functions and moving averages
However, to compensate for any possible outliers, the acceleration functions were first
cleaned to produce cleaned functions for each. In addition to such, the weekly moving
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average (every 7 days from the start of the study period) and the monthly moving average
(every 30 days from the start of the study period) functions were formed from the cleaned
functions. The weekly and monthly moving averages were compared to their respective
cleaned functions, and it showed that the moving averages were over-smoothing the data.
That is, not capturing meaningful trends. Hence the cleaned functions were used for
creating a model for forecasting.

Decomposition of the data
The cleaned function for each fatality function of acceleration was decomposed by
extracting its seasonality, its trend line, and its remainder. Figure 4 shows the
decomposition of the acceleration of fatality functions, along with its associated cleaned
data where the horizontal axis represents the number of weeks since the first death in
Brazil. Seasonality component was extracted from the cleaned data for each of the
acceleration of fatality functions called the de-seasonalized data and this de-seasonalized
series was used to create ARIMA models.

Stationarity
An ADF Test was firstly done on the cleaned data. This test outputs the Dickey Fuller
value, Lag Order, and p-values. The smaller the Dickey Fuller value, the better the model

Figure 2 Multivariate linear functions for Death_Acceleration1.
Full-size DOI: 10.7717/peerj.11748/fig-2
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(Holmes, Scheuerell & Ward, 2020). The Lag Order allows for higher-order autoregressive
processes and the p-values conclude whether the model has unit root or not. The
cleaned data for all the functions have small p-values which suggests stationarity of the
functions. However, the ACF and PACF functions were used to verify this and lags for each
function were observed.

Autocorrelation and choosing a model
ACF plots of the de-seasonalized series showed significant autocorrelations with many
lags. The PACF plots showed that this could be due to carry-over correlation from the first
lag in most cases. Hence, the de-seasonalized series was differenced until stabilization
starting at difference order one. The ADF test was conducted again, on the difference data,
and for all functions, it rejects the null hypothesis of non-stationarity. Table 1 shows the
ADF test results for each acceleration of fatality functions and their difference order
required to obtain stationarity and reduced lags. Both functions now show smaller Dickey
Fuller values than the ADF test first conducted on the cleaned data and small p-values.
Hence the differenced data is better.

Thereafter ACF and PACF were produced for the differenced data for the acceleration
functions to observe any spikes at specific lag points of the differenced series. It was found

Figure 3 Fatality composite functions for the acceleration in fatality with respect to the acceleration
of confirmed infections. Full-size DOI: 10.7717/peerj.11748/fig-3
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that the lags are not as drastic for the differenced data. This therefore suggests that the
differencing of order one for the acceleration of fatality functions is sufficient and should
be included in the model for each function.

Fitting the ARIMA model
Different models were fitted for each of the acceleration of fatality functions. The models
are the Auto ARIMAModel without seasonality, a custom made ARIMA model called the
adjusted lag model and the Auto ARIMA model with seasonality. The adjusted lag model
compensates for the serious lags found, if any, in the auto ARIMA model without

Figure 4 Decomposition of the cleaned data acceleration of fatality. (A) Cleaned data for Death_Acceleration1; (B) cleaned data for composite
function with respect to the change confirmed infections. Full-size DOI: 10.7717/peerj.11748/fig-4

Table 1 Augmented dickey fuller (ADF) test for differenced acceleration fatality functions.

Difference order Dickey fuller Lag order p-Value

Death_Acceleration1 1 −14.488 6 0.01
dH0 zð Þ
dF0 xð Þ 1 −9.6114 6 0.01
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seasonality. Table 2 shows the fitted ARIMA models for the acceleration functions with
their respective AIC values. The smaller the AIC value the better the model.

Cross validation: holdout method
The Adjusted lag models were validated using the holdout method showing that the actual
data were all within the 95% and 80% forecast interval which shows that it is a good model
Fig. 5. However, the blue lines representing forecasts for the adjusted model for dH0 zð Þ

dF0 xð Þ
function seems unrealistic since the blue lines representing forecast in this function seems
as though it might become linear too soon. That is the case since plotted predictions
assume that there will be no other seasonal fluctuations in the data and the change in
number of fatalities from one day to another is constant in mean and variance. Hence this
forecast may be a naive model. As a result, seasonality was added back to this series and its
predictions were also observed using the holdout method.

The horizontal axes in Fig. 5 represents time in days. The vertical axes for the
acceleration of fatality graphs represents the acceleration of fatality rates per acceleration of
confirmed infections. The interpretation of the vertical axes gives little information due to
the many manipulations of the data. As a result, we focus on the trajectory of the forecasts.

Further testing, selecting the best model, forecasting and analyzing
A further testing was done by observation, comparing a 30-day forecast on the ARIMA
models listed in Table 2 for each of the acceleration functions; Death_Acceleration1 and
dH0 zð Þ
dF0 xð Þ. ARIMA models were selected based on how realistic the model looked over the
30-day forecast. The better ARIMA model selected for the acceleration functions were the
auto ARIMA model with seasonality. This is confirmed for dH0 zð Þ

dF0 xð Þ where the auto ARIMA
model with seasonality has the lowest AIC value. However, the decision made for the
Death_Acceleration1 function goes against the AIC value which would have suggested that
the adjusted lag model is better for making forecasts. Based on the 30-day forecast for
such a model, the predicted curve was too constant, and its forecast interval started
expanding like a funnel which seems a bit unrealistic when compared to the auto ARIMA
model with seasonality. The summary on selecting the best ARIMA model for each
function is summarized Fig. 6.

The six months forecasted ARIMA models for the multivariate linear function for the
multivariate acceleration of fatalities function shows an increase and then a constant
trajectory until where the magnitude of the acceleration gradually decreases over the
forecasted period Fig. 7A. However, the composite function for the acceleration of fatalities

Table 2 Fitted ARIMA models for acceleration fatality functions.

Acceleration functions Fit 1 (deseasonalized Auto.arima) Fit 2 (Adjusted lag model) Fit 3 (seasonalized Auto.arima)

Death_Acceleration1 ARIMA(4,1,5)
AIC(−483.27)

ARIMA(7,1,5)
AIC (−556.66)

ARIMA(3,1,5)(0,0,2)[15]
AIC(−490.44)

dH0 zð Þ
dF0 xð Þ ARIMA(1,1,4)

AIC (−1087.61)
ARIMA (7,1,4)
AIC(−1089.19)

ARIMA(1,1,3)(2,0,0)[15] with drift
AIC(−1092.49)

James and Tripathi (2021), PeerJ, DOI 10.7717/peerj.11748 15/23

http://dx.doi.org/10.7717/peerj.11748
https://peerj.com/


shows large fluctuations at first but then gradually decreases in magnitude until it seems to
eventually flatten (Fig. 7B).

DISCUSSION
This study incorporates the concept of acceleration of fatalities caused by the coronavirus
in Brazil to explain the projected trajectory of fatality for the next six months using the
confirmed infections as the explanatory variable.

Two different functions were used to explain the acceleration of fatalities using the
acceleration of the confirmed infections as the explanatory variable. One of the
accelerations of fatality function is a multivariate linear function, Death_Acceleration1 and
the other function, dH

0 zð Þ
dF0 xð Þ , was formed in Eq. (5) by applying calculus chain rule for

composite functions to produce the acceleration of fatality composite function.

Figure 5 Cross validation using holdoutmethod for acceleration of fatalities. (A) Death_Acceleration1.
(B) Composite function with respect to the change in confirmed infections.

Full-size DOI: 10.7717/peerj.11748/fig-5
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Acceleration of cases, multivariate functions and composite functions
The acceleration in the confirmed infections generally increased in magnitude throughout
the period. The acceleration eventually maintained an average range of values Fig. 1A.
Closer observation showed that when the magnitude of the acceleration of the fatalities
decreased over the period, the speed in the fatalities (velocity) slowed down. Hence, how
rapid these fatality cases are occurring daily affects the outcome of the number of cases.
Moreover, a close relationship can be seen between the confirmed infections and the
fatalities since there exist similarities in their curves throughout the study period.

When the acceleration got smaller in magnitude, the change in fatalities started to
reduce. On the other hand, where the speed in the change of the fatalities (acceleration)
increased in magnitude, the change in the fatalities (velocity) started to increase. Although
these functions consider the confirmed infections to explain the outcome of the fatalities,
by observation, it shows to be a good representation of the actual fatalities’ functions
produced from the raw data.

The multivariate function shows that the magnitude in acceleration increased over the
period but eventually maintained in magnitude (Fig. 2). The composite function shows
that the average size of the acceleration of the fatalities was basically small and constant

Figure 6 Acceleration of fatalities validated function for forecasting sequence diagram.
Full-size DOI: 10.7717/peerj.11748/fig-6
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throughout the period (Fig. 3). These functions developed in Figs. 2 and 3 seem to mirror
the general results of the actual cases represented in Fig. 1B.

ARIMA modelling of functions and forecasting
The acceleration of fatality functions had very few distinct outliers throughout the study
period. Nevertheless, the time series data for each function was still cleaned from any
possible outliers and missing data points. Moving averages were expected to be taken on

Figure 7 Seasonalized auto ARIMA model six months’ forecast of acceleration of fatalities. (A)
Death_Acceleration1 (B) Composite function with respect to the change in confirmed infections.

Full-size DOI: 10.7717/peerj.11748/fig-7
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each of the cleaned functions to produce ARIMA models for forecasting. This would have
worked well for our model since in reality new confirmed infections or changes in new
confirmed infections at one point in time do not have an immediate impact on fatality
and change in fatality, respectively. The moving averages provides for historical
information. However, the moving averages for the acceleration of fatality functions are far
smoother than its cleaned data. Using these moving averages can result in erroneous
forecasts due to the data being too smooth which can cause a loss in information.
Hence the cleaned functions produced were used instead for the ARIMA modelling to
make forecasts.

The ARIMAmodels produced for each of acceleration of fatality functions are shown in
Table 2. After conducting a cross validation (the holdout method) on the adjusted lag
models and further testing of the ARIMA models by forecasting for the next 30 days, both
acceleration models were found to be realistic to forecast for the next six months Fig. 5.
The forecast in the acceleration composite function initially shows a large fluctuation

Figure 8 Six months’ forecast of acceleration of fatalities for São Paulo. (A) Multivariate function. (B)
Composite function. Full-size DOI: 10.7717/peerj.11748/fig-8

James and Tripathi (2021), PeerJ, DOI 10.7717/peerj.11748 19/23

http://dx.doi.org/10.7717/peerj.11748/fig-8
http://dx.doi.org/10.7717/peerj.11748
https://peerj.com/


in the acceleration function which suggests a quickening in daily fatalities. Thus, an
increase in the velocity of fatalities in the earlier part of the six-month forecasted period is
expected. However, the acceleration started to decrease which means that the rate at which
fatalities were changing would eventually start to reduce. This model was replicated for
São Paulo, one of the 26 states of the Federative Republic of Brazil. This state was chosen
since it was the first state to record a Covid19 death in Brazil (Albuquerque, 2020).
The forecast shows some similarities to the forecast made on the country Brazil where
there exists some fluctuation in the beginning of the period until eventually flattening
throughout the rest of the study period (Fig. 8).

Limitations
This study had several limitations. There exists little referencing regarding the conclusions
of this research since most journals did not forecast the accelerations of fatalities in
Brazil by using confirmed infections as an explanatory variable. Also, there is little
interpretation to the values in the y-axis for the forecast of the acceleration curves due to
the many manipulations of the data. As a result, only the trajectory of the forecast was
observed over time.

CONCLUSIONS
In general, the increased acceleration of fatalities in the earlier part of the forecasted period
suggests an increase in daily fatalities. The increasing numbers in fatalities in Brazil
during February 2021 and March 2021 confirms this prediction of increased fatalities as
suggested by the acceleration model in this paper (Worldometer, 2021). It is expected by
the model that the reduction in acceleration of fatalities will cause the new fatalities to
slow down thus causing an eventual decrease in the fatalities over the next six-month
period.
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