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Abstract: Compounds with two phenolic OH groups like curcumin possess efficient 

antioxidant and anti-inflammatory activity. We synthesized p-cresol dimer (2,2'-dihydroxy-

5,5'-dimethylbiphenol, 2a) and p-methoxyphenol dimer (2,2'-dihydroxy-5,5'-

dimethoxybiphenol, 2b) by ortho-ortho coupling reactions of the parent monomers, p-

cresol (1a) and p-methoxyphenol (1b), respectively. Their antioxidant activity was 

determined using the induction period method, and their cytotoxicity towards RAW 264.7 

cells was also investigated using a cell counting kit. The stoichiometric factors n (number 

of free radicals trapped by one mole of antioxidant moiety) for 2a and 2b were 3 and 2.8, 

respectively, being greater than those for 1a and 1b. The ratio of the rate constant of 

inhibition to that of propagation (kinh/kp) for 2a and 2b was similar to that for 2-t-butyl-4-

methoxyphenol (BHA), a conventional food antioxidant. The 50% inhibitory dose (ID50) 

declined in the order 1b > 1a >> 2b > 2a > BHA. The cytotoxicity for 2a and 2b was 

significantly greater than that for the parent monomers (p < 0.001), but smaller than that 

for BHA (p < 0.01). Compounds 2a and 2b may be useful as food antioxidants. 
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1. Introduction 

p-Cresol (1a, Figure 1) is a natural product present in many foods, crude oil, and coal tar, and also 

detectable in animal and human urine. In addition to its industrial uses, 1a is also used as an antiseptic 

and disinfectant because of its bactericidal and fungicidal properties, but available data to support the 

safety of p-cresol for use in cosmetic were insufficient [1]. The oxidative coupling reaction of 1a with 

metals in the presence of ethyl acetate, chloroform and hexane produces the dimer, 2,2'-dihydroxy-

5,5'-dimethylbiphenol (2a) [2]. However, the antioxidant and cytotoxic activities of 2a remain unclear. 

p-Methoxyphenol (1b, Figure 1) is also an acceptable antioxidant, but is known to be carcinogenic, 

being structurally similar to the known forestomach carcinogen, BHA [3,4]. The adverse toxicological 

effects of 1b and BHA may be related to their prooxidative properties. Dimers derived from 1b and 

BHA are expected to have enhanced antioxidative activity, because dimerization reduces the 

prooxidative activity of the parent monomers.  

 

Figure 1. Dimer formation derived from p-cresol (1a) and p-methoxyphenol (1b). 

 
 

The coupling reactions of phenol [5], 1b [6] and BHA [7,8] have been reported previously. We 

previously synthesized some dimers derived from parent phenolic monomers and investigated their 

radical-scavenging and biological activities [9,10]. It was found that BHA dimer and phenol dimer 

(2,2'-biphenol) not only showed enhanced radical-scavenging activity but also anti-inflammatory 

activity. In the present study, we synthesized the p-cresol dimer 2a (Figure 1) and the  
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p-methoxyphenol dimer (2,2'-dihydroxy-5,5'-dimethoxybiphenol, 2b, Figure 1) derived from the 

ortho-ortho coupling reaction of parent monomers 1a and 1b, respectively.  

The antioxidant activity of phenolic compounds has been assessed using various tests such as 

inhibition of low-density lipoprotein oxidation [11], the lipid peroxidation capacity (LPIC) assay [12], 

1,1’-diphenyl-2-picrylhydrazyl (DPPH)-scavenging assay [13,14], peroxynitrite scavenging assay 

[13], ABTS (2,2’-azinobis(3-ethylbenzoline-6-sulfonic acid)) radical cation scavenging assay [14,15], 

DPPH-scavenging assay and the inhibition assay of AAPH (2,2’-azobis(2-amidinopropane) 

dihydrochloride)-induced peroxidation of linoleic acid in sodium dodecyl sulphate micelles [16] and 

cupric ion reducing antioxidant capacity(CUPRAC) method [17].  

In the present study, the radical-scavenging activities were investigated using the induction period 

method for polymerization of methyl methacrylate (MMA) intiated by thermal decomposition of 2,2’-

azobisisobutyronitrile (AIBN) and benzoyl peroxide (BPO). The reaction was monitored by the 

sensitive method of differential scanning calorimetry (DSC). This induction period method using the 

AIBN- and BPO-MMA system under air-limited conditions has proved to be reliable for evaluating 

the antioxidant activity of phenolic compounds [18–20]. Also, the ID50 for 1a, 1b, 2a, 2b and BHA 

towards RAW264.7 cells was investigated.  

2. Results and Discussion 

2.1. Radical-scavenging activity 

Typical time-exotherm curves and time-conversion curves for 1a, 1b, 2a and 2b are shown in 

Figure 1. The stoichiometric factor (n), the ratio of the initial rate of polymerization with an inhibitor 

to that without an inhibitor (Rpinh/Rpcon), and ratio of the rate constant of inhibition to that of 

propagation (kinh/kp) are shown in Table 1. The n value for the AIBN system declined in the order 2a > 

2b > 1b, BHA > BMP(2-t-butyl-4-methylphenol) > BHT(2,6-di-t-butyl-4-methylphenol) > 1a. In 

contrast, that for the BPO system declined in the order 2a > 2b > 1b > BHA > BHT > BMP > 1a. The 

n value for 2a and 2b, each having two OH groups, was 3 and 2.8 respectively and their value was 

greater than that for the conventional food antioxidants BHA and BHT. Next we studied the kinh/kp 

values for related phenolic compounds. The kinh/kp value for the AIBN system declined in the order 1a 

> BHT > BMP > 1b > 2b >  BHA > 2a. In contrast, that for the BPO system declined in the order 1a > 

BMP > BHT > 1b > BHA > 2b > 2a. In both systems, monophenolic compounds with a 4-methyl 

group (1a, BMP and BHT) showed a larger kinh/kp value than those with a 4-methoxy group (1b and 

BHA). This may be related to the finding that the phenolic hydrogen atom in 1b and BHA is 

preferentially abstracted, since the p-methoxy group is highly activating for abstraction. 1. The kinh/kp 

value for the dimers was smaller than that of the parent monophenols, possibly due to the large 

stoichoiometric n for the dimers. 

The kinh/kp value for each phenol in the AIBN system was greater than the corresponding one in the 

BPO system. This may be dependent on the initiation rate (Ri) of the initiators, because the value for 

AIBN was about double that for BPO. In the AIBN system, the kinh for 2a, 2b, BHA and BHT was  

4.7 × 103 M-1s-1, 7.1 × 103 M-1s-1, 5.8 × 103 M-1s-1 and 10.2 × 103 M-1s-1, respectively. The kinh for 2a 

and 2b was smaller than that for BHT but the kinh for 2b was larger than that for BHA (p < 0.01). Note 

that the kp for MMA of 515 M-1s-1 at 60 °C was used for that at 70 °C because the kp of MMA at 70 °C 
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is unknown, but was assumed to be close to the value at 60 °C [21]. Generally, the acceptable 

inhibitors would scavenge a large amount of radicals as well as having a large inhibition rate constant. 

However, in the present study, phenolic inhibitors such as 2a and 2b with a large n value showed 

relatively small inhibition rate constants.  

Figure 2. Typical exothermic and time-conversion curves for the polymerization of MMA 

with AIBN or BPO in the presence of 0.01mol % additives. 
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Table 1. Radical-scavenging activity for p-cresol and p-methoxyphenol related compounds. 

A) AIBN (2,2'-azobisisobutyronitrile)- MMA (methyl methacrylate) system 
aPhenols bn cRpinh/Rpcon dkinh/kp 
p-Cresol ( 4-methylphenol, 1a) 1.6 0.9* 18.4 
p-Cresol dimer (2a) 3.0 1.0 9.2 
2-t-Butyl-4-methylphenol (BMP)  2.3 0.9* 14.5 
2,6-di-t-Butyl-4-methylphenol (BHT) 1.7 1.0 16.5 
p-Methoxyphenol (1b) 2.5 1.0 14.1 
p-Methoxyphenol dimer (2b) 2.8 0.8** 11.5 
2-t-Butyl-4-methoxyphenol (BHA) 2.5 0.9* 10.6 
B) BPO (benzoyl peroxide)-MMA system    
p-Cresol ( 4-methylphenol, 1a) 1.5 1.0 16.6 
p-Cresol dimer (2a) 3.3 1.1 4.2 
2-t-Butyl-4-methylphenol (BMP)  1.8 1.0 9.3 
2,6-di-t-Butyl-4-methylphenol (BHT) 1.9 1.0 8.6 
p-Methoxyphenol (1b) 2.4 0.8** 8.2 
p-Methoxyphenol dimer (2b) 2.8 0.9* 5.7 
2-t-Butyl-4-methoxyphenol (BHA) 2.2 1.0 6.6 

a 1 mmol; b stoichiometric factor; c the ratio of Rpinh to Rpcon ; 
d the ratio of kinh to kp. Values are the 

mean of three different experiments. Standard errors < 7%. *p < 0.05 vs. control, ** p < 0.01 vs. 
control. MMA, 9.4 mol/L; AIBN (or BPO), 0.1 mol/L; at 70 °C. The procedure is described in  
the text. 

 

In general, monophenols show an n value of 2 [22]. The n value for 1a was 1.5–1.6, suggesting the 

occurance of dimerization during the induction of polymerization. 1a may be dimerizable to 

compounds that can still be effective as antioxidants. When the n value is less than 2, particularly 

around 1, dimerization occurs [22]. The major reaction products from 1a were previously reported to 

be the o-o dimer, o-p dimer and o-o trimer, particularly the o-o dimer (a 50% yield) [2]. In the present 

synthetic study, 2a, the o-o dimer, was 40% yield. An oxisodibenzofuran (Pummerer's ketone, o-p 
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dimer) derived from o-p linkage of 1a was detected but not purified due to the small amount obtained. 

Also, the n value for BHT, particularly in the AIBN system, was less than 2. This suggested 

dimerization derived from BHT, possibly with formation of stilbenequinone [18,22]. The monophenol 

inhibitor reacts with two free radicals to give products that are stable with any of the constituents of 

the reaction mixture. When the reaction gives products that are themselves inhibitors, this could lead 

to n values higher than 2 [22]. In the present study for monophenols, the n value of 1b and BHA for 

both systems was 2.2–2.5. The n value when a methoxy group was present at the para position was 

slightly larger than 2, i.e. n for compounds 1b and BHA, suggesting that this would vary according to 

the nature of the secondary reactions. The oxidation of 70 °C may proceed rapidly the secondary 

reaction. On the other hand, when the Rpinh/Rpcon is less than 1, the reaction between the carbon-

centered radicals of MMA (poly-MMA radicals) and phenoxyl radicals derived from phenolic 

antioxidants occurs under air-insufficient conditions. In the present study, radical polymerization of 

MMA was carried out in a DSC pan under air-insufficient conditions, and therefore AIBN and BPO 

derived alkyl radical (R) and benzyloxy radical (PhCOO), respectively. The decrease in the Rpinh/Rpcon 

indicated that the growing poly-MMA radicals initiated by AIBN or BPO were suppressed by 

phenoxyl radicals and/or their intermediates under nearly anaerobic conditions. Note that the oxygen 

tension under a 15 torr oxygen atmosphere is similar to many tissues, suggesting that oxygen is scare 

in living cells and that the radical-scavenging activity of antioxidants in vivo may differ considerably 

from that under aerobic conditions. 

2.2. Cytotoxicity 

The cytotoxicity of 1a, 2a, 1b and 2b towards RAW264.7 cells was estimated within an arbitrary 

concentration range of 0.00001–10 mM (Figure 2). The ID50 (mM) for 1a, 2a, 1b and 2b was 2.0, 0.6, 

2.2, and 0.7, respectively. In contrast, that for BHA was 0.4 mM. The cytotoxicities of 2a and 2b 

were comparable, and significantly higher than those of the parent phenols (p < 0.001). Also, 2a and 

2b showed slightly smaller cytotoxicity than BHA (p < 0.01). 

Figure 3. Cytotoxicity of p-cresol (1a), p-cresol dimer (2a), p-methoxyphenol (1b), p-

methoxyphenol dimer (2b) and BHA towards RAW264.7 cells. 
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We had previously investigated the cytotoxicity of BHA and BHT for human gingival fibroblasts 

and human HSG cells. For both cell types, the cytotoxicity of BHT was significantly greater than that 

of BHA [23]. Together from these findings, the cytotoxicity of 2a and 2b appeared to be smaller than 

that of the conventional well-known food antioxidants, BHT and BHA. Compound 1b is known to be 

carcinogenic because it is structurally similar to the known forestomach carcinogen BHA [3]. 

Compound 2b may suppress the carcinogenic activity because of the alleviation of its prooxidant 

property caused by dimerization of 1b. Similarly, BHA reacts with oxidizing agents. It is oxidized by 

alkaline ferricyanide to 3,3'-di-t-butyl-5,5'-dimethoxy-1,1'-biphenyl-2,2'-diol (bis-BHA) [24]. Also, 

BHA is a substrate for horseradish and rat intestine mucosa peroxidase by which, in the presence of 

H2O2, it is oxidized to bis-BHA [7]. We previously synthesized bis-BHA and reported that this 

compound was a more effective antioxidant than the parent monomer BHA [20]. Also, we previously 

reported that bis-BHA shows an anti-inflammatory activity [18]. Recently, we have investigated the 

inhibitory effect of 1a, 1b, 2a and 2b on the lipopolysaccharide (LPS)-stimulated cyclooxygenase-2 

(COX-2) expression in RAW 264.7 cells. Dimers 2a and 2b, but not their monomers, inhibited LPS-

stimulated COX-2 expression in RAW 264.7 cells, demonstrating that these compounds possess anti-

inflammatory properties (unpublished data). These findings suggest that 2a and 2b may be applicable 

for use as food antioxidants in vivo. These results of this study will be reported elsewhere.  

 

3. Experimental 

 
3.1. Materials and methods  

The following chemicals and reagents were obtained from the indicated companies: 1a, 1b, BHA 

(2-t-butyl-4-methoxyphenol), 2-t-butyl-4-methylphenol (BMP), 2,6-di-t-butyl-4-methylphenol (BHT), 

MMA (Tokyo Kasei Kogyo, Co., Ltd., Tokyo, Japan). AIBN and BPO (Wako Pure Chemical 

Industries Ltd. Japan) were recrystallized from chloroform and chloroform/methanol, respectively. 

NMR spectra were measured in CDCl3 solution at ambient temperature on a JEOL, JNM-A500 

spectrometer (JEOL, Tokyo, Japan). The chemical shifts  are given in ppm related to 

tetramethylsilane, TMS as internal standard. Mass spectra (MS) were measured on a JMS/700 (JEOL). 

3.2. Synthesis of phenol dimers 

Synthesis of 2,2'-dihydroxy-5,5'-dimethylbiphenol (2a): A solution of the 4-methylphenol (1a,1.08 g, 

0.01 mol) in nitromethane (20 mL) was added to a solution of AlCl3 (1.33 g, 0.01 mol) in nitromethane 

(20 mL) under nitrogen. After 30 min, a solution of anhydrous FeCl3 (1.62 g, 0.01 mol) in 

nitromethane (20 mL) was added, and mixing was continued for 5 h at room temperature. The reaction 

was quenched with 10% HCl and the reaction mixture was extracted with CH2Cl2.The organic phase 

was dried (Na2SO4), the solvent was evaporated, and the residue was chromatographed on silica gel 

with a n-hexane-EtOAc mixture to give dimer 2a, mp 159-160 °C, 40% yield. MS m/z; 214 (M+), 1H-
NMR（CDCl3, 500MHz; δ(ppm) 2.32 (s, 6H, 2CH3), 5.34 (br s, 2H, 2OH) 6.92 (d, 2H, H-3 and H-3’, 

J = 8.2 Hz), 7.06 (dd, 2H, H-6 and H-6’, J = 2.2), 7.11(dd, 2H, H-4 and H-4’, J = 8.2 and 2.2 Hz). 



Molecules 2010, 15                    

 

 

1109

Synthesis of 2,2'-dihydroxy-5,5'-dimethoxybiphenol (2b): In accordance with the above procedure,  

4-methoxyphenol dimer was obtained (80% yield). Mp 129–130 °C, MS m/z; 246 (M+), 1H-NMR 

(CDCl3, 500MHz; δ(ppm) 3.80 (s, 6H, 2OCH3 ), 5.02 (br s, 2H, 2OH), 6.89 (d, 2H, H-3 and H-3’,  

J = 8.8 Hz), 6.63 (d, 2H, H-6 and H-6’, J = 2.7 Hz), 6.71 (dd, 2H, H-4 and H-4’, J = 8.8 and 2.7 Hz). 

3.3. Induction time (IT) and initial rate of polymerization (Rp) 

The induction time and initial rate of polymerization in the presence (Rpinh) or absence (Rpcon) of an 

antioxidant were determined by the method reported previously [18–20]. In brief, the experimental 

resin consisted of MMA and AIBN or BPO with or without additives. AIBN or BPO was added at  

1.0 mol %, and the additives were used at 0.01 mol %. Approximately 10 L of the experimental resin 

(MMA: 9.15–9.30 mg) was loaded into an aluminum sample container and sealed by applying 

pressure. The container was placed in a DSC (model DSC 3100; Mac Science Co., Tokyo, Japan) kept 

at 70 °C, and the thermal changes induced by polymerization were recorded for the appropriate 

periods. The heat due to the polymerization of MMA was 13.0 kcal mol-1. The conversion of all 

samples (%) was calculated from the DSC thermograms using the integrated heat evoked by 

polymerization of MMA. The value was 92.8–95.9%. Time-exotherm and time-conversion curves of 

1a, 1b, 2a and 2b are shown in Figure 1. Time-conversion curves break when a phenolic inhibitor is 

consumed. These breaks are sharp and provide a reliable measure of the induction time of the 

inhibitor. The induction time (IT) was calculated from the difference between the IT of inhibitors and 

that of controls. The initial rates of polymerization in the absence (Rpcon) and presence (Rpinh) of a 

phenolic inhibitor were calculated from the slope of the plots during the initial linear phase of the 

conversion rate of MMA polymerization (tangent drawn at the early polymerization stage), as reported 

previously [18,19]. 

3.4. Measurement of stoichiometric factor (n) 

The n value in Equation (1) can be calculated from the induction time in the presence of inhibitors:  

   (1) 

where IT is the induction time in the presence of an inhibitor (IH). The number of moles of peroxy 

radicals trapped by the antioxidant was calculated with respect to 1 mole of inhibitor moiety unit. The 

Ri values for AIBN and BPO at 70 °C were 6.40 × 10-6 and 2.28× 10-6 mol l-1s-1, respectively. 

3.5. Measurement of the inhibition rate constant (kinh) 

When Ri is constant, i.e. when new chains are started at a constant rate, a steady-state treatment can 

be applied and the initial rate of polymerization of MMA is given by Equation (2): 

Rpcon=
{Kp [MMA]Ri

1/2}

 (2kt)
1/2

    (2) 

n=  
[IH]

R
i
[IT]
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where MMA represents methyl methacrylate and kp and kt are the rate constants for chain propagation 

and termination, respectively. The Rpinh rates are determined by Equation (3): 

Rpinh=
{Kp [MMA]Ri}

 {n kinh [IH]}        (3) 

in which Rpinh is the initial rate of inhibited polymerization, [MMA], n, [IH] and kp are defined above, 

and kinh is the rate constant for scavenging (inhibition) of MMA radicals by an antioxidant. From 

Equation (2) and Equation (3), kinh/kp can be calculated by Equation (4): 

kinh/kp =
 [MMA]

[IT] x [Rpinh]

       (4) 

3.6. Cytotoxicity 

The murine macrophage-like cell line RAW 264.7 is established from the ascites of a tumour 

induced in a male mouse by intraperitoneal injection of Abselon Leukaemia Virus (A-MuLV). We 

used RAW 264.7 cells (Dainippon Sumitomo Pharma Biomedical Co. Ltd., Osaka, Japan) for the 

cytotoxicity test. The cells were cultured to a subconfluent state in RPMI-1640 (Sigma-Aldrich Co., 

Japan) medium supplemented with 10% FBS at 37 °C and 5% CO2 in air, washed and then incubated 

overnight in serum-free RPMI-1640. They were then washed further and treated with the test samples. 

The relative number of viable cells was determined by a Cell Counting Kit-8 (CCK-8) (Dojindo 

Co., Kumamoto, Japan) (10). In brief, RAW 264.7 cells (3 × 104 per well) were cultured in NUNC 96-

well plates (flat-well-type microculture plates) for 48 hours, after which the cells were incubated with 

test samples for 24 hours. CCK-8 solution was added to each well and then the absorbance was 

measured at 450 nm with a microplate reader (Biochromatic, Helsinki, Finland). The ID50 was 

determined from the dose-response curves. Data were expressed as means of three independent 

experiments. Standard errors <15%. Statistical analyses were performed by Student’s t-test. 

4. Conclusions  

We synthesized the related compounds 2a and 2b and investigated their radical-scavenging activity 

using the induction period method. Their n values were 3 and 2.8, respectively, the largest values 

among related compounds. The kinh/kp values for 2a and 2b were similar to that of BHA, a 

conventional food antioxidant. The cytotoxicity of dimers 2a and 2b was less than that of BHA. These 

dimers may be applicable as food antioxidants. However, further safety testing would be needed before 

use in a food antioxidant application. 
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