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We studied the possible role of the subways in the spread of SARS-CoV-2 in New York

City during late February and March 2020. Data on cases and hospitalizations, along

with phylogenetic analyses of viral isolates, demonstrate rapid community transmission

throughout all five boroughs within days. The near collapse of subway ridership during

the second week of March was followed within 1–2 weeks by the flattening of COVID-19

incidence curve. We observed persistently high entry into stations located along the

subway line serving a principal hotspot of infection in Queens. We used smartphone

tracking data to estimate the volume of subway visits originating from each zip code

tabulation area (ZCTA). Across ZCTAs, the estimated volume of subway visits on March

16 was strongly predictive of subsequent COVID-19 incidence during April 1–8. In

a spatial analysis, we distinguished between the conventional notion of geographic

contiguity and a novel notion of contiguity along subway lines. We found that the

March 16 subway-visit volume in subway-contiguous ZCTAs had an increasing effect

on COVID-19 incidence during April 1–8 as we enlarged the radius of influence up to 5

connected subway stops. By contrast, the March 31 cumulative incidence of COVID-19

in geographically-contiguous ZCTAs had an increasing effect on subsequent COVID-19

incidence as we expanded the radius up to three connected ZCTAs. The combined

evidence points to the initial citywide dissemination of SARS-CoV-2 via a subway-based

network, followed by percolation of new infections within local hotspots.

Keywords: COVID-19, public transport, phylogenetic analysis, smartphone device tracking, multi-generational

household transmission, spatial regression analysis, network models, percolation

INTRODUCTION

An accurate, thorough understanding of the rapid, widespread propagation of SARS-CoV-2
infection during the early phase of themassive outbreak inNewYork City is crucial to the successful
control of future pandemic threats.

To that end, we test three main hypotheses here. First, New York City’s extensive public
transport system, particularly its subways, played a critical role in the widespread dissemination
of SARS-CoV-2 infection throughout the city during the end of February and the beginning of
March 2020. Second, the ensuing marked decline in subway use was an important vehicle by which
the public’s growing perception of risk was translated into reduced community transmission of the
virus. Third, those areas with an attenuated decline in subway use, we posit, subsequently became
the loci for high-density clusters of viral infection in late March 2020.
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The Metropolitan Transportation Authority (MTA), a
network of subways, buses and commuter rail cars serving the
NYC area, is larger than all other metropolitan transport systems
in the United States combined. While nearly 85% of U.S. workers
drive to their jobs, according to the MTA, 80% of rush-hour
commuters to the city’s central business districts use transit (1).
The MTA’s subway system is particularly unique, with a total of
1,697.8 million turnstile entries during the calendar year 2019
(2), compared to 157.2 million entries into the Washington DC
metro (3), the next largest subway system in the country.

Our hypotheses are hardly novel. The role of transportation
networks in the spread of SARS-CoV-2 has been supported by
recent studies of the initial outbreak in Wuhan, China (4–6).
One study of the NYC epidemic found an association between
continued subway use among essential workers and a delayed
flattening of the epidemic curve (7). Another study based in part
on NYC subway ridership data found a link betweenmobility and
COVID-19 risk (8). Yet another study found strong correlations
between NYC subway turnstile entries and COVID-19 cases and
deaths (9).

What sets our study apart is its comprehensive,
multidisciplinary approach. We rely on such diverse lines
of evidence as phylogenetic analysis of early viral samples, public
health data on confirmed COVID-19 cases, public transport data
on turnstile entries, location-tracking data on the movements of
smartphones, and census data on the prevalence of at-risk multi-
generational households. Our spatial analysis of emerging case
clusters distinguishes critically between the conventional notion
of geographic contiguity and what we call subway contiguity.

MATERIALS AND METHODS

Data on Confirmed COVID-19 Cases
The NYC health department’s open data archive (10) was
our source of data on: confirmed COVID-19 cases and
hospitalizations by borough and date of diagnosis (boroughs-
case-hosp-death, used to construct Figures 1A,B, 2B below),
aggregate, city-wide data on cases and hospitalizations by
date of diagnosis (case-hosp-death, used in part to construct
Figure 2A); and cumulative cases by zip code tabulation area
(ZCTA) (tests-by-zcta, used in part to construct Figures 2C, 3D).
Incidence per 10,000 population was based on population counts
described below.

Population Data
Data on the total populations of zip code tabulation areas
(ZCTAs) were derived from the Census Bureau’s American
Community Survey 5-year estimates for 2015–2019, accessed
from the data server at the Missouri Census Data Center (16).
Data on the total populations of census block groups (CBGs)
were likewise derived from the Census Bureau’s American
Community Survey 5-year estimates for 2015–2019, accessed
from the Census Bureau’s website (17).

Geography
The Metropolitan Transportation Authority (MTA) website for
developers (18) was our source for the geocoordinates (longitude

and latitude) of each of the subway stations, including the 22
stations on the Flushing Local (Number 7) line, as depicted in
Figures 1D, 2D, 3B, 4B.

We downloaded the polygon shapes of all census block groups
(CBGs) in New York City from the Census Bureau’s website (19).
We relied on the Stata program geoinpoly (20), which uses a ray-
casting algorithm to determine whether a point is contained in
a polygon, to identify the unique CBG containing each subway
station (as illustrated by the 82nd St–Jackson Heights station in
Figures 2D, 3A).

To map CBGs into ZCTAs, we proceeded in four steps. First,
we used Stata mapping software to verify that most CBGs were
uniquely contained in a given ZCTA (Supplementary Figure A).
Second, we employed QGIS software to compute the centroids
of each CBG in New York City based upon the Census Bureau’s
polygon shape files. Third, we downloaded the polygon shape
files of all ZCTAs from the New York City health department’s
data archive (21). Finally, we employed geoinpoly once again to
determine the ZCTA shape polygon that contained the centroid
of each CBG.

As discussed in detail below, our analysis of the prevalence
of at-risk multi-generational households relied upon the Census
Bureau’s American Community Survey Public Use Microdata
Sample (PUMS) for the 5-year period 2015–2019 (22). The data
records for the PUMS are identified at the level of the Public Use
Microdata Area (PUMA) (23), which is an aggregate of census
tracts, which are in turn aggregates of CBGs. To map PUMAs
into ZCTAs, we downloaded the scheme for aggregating New
York City census tracts into PUMAs from the ESRI’s ArcGIS Hub
(24), which in turn gave us a mapping from PUMAs to CBGs.We
then relied on our prior mapping of CBGs into ZCTAs to go from
PUMAs directly to CBGs, as seen in Supplementary Figure A.

Data on Phylogenetic Analysis of Viral
Isolates
To construct Figure 1C below, we relied upon two data
sources: (a) the tab entitled Clade A2a GISAID IDs
within in the spreadsheet Data File S2, posted in the
Supplementary Materials of Gonzalez-Reiche et al. (12) and
(b) the spreadsheet Supplementary Table B, posted in the
Supplementary Materials of a later study of COVID-19 patients
treated within the New York University Langone Hospital
system (25). We merged the two files on the unique common
identifier variable gisaid_epi_isi (where GISAID stands for
Global Initiative on Sharing All Influenza Data). This gave a
total of 78 MSHS viral samples authored by Gonzalez-Reiche
et al. within the A2a clade, including date, location and strain
identifier. These 78 samples formed the database for the vertical
bars in the figure.

Next, we used the variable strain in the merged file to
identify the 17 virus samples specifically highlighted as sharing
the ORF1b:A1844V mutation in the New York Cluster 1 in
Figure 2C of Gonzalez-Reiche et al. (12). These 17 samples
are indicated as the pink bubbles in Figure 1C. This mutation
resulted from a single amino acid substitution from alanine (A)
to valine (V) at position #1844 in the stretch of the virus’ RNA
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FIGURE 1 | Evidence of early rapid, widespread community transmission. (A) Counts of the earliest cases of test-confirmed COVID-19 reported by the NYC health

department, starting on February 29, 2020 (10). The counts represent individuals initially identified through targeted testing of symptomatic persons in accordance

with restricted criteria issued on February 28 by the U.S. Centers for Disease Control (CDC) (11). The horizontal scale indicates the dates that the cases were

diagnosed over the ensuing 8 days. (B) Timeline of the numbers of individuals ultimately diagnosed with COVID-19 in connection with their inpatient hospitalizations,

derived from the same data source (10). The counts of these hospitalization are graphed according to each individual’s date of admission during the same 9-day

interval. (C) Timing and locations of 78 viral isolates from dominant clade A2a collected from patients of the Mount Sinai Health System (MSHS) in New York (12). In

addition to four of the New York City boroughs (Brooklyn, Bronx, Manhattan, and Queens), two of the MSHS A2a patients were from Westchester County (colored

cyan) and five patients had unknown residence (colored white). Pink bubbles denote a cluster of 17 samples sharing a common point mutation, A1844V in open

reading frame (ORF) 1a. (D) Map of all subway lines and stops in NYC, distinguishing 129 zip code tabulation areas (ZCTAs) containing a subway station, 30 ZCTAs

geographically contiguous with a ZCTA containing a subway station, and 29 other ZCTAs. The Jamaica—179th Street station at the end of the F Line connects to the

43 bus-route running along Hillside Avenue, which terminates in ZCTA 11004.

coding for its ORF1b protein, which is one of the two replicase
proteins common to SARS coronaviruses. In terms of the virus’
underlying genetic code, the mutation corresponded to a single
base substitution in the virus’ positive-sense mRNA codon from
GUX to GCX, where G = guanine, U = uracil, C = cytosine,
A= adenine, and X = any of these four bases. This single RNA
base substitution (or missense mutation) was shared by samples
of infected persons residing inManhattan, Queens, Brooklyn and
Westchester County, collected during the space of only 5 days
(March 14–18).

Data on Subway Turnstile Entries
The data on turnstile entries were similarly derived from the
MTA’s website for developers (13). Since stations typically have
multiple turnstiles, and since the turnstile counters are updated at

intervals during each day, computation of entries by station and
by date involved the aggregation of data points across large data
sets with millions of individual observations. Accurate coding
required us to take account of the fact that some turnstiles
ran backwards, while others were reset when they reached their
numerical limit. Still, the city-wide temporal patterns seen in
Figure 2A are consistent with other independent estimates (26).

Classification of Flushing Line (Local 7)
Stations
In Figures 2D,E below, we classified subway stations along the
7 (Flushing) Line into three groups: The six key stations within
the Queens-Elmhurst hot spot, indicated in yellow from west to
east, were: 74th St—Broadway; 82nd St—Jackson Hts; 90th St—
Elmhurst Av; Junction Blvd; 103rd St—Corona Plaza; and 111 St.
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FIGURE 2 | Subway volume and COVID-19 cases. (A) COVID-19 case counts and subway volume during February 23—April 19, 2020. The dark green-colored data

points show the numbers of daily, city-wide confirmed COVID-19 cases reported by the NYC health department (10), measured on a logarithmic scale at the left. The

lilac-colored bars show the daily volume of trips on the city’s subway system, computed from the Metropolitan Transportation Authority (MTA) turnstile data (13) and

measured on a linear scale at the right. (B) COVID-19 case counts in Manhattan and Queens during March 1—April 5, 2020, with a common, initial exponential

growth at a doubling time of 1.1 during the week of March 8–15, as estimated by Poisson regression, followed by divergence of the epidemic paths in the two

boroughs. (C) Zip code tabulation areas (ZCTAs) in New York City, color coded according to cumulative case incidence as of March 31, 2020, showing a

high-incidence hot spot in the Queens-Elmhurst area. (D) Section of (C), overlaid by the locations of the 22 stations of the 7 (Flushing) subway line, including those in

Manhattan (sky blue), the hot spot (yellow), and the remainder of Queens (pink) (14). The 82nd Street—Jackson Heights station within the yellow group is identified for

reference. The pink-colored Mets-Willets station within ZCTA 11368 is on the other side of Grand Central Parkway. (E) Relative numbers of daily turnstile entries for

each of the three zones of the 7 (Flushing) line identified in (D). The daily turnstile entries, likewise derived from the MTA turnstile data (13), were normalized so that the

volume on Monday, March 2 was equal to 100 for each zone. As of March 16, the subway entries into the yellow hotspot stations were 63.2% of their March 2 level,

while entries into the remaining Queens stations and Manhattan stations were, respectively, 47.7 and 32.2% of their March 2 baseline.

The stations withinManhattan, indicated in sky blue fromwest to
east, were: 34th St—Hudson Yards, Times Sq—42nd St, 5th Ave—
Bryant Pk, and Grand Central—42nd St. The remaining stations
within the borough of Queens are indicated in pink.

Data on Smartphone Device Movements
Our data on smartphone devicemovements come from the Social
Distancing database maintained by SafeGraph (27). Every device
movement (or visit) had an origin and a destination. Each device’s
unique origin was the CBG where it regularly spent the night.
Every CBG in which the device stopped for more than 1min
during a 24-h period was counted as the destination of a visit, but
the duration of each visit was not recorded. The 1-min cutoff was
chosen by SafeGraph; it was not under the researcher’s control.
For each calendar day and each CBG of origin, the database

recorded the number of devices that visited each destination
CBG. A destination CBG can be the same as the origin CBG.

We tested whether smartphone device movements whose
destination CBG contained a subway station could serve as a
proxy for subway turnstile entries. For each station, we compared
two time series: the number of visits to the destination CBG
containing that subway station, which we’ll call subway CBG
visits, and the number of turnstile entries into that station.
This comparison is illustrated for a particular subway station in
Figure 3A.

We further investigated the origins of those smartphone
devices whose destination CBGs contained one of the six key
stations within the Queens-Elmhurst hot spot. For each CBG,
we determined two visit counts. The first count, which we
denote n1, accumulated the total number of visits originating
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FIGURE 3 | Smartphone device movements and COVID-19 cases. (A) Daily turnstile entries into the 82nd Street—Jackson Heights Station (blue vertical bars, right

axis) and numbers of smartphone device visits to the census block group (CBG) containing that station (red and green lines, left axis). The green data series shows the

number of visits from devices originating within the same CBG, while the red data series shows the number of visits from devices originating in other CBGs. (B)

Section of Queens showing CBG boundaries within ZCTA boundaries, overlaid with locations of stations along the 7 (Flushing) subway line. Two-tiered light-dark blue

shading identifies those origin CBGs with the highest number of combined visits to a pair of destination CBGs along the 7 (Flushing) line: one of the yellow hotspot

stations and one station in the Queensboro Plaza-Court Square commercial complex. In addition, those ZCTAs within the Queens-Elmhurst hot spot have been

shaded light-dark green according to the two-tiered color scheme of Figures 2C,D. (C) Number of device visits to subway CBGs on March 16, expressed as a

percent of visits during March 1–7, 2020. (D) Incidence of newly diagnosed COVID-19 cases during April 1–8, 2020. (E) Incremental COVID-19 incidence during April

1–8 (vertical axis) related to the number of visits to subway CBGs on March 16, 2020 (horizontal axis). Each point in the log-log plot is an individual ZCTA. As in (C),

visit counts are normalized so that average volume during the first week of March equaled 100. The superimposed line is the ordinary least squares fit (see

Supplementary Material). (F) Prevalence of at-risk multi-generational households, measured as the proportion of households in each ZCTA with at least four

persons, of whom at least one person was 18–34 years of age and at least one other person was at least 50 years of age (15). The map shows census tract

boundaries within ZCTA boundaries. Color scheme reflects quartiles of prevalence.
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in that CBG with a destination at any one of the six stations
during the months of January and February 2020 [The 74th
Street–Broadway station on the 7 (Flushing) line shared the
same CBG as the Jackson Heights–Roosevelt Ave. station on
the intersecting 6th Avenue Local (M) line.]. The second count,
which we denote n2, accumulated the total number of visits
originating in the same CBG during the same interval with a
destination at either the Queensboro Plaza or Court Square stops,
two of the principal destinations within the Queens portion of
the 7 (Flushing) line. We then ranked each origin CBG by the
statistic nmin = min {n1, n2}, which captured trips to and from
the Queens-Elmhurst yellow stations and the Queensboro Plaza–
Court Square complex. In Figure 3B, the lighter-shaded CBGs
correspond to 100 > nmin ≥ 50, while the darker shaded CBGs
correspond to nmin ≥ 100.

To estimate subway visits by ZCTA, we aggregated the number
of device visits to all destination CBGs containing a subway
station, and then further aggregated these CBG-specific counts of
subway visits at the ZCTA level. Supplementary Figure A

illustrates the congruence between CBGs and ZCTAs.
Supplementary Figure B illustrates the temporal evolution
of visits to all subway station CBGs originating from four
specific ZCTAs: 10003 (Manhattan), 11201 (Brooklyn), 11205
(Brooklyn), and 11368 (Queens).

Our reconstruction of the origins of subway visits from
smartphone mobility data is to be distinguished from prior
studies relying instead upon the SafeGraph Patterns Schema,
a separate database which classifies visits by their destination
points of interest (28, 29). The latter database did not categorize
subway stations as a point of interest.

Prevalence of At-Risk Multi-Generational
Households
We relied upon the 5-year (2015–2019) public use microsample
of the U.S. Census Bureau’s American Community (ACS) (22)
to estimate the proportion of households in New York City that
were at risk for multi-generational transmission of SARS-CoV-
2. Following an earlier study of intra-household transmission
in Los Angeles County (15), we defined an at-risk household
as having at least four persons, of whom at least one person
was 18–34 years of age and at least one other person was at
least 50 years of age. Based upon a subsample of 148,686 New
York City households in the 5-year ACS database, we found that
18.3% of households satisfied this criterion. Across 55 public
use microdata areas (PUMAs), the median proportion of at-risk
households was 22.0%, with the 25th and 75th percentiles at 15.6
and 25.4%, respectively. As described above, we then mapped the
PUMA-specific estimates into ZCTAs. Across 176 ZCTAs, the
median proportion of households at risk was 22.4%, with the
25th and 75th percentiles at 13.7 and 24.8%, respectively. The
minimum proportion was 3.2% (ZCTA 10017 in Manhattan),
while the maximum proportion was 35.8% (11414 and 11420
in Queens).

Contiguity in Geographic and Subway
Space
Our concepts of geographic and subway contiguity, including an
accompanying formal matrix algebra, are developed in detail in

the Supplementary Material. Briefly, the map of ZCTAs in New
York City can be regarded as a finite set of M > 0 compact
polygons in a two-dimensional plane, indexed by i = 1, . . . ,M.
No two ZCTAs share any interior points in common, but they can
share boundary points. When ZCTAs i and j do share boundary
points, we say that they are geographically contiguous, or g-
contiguous. By contrast, when ZCTA j is the next stop after
ZCTA i on some subway line in some direction, we say that
ZCTAs i and j are contiguous in subway space, or s-contiguous.
G-contiguity does not imply s-contiguity, nor does s-contiguity
imply g-contiguity.

As further elaborated in detail in the
Supplementary Material, we formulated compound
relationships based on the elemental notions of g- and s-
contiguity. To illustrate compound g-contiguity, Figure 4A

shows all ZCTAs that are (g+ g2)-contiguous with ZCTA 11415.
Equivalently, the figure displays all ZCTAs within a geographic
contiguity radius of 2. To illustrate compound s-contiguity,
Figure 4B displays all ZCTAs that are (g + s + s2 + s3 + s4

+ s5)-contiguous with ZCTA 11415, that is all ZCTAs that are
either g-contiguous with that ZCTA or within a subway radius
of five stops along the same or a connecting line. In general,
compound g- and s-contiguity accommodate a variable radius.

Non-spatial Regressions
Let y denote a M × 1 column vector of ZCTA-specific
observations of incremental COVID-19 incidence during
April 1–8, 2020 (mapped in Figure 3D). Let X0 denote the
corresponding ZCTA-specific column vector of observations
on the cumulative incidence of COVID-19 as of March
31 (Figure 2C). Let X1 denote the corresponding vector of
observations on relative subway volume as of March 16,
2020 (Figure 3C), and let X2 denote the prevalence of at-risk
multigenerational households (Figure 3F). As detailed in the
Supplementary Material, we estimated non-spatial models
of the form log y = α + β0 logX0 + β1 logX1 + β2 logX2,
where the logarithm is assumed to operate separately on each
vector coordinate.

Spatial Regressions
We then considered spatial regression models of the form
log y = α + β0 logX0 + β1 logX1 + β2 logX2 + γ0logWX0 +

γ1 logWX1+γ2logWX2 , whereW is anM× M spatial weighting
matrix. Each contiguity criterion necessarily had its own
weighting matrixW. As detailed in the Supplementary Material,
pre-multiplication of each vector X0, X1, and X2 byW computed
its respective population-weighted mean value among all ZCTAs
satisfying the particular contiguity criterion.

RESULTS

Early Rapid, Widespread Community
Transmission
Assessment of the extent of infection during the earliest days
of the NYC outbreak has been hampered by the initial lack of
adequate testing materials. Still, Figure 1A shows that, despite
the narrow testing criteria initially imposed on February 28 by
the Centers for Disease Control (CDC) (11), positive tests had
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FIGURE 4 | Spatial Analysis. (A) Map of ZCTA 11415 (colored orange), surrounded by 18 ZCTAs (colored peach) within a geographic radius of 2 ZTCAs. (B) Map of

ZCTA 11415 (colored orange), along with 12 ZCTAs either within a geographic radius of 1 ZCTA or a subway radius of five station stops. (C) Estimated spatial effects

of cumulative incidence through March 31 and subway volume on March 16 in relation to radius in geographic space, as the contiguity criterion was varied from g to g

+ g2 to, g + g2 + g3. Cumulative incidence exhibited a significantly increasing trend. (In a 2-sided z-test comparing a radius of 3 with radius of 1, p < 0.001). Subway

volume did not. (In an analogous 2-sided z test, p = 0.268). (D) Estimated spatial effects of cumulative incidence through March 31 and subway volume on March 16

in relation to radius in subway space, as the contiguity criterion varied from g, to g + s, to g + s + s2, up to g + s + s2 + s3 + s4 + s5. Subway volume exhibited a

significantly increasing trend. (In a 2-sided z-test comparing a radius of 3 with radius of 0, p = 0.026). Cumulative incidence did not.

been detected in residents of every borough of the city by March
6. Figure 1B further demonstrates that by March 1, hospitals
had already admitted patients residing in every borough. The
incubation period between infection and first symptoms of
COVID-19 is 5 days on average (30), with a range of up to 2 weeks
(31). Add to that elapsed time an extra 4–10 more days before a
symptomatic individual becomes sick enough to be hospitalized
(32). Accordingly, in all likelihood, SARS-CoV-2 infections were
already occurring by mid-February in every one of the five
boroughs of a city of over 8 million inhabitants. This pattern
of early rapid, widespread dispersion is sharply distinguishable
from the gradual radial geographic expansion of COVID-19 cases
observed in the earliest days of epidemic in Los Angeles County
(15), a comparable sized jurisdiction with 10 million inhabitants.

The data in Figure 1C help to distinguish between two
alternative explanations for this pattern of early rapid,

widespread dispersion of SARS-CoV-2 infections: parallel,
contemporaneous importation from multiple outside sources;
and rapid mixing via community transmission. The figure
describes the timing and locations of 78 viral isolates belonging
to phylogenetic clade A2a that were collected from patients of the
Mount Sinai Health System (MSHS) in New York (12) soon after
the CDC liberalized its testing criteria (11). Within this dominant
clade, the investigators identified a local transmission cluster
with a signature mutation in samples drawn from residents of
Brooklyn, Manhattan, Queens, and Westchester County over a
5-day period. This observation goes against parallel seeding from
distinct sources as the only explanation.

The evidence from Figures 1A–C alone does not identify the
distinct mechanisms underlying such widespread community
transmission in so short an interval. Despite a large body
of investigation attempting to retrospectively track down
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super-spreader events (33), the only such documented
occurrence is an outbreak of COVID-19 among MTA front-line
workers (34, 35). If only by exclusion, we are left with NYC’s
unique subway system (1), which, in combination with the MTA’s
extensive bus routes (36), covers virtually every corner of the city
(Figure 1D).

Subway Volume and COVID-19 Cases
The Collapse of Subway Travel and the Flattening of

the Epidemic Curve
For the city as a whole, Figure 2A compares daily subway
turnstile entries (13) to daily numbers of confirmed COVID-
19 diagnoses (10). Counts of confirmed cases based on
voluntary testing of symptomatic individuals are known to
have significantly understated actual numbers of SARS-CoV-2
infections (37, 38). Still, once the CDC liberalized its testing
criteria (11), one can see the rapid growth in daily confirmed
cases, from 21 on March 8 to 1,038 on March 15.

During that same week fromMarch 8–15, subway volume was
already declining from its prior average of 5.6 million turnstile
entries per weekday. By the end of that week, daily COVID-19
case counts had begun to deviate from their exponential trend. By
the time subway rides had fallen to less than one-quarter of their
regular volume in the third week of March, the epidemic curve
had flattened out. The data are compatible with a causal relation
between the drop in subway demand and the deceleration of
the epidemic curve, with a delay of 2 ± 1 weeks between the
two time-series.

The flattening of the epidemic curve cannot be wholly
attributable to official government actions to restrict mobility
and reduce interpersonal contact. The decline in subway
turnstile entries in Figure 2A occurred before the mayor closed
entertainment venues and limited restaurants, bars and cafes to
food take-out and delivery on March 17 (39). While the mayor
indeed shut down nightclubs, movie theaters, and concert halls,
no one ordered the subways closed. To the contrary, state and
local officials attempted to quell the public’s rising fears about
the risks of coronavirus transmission on public transit (40, 41).
A more plausible explanation is that voluntary action motivated
by fear of contagion—and not a response government coercion—
precipitated the collapse of subway demand, which at least in part
contributed to the subsequent flattening of curve.

The Attenuated Decline in Subway Use and the

Emergence of Hotspots
If the decline in subway use in fact caused the observed
deceleration of the epidemic in Figure 2A, then those areas of
the city with a more rapid decline would experience a greater
deceleration, while those areas with an attenuated decline would
experience continued epidemic growth. This prediction is tested
in Figures 2B through Figure 2E, where we focus on an emerging
hotspot in the Elmhurst area of Queens and the specific subway
line running through it.

Figure 2B plots daily confirmed COVID-19 cases over time
in two boroughs: Manhattan and Queens (10). During the week
starting March 8, the case counts from both boroughs followed
an exponential path with a slope of 0.63/day, which, based on

a generation time of 5.5 days (42), implies a basic reproductive
number R0 = 0.63 × 5.5 = 3.47. This estimate of R0 is
comparable to that estimated for the outbreak in Wuhan (43),
a city with its own massive subway system (44), but higher than
that estimated for Italy (45). By the third week inMarch, however,
the two incidence curves began to diverge significantly. By the
last full week of the month, weekday reported cases inManhattan
were down to about 600, while weekday reported cases in Queens
exceeded 1,500.

Figure 2C maps the cumulative incidence of confirmed
COVID-19 cases according to zip code tabulation area (ZCTA)
as of March 31, 2020. While there are isolated high-incidence
ZCTAs in Brooklyn and the Bronx, there is a notable cluster in
the Elmhurst area in Queens, especially ZCTAs 11369 and 11370,
where the cumulative incidence of confirmed cases had already
exceeded 1% of the population. Manhattan, by contrast, shows no
foci of cumulative COVID-19 incidence in excess of 0.75% of the
population. Comparison of the borough-level data in Figure 2B

suggests that the Queens-Elmhurst hotspot seen in Figure 2C

may have begun to emerge in the third week of March.
Figure 2D displays the 22 stations of the 7 (Flushing) subway

line (14) overlaid on a section of the map of Figure 2C. Figure 2E
shows that turnstile entries into the six yellow-colored stations
within the Queens-Elmhurst hotspot remained significantly
higher than the remaining pink Queens and blue Manhattan
stations, especially from the week of March 15 onward. The
divergence in the decline in subway volume among these three
groups is consistent with the prediction that the attenuated
decline in turnstile volume promoted continued epidemic spread
of SARS-CoV-2.

Smartphone Device Movements and
COVID-19 Incidence
Smartphone Device Movements as a Proxy for

Subway Turnstile Entries
The turnstile volume data in Figures 2A,E show how many
riders entered the subway system at various stations, but not
where these subway riders originated. To fill this data gap, we
relied on data on the movements of smartphones equipped with
location-tracking software (27).

Each smartphone movement (or “visit”) had a recorded
origin and a destination census block group (CBG). Figure 3A
illustrates how we reproduced the daily pattern of turnstile
entries into each subway station by adding up those smartphone
visits whose destination was the CBG where that station was
located. That finding allowed us to rely upon smartphone visits
to station CBGs as a proxy for turnstile entries, and thus to study
the origins of subway visitors.

Figure 3B illustrates how smartphones entering the 7
(Flushing) Line at the yellow stations (already identified in
Figure 2D) originated not only from the ZCTA where the
station was located, but also from the adjacent high-incidence
ZCTAs. This finding suggested that we could reliably estimate the
number of subway visits originating from each ZCTA by adding
up subway-station smartphone visits that originated from that
ZCTA. To that end, Figure 3C displays the resulting map of the
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estimated distribution of subway visits by ZCTA as of March 16,
2020, expressed as a percentage of the corresponding baseline
volume during the first week of March.

Relation Between Subway Visits in
Mid-March and COVID-19 Incidence in
Early April
Figure 3D maps the incidence of newly diagnosed COVID-19
cases per 10,000 during April 1–8, 2020. If smartphone visits are
in fact a reliable proxy for subway visits, and if an attenuated
decline in subway visits in certain areas of the city in mid-March
resulted in the subsequent emergence of high-incidence hotspots
in those areas by early April, then we should expect to observe a
strong correlation between the visit volumemapped in Figure 3C
and the incidence mapped in Figure 3D. This prediction is in
fact borne out in the bivariate plot of Figure 3E. The slope of
the ordinarily least squares-fitted line was significant at the level
p < 0.001.

The significant bivariate association in Figure 3E held up in
multivariate models that took account of two additional ZCTA-
specific covariates: (i) cumulative COVID-19 incidence through
March 31 (already mapped in Figure 2C); and (ii) the prevalence
of multi-generational households (mapped in Figure 3F), a well-
established ecological determinant of transmission rates (15, 46–
48). In all such multivariate models, the estimated parameters
were significantly different from zero at the level p = 0.006 or
lower (see Supplementary Table A).

Spatial Analysis
Geographic and Subway Contiguity
The foregoing multivariate models of COVID-19 incidence
during the first week of April do not account for the possibility of
contagion across ZCTAs.Whilemodels of the spatial propagation
of SARS-CoV-2 across geographic units have been proposed
and tested (15, 49), New York City presents a potentially
unique example of contagion in subway space, as opposed to
geographic space.

To that end, consider two distinct ZCTAs, abstractly labeled i
and j. We say that ZCTAs i and j are geographically contiguous,
or simply g-contiguous, when they share at least one common
boundary point. By contrast, the same two ZCTAs are subway
contiguous, or simply s-contiguous, when ZCTA j is the next stop
after ZCTA i on some subway line in some direction. As detailed
in the section “Contiguity in Geographic and Subway Space” in
the Supplementary Material, these elemental relations between
ZCTAs can be compounded. For example, two ZCTAs i and j are
g2-contiguous if there is a third distinct ZCTA labeled k, such that
ZCTA i is g-contiguous with ZCTA k and ZCTA k is in turn is
g-contiguous with ZCTA j.

As a further extension of the concept of compound contiguity,
we say that two ZCTAs are (g + g2)-contiguous if they are
either g-contiguous or g2-contiguous. This situation is illustrated
in Figure 4A, which shows ZCTA 11415 (colored orange) in
Queens, surrounded by a total of 18 ZCTAs (colored peach)
that are (g + g2)-contiguous with ZCTA 11415. Within this

group, four ZCTAs are g-contiguous with ZCTA 11145, while the
remaining 14 ZCTAs are situated effectively within a radius of 2
from the reference ZCTA 11415.

Figure 4B, by contrast, displays 12 ZCTAs (again colored
peach) that are (g + s + s2 + s3 + s4 + s5)-contiguous with
the reference ZCTA 11415 (again colored orange). ZCTA 11367
is exclusively g-contiguous with the reference ZCTA 1145. The
remaining ZCTAs are accessible within five subway stops along
the same or a connecting line. Thus, ZCTA 11101 in Queens is
accessible via four stops on the E Line, while ZCTA 10065 in
Manhattan is further accessible after a transfer at the Queens
Plaza station to the R, N or W Lines.

Spatial Regressions: Subways, Networks, and

Percolation
Our non-spatial regression models permitted us to measure
how prior conditions in a particular ZCTA (including March
16 subway volume and March 31 cumulative cases) influenced
subsequent COVID-19 incidence during April 1–8 within the
same ZCTA. By contrast, our spatial regression models (detailed
in the Supplementary Material) permitted us to measure how
COVID-19 incidence during the first week of April was
influenced by prior conditions in other ZCTAs. To implement
these spatial models, we did not arbitrarily allow each ZCTA to be
influenced by all other ZCTAs, but instead restricted the radius
of potential contagion in both geographic and subway space.
Thus, for a particular ZCTA in Queens, Figure 4A illustrates a
limited geographic radius of 2 ZCTAs, while Figure 4B illustrates
a limited subway radius of five stops.

We repeatedly estimated such between-ZCTA spatial effects
as we varied the allowable radius of influence—from 1 to 3
in geographic space, and from 0 to 5 in subway space. As we
enlarged the allowable radius of influence in geographic space, as
shown in Figure 4C, we found that cumulative incidence in other
ZCTAs as of March 31 became an increasingly strong predictor of
subsequent COVID-19 incidence, whereas the volume of subway
visits originating in other ZCTAs as of March 16 did not. On the
other hand, as we enlarged the allowable radius in subway space,
as shown in Figure 4D, we found just the reverse. That is, the
volume of subway visits originating in other ZCTAs on March 16
was an increasingly strong predictor of subsequent COVID-19
incidence during the first week in April. Cumulative incidence in
other ZCTAs as of March 31, by contrast, showed no such trend
in relation to the allowable radius in subway space.

Our finding that subway volume as of March 16 exhibited
increasingly contagious effects in subway space supports the
conclusion that SARS-CoV-2 was being propagated via a subway-
based network at least throughMarch 16. Our finding that March
31 cumulative incidence exhibited increasingly contagious effects
in geographic space supports the conclusion that percolation
of new cases through local geographic spread had subsequently
become the dominant mode of propagation by the end of
March. Once local clusters developed, further percolation of
new cases via transmission within multi-generational households
(Figure 3F) became dominant.
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DISCUSSION

The evidence presented here supports three distinct but not
mutually exclusive hypotheses. First, the subway system played
a critical role in the rapid, widespread community transmission
of SARS-CoV-2 infection throughout New York City during late
February and early March 2020. Second, the ensuing marked
decline in subway travel was an important mechanism by which
the public’s growing perception of risk was translated into
reduced community transmission of the virus. Third, those areas
with an attenuated decline in subway use subsequently became
hotspots of viral infection in late March and early April 2020.

One alternative interpretation is that subway travel was no
more than a proxy for other determinants of vulnerability to
COVID-19. In higher-risk communities, so the argument goes,
many residents had service jobs that could not be performed
remotely. Such an interpretation, however, does not square
with the spatial-effect findings in Figure 4D, which imply some
mechanism of contagion running along subway lines. A more
responsive counterargument would have to assign at least an
indirect role to the subway system. Thus, the decline in turnstile
entries seen in Figures 2A,E and Supplementary Figure B could
have reflected employees’ responses to their employers’ requests
to work from home, which in turn reduced workplace exposure,
where contagion would in fact have taken place. This version
does not require that infected individuals transmitted their
infections inside subway cars or on station platforms. It
concedes only that public transport was an efficient vehicle
for moving infected individuals from the periphery of the
city to its commercial centers and back again many times
a day.

This last counterargument, however, does not square with
the evidence on the known mechanisms of SARS-CoV-2
transmission. An infected person exhales moist air containing
very small droplets loaded with the virus (50). A passenger
without a mask standing two feet away from an infected rider
without a mask for just 15min would almost certainly have
inhaled virus particles, even if the infected rider never coughed or
sneezed (51). An infected person constantly sheds virus particles
in the form of fomites on almost every surface he touches, such as
glasses, keys and phones (52). That would include the stainless-
steel poles shared by standing passengers. Social distancing
can be difficult if not impossible in crowded subway cars and
platforms, as well as in public transportation conveyances and
transportation hubs generally (53). A crowded subway train
or platform would thus have been an ideal incubator for
coronavirus transmission. In a study of outbreaks involving three
or more cases in municipalities in China outside Hubei Province,
transport-based transmission was second only to home-based
transmission (54). The extensive outbreak among MTA front-
line workers (and later, their family members) has no alternative
explanation (34, 35).

Yet another counterargument draws upon conflicting studies
of the transmission of other respiratory viruses in public
transport. A study of the London Underground offered
supporting evidence of the transmission of influenza-like illness
(55, 56). But a simulation study calibrated to the 1957–1958 flu

epidemic in New York City estimated only a small contribution
from subway travel (57). A cross-sectional study of 121 cities
found a negative association between public transit use and
mortality from pneumonia and influenza during 2006–2015 (58).
In contrast to a basic reproductive number of R0 = 3.47 (95%
confidence interval, 3.16–3.78) for SARS-CoV-2 in New York
City estimated here, seasonal influenza has an R0 in the range
of 1.2–1.4, while pandemic influenza has an R0 in the range of
1.4–1.8, with the high end representing the 1918 pandemic (59).
While a wave of COVID-19 cases swept through the U.S. during
October 2020–January 2021, reported diagnoses of influenza A
and B were way down (60). The relevance of studies of influenza
in public transport is, at the very least, questionable.

The evidence presented here also highlights the
methodological limitations of alternative approaches to studying
the role of the subways in the propagation of SARS-CoV-2. The
test conducted in Figures 2B–E demonstrates the importance
of studying changes in subway volume during the course of
the COVID-19 outbreak. Less informative would be a study
relating COVID-19 rates to static survey data on the proportion
of individuals in each ZCTA regularly riding public transit prior
to the epidemic. Our results also point to the importance of
conducting tests of causation when baseline subway volume
and COVID-19 incidence are high. A finding that coronavirus
cases no longer relate to subway volume once subway use has
plummeted to below 10% of baseline reveals little if anything
about what happened back in March. The map of the Flushing
Local line in Figure 2B further highlights the pitfalls of studies
that assign the entire volume of turnstile entries into a subway
station to its enclosing ZCTA (7, 8). Such a procedure, which
effectively assumes that only people who live in the same
ZCTA take the local subway, would erroneously discard the
high-incidence ZCTAs 11369 and 11370, which have no subway
within their boundaries.

If we are to successfully control future pandemic threats—
and, for that matter, future outbreaks of COVID-19—we need
to understand in exhaustive detail how SARS-CoV-2 first took
hold and then established hot spots in major urban epicenters
throughout the world. Considerable effort has been made to
understand exactly what happened in Wuhan (43, 61). A
study of Los Angeles County has tracked the initial seeding
of imported infections in affluent areas as it spread radially to
high-density neighborhoods, where the virus percolated through
multi-generational households (15). While the outbreak in Italy
has been traced phylogenetically to the Lombardy region, it
remains unclear how exactly it started out and spread (62).
A more recent phylogenetic study of viral samples from New
York state during March–May 2020 confirmed the importance
of Queens as a major transmission hub and provided supporting
evidence of widespread geographic dispersion (63). Only 22%
of the samples from New York City, however, were collected
before the last week of March (64). Numerous investigators
have relied upon compartmental models to understand the
early dynamics of SARS-CoV-2 outbreaks (15, 29, 43, 65). The
evidence presented here for New York City points instead
to a model of network-wide transmission followed by local
percolation of infections (66–69).

Frontiers in Public Health | www.frontiersin.org 10 December 2021 | Volume 9 | Article 754767

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Harris Critical Role of the Subways

If the subway system indeed played a critical role in the
early propagation of SARS-CoV-2, as supported by the evidence
assembled here, we need to understand that the conventional
methods of personal contact tracing are less likely to be useful in
halting future outbreaks. That means more sophisticated contact
tracing through the pings of mobile devices and records of
electronic transactions will be necessary (70, 71). To that end, the
MTA will need to adopt a new system of digital passes, already in
use in many cities worldwide, which would permit investigators
to find out more than just the crude number of turnstile-clicks at
each station.

In advance of the next outbreak, we will need to know
whether the subways served principally as a rapid spatial
disseminator of externally acquired infections (5, 6, 72), or
as significant locus of in situ transmission (4). In the former
case, social distancing and mandatory face coverings would
not alone stop the rapid, widespread seeding of infections
throughout the five boroughs that we observed in February
and March of 2020. In the latter case, we will need to
study now whether a policy of running only express lines
with limited density might be a feasible alternative to the

complete cordon sanitaire adopted in Wuhan more than a year
ago (73).
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