
PyTrack: An end-to-end analysis toolkit for eye tracking

Upamanyu Ghose1,2
& Arvind A. Srinivasan1

& W. Paul Boyce3
& Hong Xu3

& Eng Siong Chng1

The Author(s) 2020

Abstract
Eye tracking is a widely used tool for behavioral research in the field of psychology. With technological advancement, we now
have specialized eye-tracking devices that offer high sampling rates, up to 2000Hz, and allow for measuring eyemovements with
high accuracy. They also offer high spatial resolution, which enables the recording of very small movements, like drifts and
microsaccades. Features and parameters of interest that characterize eye movements need to be algorithmically extracted from
raw data as most eye trackers identify only basic parameters, such as blinks, fixations, and saccades. Eye-tracking experiments
may investigate eye movement behavior in different groups of participants and in varying stimuli conditions. Hence, the analysis
stage of such experiments typically involves two phases, (i) extraction of parameters of interest and (ii) statistical analysis
between different participants or stimuli conditions using these parameters. Furthermore, the datasets collected in these exper-
iments are usually very large in size, owing to the high temporal resolution of the eye trackers, and hence would benefit from an
automated analysis toolkit. In this work, we present PyTrack, an end-to-end open-source solution for the analysis and visuali-
zation of eye-tracking data. It can be used to extract parameters of interest, generate and visualize a variety of gaze plots from raw
eye-tracking data, and conduct statistical analysis between stimuli conditions and subject groups.

Keywords Eye tracking . Software . Open source . Python

Introduction

Relatively recent advancements in computer science and re-
lated technologies have resulted in greater automation and
increased efficiency in analyzing large datasets when com-
pared to manual processes. The field of psychology has great-
ly benefited from this in the form of advanced computational
methods and tools. However, most of these software and tools
are expensive and not freely accessible to everyone.
Automating data processing with simple but effective compu-
tational pipelines provides the benefit of quicker and easier

analyses. In turn, this allows more time for greater emphasis
to be placed on designing paradigms, executing experiments,
and arriving at the rationale for analyses.

While psychology is a broad discipline, a growing area of
research is the analysis of eye movement and behavior as a
tool for psychological insight. More specifically, eye tracking
offers several interesting metrics, which can be beneficial for
areas such as game design, visual marketing, medicine, and
behavioral research like human emotion and deception detec-
tion. Some of the most important metrics, or parameters, in-
clude blinks, saccades, fixations, and pupil size. Each of these
can act as proxies for different behavioral and physical condi-
tions. For example, pupil dilation is known to be an indicator
of stress (Pedrotti et al., 2014; Ren et al., 2014), while blink
rate has been used to identify fatigue (Stern, Boyer, &
Schroeder, 1994) as well as medical conditions such as
schizophrenia (Chan & Chen, 2004). Eye tracking is also uti-
lized in areas such as visual marketing (Wedel & Pieters,
2008) to gain insight into consumer behavior while searching
for products in supermarkets or shops, and for gaining insight
into user interaction with websites (Granka, Joachims, & Gay,
2004) in order to ameliorate user interface (UI) and user ex-
perience (UX) design for an improved experience. In the do-
main of behavioral research, eye tracking has proven to be a
useful tool in the areas of human emotion and arousal analysis

Electronic supplementary material The online version of this article
(https://doi.org/10.3758/s13428-020-01392-6) contains supplementary
material, which is available to authorized users.

* Upamanyu Ghose
titoghose@gmail.com

1 School of Computer Science and Engineering, Nanyang
Technological University, Singapore, Singapore

2 Present address: Department of Computer Science, University of
Oxford, Oxford, UK

3 Psychology, School of Social Sciences, Nanyang Technological
University, Singapore, Singapore

https://doi.org/10.3758/s13428-020-01392-6

Published online: 4 June 2020

Behavior Research Methods (2020) 52:2588–2603

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-020-01392-6&domain=pdf
https://doi.org/10.3758/s13428-020-01392-6
mailto:titoghose@gmail.com

(Bradley, Miccoli, Escrig, & Lang, 2008) and has recently
gained traction as a tool for deception detection (Cook et al.,
2012; Kircher, 2018; Vrij, Oliveira, Hammond, &
Ehrlichman, 2015). Considering its widespread influence over
myriad domains, an open-source and freely accessible auto-
mated pipeline for parameter extraction and comparative anal-
ysis would be a beneficial addition to the eye-tracking
community.

Here, we present PyTrack, an end-to-end analysis toolkit,
built using the Python programming language, that allows users
to analyze eye-tracking datasets using a few lines of code, as
shown in a sample segment in Listing 1. After the initial process
of recording eye movement data for multiple participants in
multiple stimulus conditions, the raw data exported from the
eye tracker can be directly fed into PyTrack in order to perform
parameter extraction, generate plots and conduct statistical anal-
ysis on the extracted parameters. The toolkit can generate gaze
plots, gaze heat maps, dynamic pupil and gaze plots, and

aggregate heat maps for a group of participants. PyTrack also
extracts parameters related to pupil size, blinks, fixations, sac-
cades, microsaccades, and reading behavior. We have also im-
plemented a feature that allows the user to indicate an area of
interest (AOI) for the stimuli, in order to extract more advanced
parameters such as number of revisits. If the experiment in-
volves different groups of participants or stimulus conditions,
PyTrack also provides the functionality of performing statistical
tests such as the t test and variants of ANOVA for combinations
of between and within group parameters. However, if desired,
PyTrack can export a formatted file containing the extracted
parameters without performing any statistical analysis, in order
to allow the users to perform their own analyses. This facilitates
a high degree of flexibility for the end-user in terms of analyt-
ical requirements because it can easily be used for rapid auto-
mated end-to-end analysis of eye-tracking experiments or sim-
ply as a parameter extraction tool. The programming required
to utilize most features of PyTrack is minimal and can be

from PyTrack.formatBridge import generateCompatibleFormat
from PyTrack.Experiment import Experiment

Creating compatible format from raw data
generateCompatibleFormat(
 � � � �exp_path="sample/path/to/experiment",
 � � � �device="eyelink",
 � � � �start='start_trial',
 � � � �stop='stop_trial')

Creating an Experiment object
exp = Experiment(
 � �json_file="sample/path/to/experiment/json")

Extracting features
exp.metaMatrixInitialisation()

Statitistical analysis
exp.analyse(statistical_test="anova")

To open up the visualization GUI
exp.visualizeData()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Listing 1. Sample code segment to use PyTrack. Line 5: Using the
format bridge to convert data into the compatible format. Line 12:
Creating the main Experiment class object to perform analysis and
visualization. Line 16 and 19: Extracting the metadata or parameters

and performing the ANOVA test between subject or participant groups.
Line 22: Invoking the visualization GUI to view and save the various
plots

2589Behav Res (2020) 52:2588–2603

accomplished by adapting parameters of the sample code seg-
ments. The visualization component has a simple graphic user
interface (GUI) for ease of navigation and selection of partici-
pants and stimuli. For the more advanced and experienced pro-
grammers, PyTrack's functions can also be used and modified
by importing it as a Python library. We discuss the toolkit in
greater detail in sections ‘Framework Structure’ and ‘Features
of PyTrack’.

Related work

Most existing software and libraries for eye-tracking analysis
are hardware specific proprietary software that is provided
with the eye-tracking device. However, there have also been
some significant contributions by individuals to the open-
source community of eye-tracking research.

Among the hardware specific proprietary software, the first
we will discuss is the SMI BeGaze™ (Sensomotoric
Instruments, 2016) analysis suite. It supports various functional-
ities such as semantic gaze mapping, heat map generation, fixa-
tion mapping, area of interest (AOI) analysis, and extraction of
key performance indicators such as number of revisits to AOI.
Additionally, it provides (i) duration and velocity dispersion-
based event detection for saccades and fixations, and (ii) extrac-
tion and exporting of several parameters related to saccades,
fixations, blinks, and pupil size. Any reference to ‘events’ from
here on will refer to fixations, saccades and blinks. Tobii pro-
vides its own software called Tobii Pro Lab™ (Tobii
Technology, 2019) for design of experiments as well as analysis
of collected data. It supports similar functionalities to BeGaze™
such as heat map and gaze plot visualization, area of interest
analysis, and extraction of events. SR Research provides the
Data Viewer™ (SR Research, 2018) software for EyeLink de-
vices. It is mainly used for visualizing gaze and pupil-size data. It
also allows event detection and generation of aggregate event
and AOI reports and there is extended support available via
MATLAB®, Psychtoolbox ® and E-Prime ®. However, what
is common among these software programs is that they must be
purchased in order to access the advanced functionalities. Of
particular note is that the above software does not facilitate the
extraction of microsaccade parameters from fixations and do not
support multiple data formats from other hardware.

Other than the software accompanying eye-tracking hard-
ware, there are some proprietary software such as iMotions™
(iMotions, 2019) that act as presentation, data collection and
analysis software. iMotions™ provides several analysis tools
that allow parameter extraction from raw data after the process
of data collection. For example, iMotions™ supports aggre-
gate heat map generation, fixation plot generation and AOI
analysis including totaling number of revisits, time spent etc.
It also has the provision of the dynamic viewing of pupil size,
eye distance and gaze data. However, it is an expensive

software and, at the time of writing, does not support some
advanced eye trackers such as the EyeLink 1000 Plus.

Among the open-source eye-tracking tools, PyGaze
(Dalmaijer, Mathôt, & Van der Stigchel, 2014) is a commonly
used library. Its main functionality is enabling recording of eye-
tracking data using presentation software such as OpenSesame
(Mathôt, Schreij, & Theeuwes, 2012). It facilitates the sending
of triggers and messages. It also provides some basic analysis
functionality such as event detection, heat map generation and
fixation plot generation. However, it does not provide any ad-
vanced parameter extraction, aggregate experiment analysis, or
statistical tests. As its main functionality is to act as a wrapper
around several existing packages, it does not provide a lot of
functionality for post recording analysis. Another open-source
package available for analysis in the R programming language
is eyetrackingR (Dink & Ferguson, 2015). It supports most of
the widely used eye trackers such as EyeLink and Tobii. The
functionalities it provides are ‘cleaning-up’ and performing dif-
ferent analyses on time series data such as growth-curve anal-
ysis and onset-contingent reaction time analysis. It also pro-
vides the functionality of generating plots corresponding to
the analyses. However, it does not provide support for the ex-
traction of parameters related to fixations, saccades,
microsaccades, pupillometry, and blinks. A similar package
for Matlab® is the EMA Toolbox (Gibaldi & Sabatini, n.d.).
It supports EyeLink, SMI, and Tobii eye trackers. The function-
ality provided by EMA includes: data conversion from normal-
ized to pixel to degrees; saccade identification; saccade kine-
matics; generation of saliency maps; and generation of main
sequence plots. Main sequence is a plot that shows the relation-
ship between the peak velocity (on the vertical axis) and ampli-
tude (on the horizontal axis) of saccadic eye movements.
OGAMA – Open Gaze and Mouse Analyzer (Voßkühler,
Nordmeier, Kuchinke, & Jacobs, 2008) is another open-
source software which is similar to the iMotions™ software
discussed earlier. It allows creation and presentation of stimuli,
recording of eye-tracking data and finally, analysis and visual-
ization of the collected data. It provides the functions of dynam-
ic replay of data, generation of fixation path plots, and attention
maps. Users can specify subject, trial, gaze, and mouse event
parameters that OGAMA calculates and then exports into a
results file. The OGAMA software only supports extraction
of parameters related to fixations and saccades.

Framework structure

The PyTrack framework is designed using principles of
object-oriented programming (OOP) and is structured in a
manner that provides maximum flexibility to the user. The
first design component takes into consideration the users'
varying knowledge of Python programming. We understand
that users require different levels of access to, and flexibility
with, the framework, depending upon their programming

2590 Behav Res (2020) 52:2588–2603

knowledge. For users with limited programming experience,
PyTrack can act as an end-to-end toolkit taking raw data as
input, perform all the required parameter extractions and pro-
ducing the results of statistical analysis as output. Advanced
programmers, on the other hand, have the flexibility of
accessing the extracted parameters, member functions and
variables, and using them for their custom requirements.

The second design component of PyTrack takes into consid-
eration how a given user may wish to use PyTrack, either in the
‘experiment design’ or ‘stand-alone design’. This is achieved
by the entire functionality being broken-up into different ob-
jects that interact with each other, as can be seen in Fig. 1.

In the experiment design, PyTrack can analyze an entire
experiment containing n subjects responding to k stimuli each.
Path ‘A [Experiment]’ in Fig. 1 illustrates the structure of this
design. In this setup, the user interacts with the Experiment
object and PyTrack effectively acts as a black box, thus re-
moving any need of the user to consider internal functionali-
ties. However, as the objects at different levels interact with
each other, if the user wishes, the member variables and func-
tions of the internal objects can also be accessed through the
Experiment object. This, of course, would require program-
ming knowledge in Python, as discussed earlier.

The stand-alone design is for those users who wish to an-
alyze a single stimulus for a given subject or make use of the
parameter extraction functions and visualization tools for their

custom needs. The user–toolkit interaction can be seen in Path
‘B [Stand-alone]’ of Fig. 1. The user interacts directly with the
internal objects and parameter extraction modules. Hence, this
is designed for those who wish to access PyTrack at a lower
level of the abstraction model to directly control the algo-
rithms and visualization functionality.

Features of PyTrack

In the following section we discuss the salient features of
PyTrack, giving an overview of its robust functionality and
how it acts as an end-to-end toolkit.

Format agnostic and quick data access

The format bridgemodule in PyTrack enables the analysis and
visualization of data collected using three different types of
eye trackers - EyeLink, Tobii, and SMI. This functionality
was achieved by adapting and modifying the code in
PyGazeAnalyser (Dalmaijer et al., 2014). The recording soft-
ware of the eye trackers provide the option of exporting the
data as raw text files. The format bridge module accepts these
files as its input and converts them to a base format readable
by PyTrack, a comma separated value (CSV) file. Following
this, an SQL database is generated containing an aggregation
of all the participants. The rationale for generating an SQL

Subject 1

Stimulus 1

Stimulus 2

Stimulus k

Raw Eye Tracking Data

Raw Eye Tracking Data

Raw Eye Tracking Data

Subject n

Stimulus 1

Stimulus 2

Stimulus k

Raw Eye Tracking Data

Raw Eye Tracking Data

Raw Eye Tracking Data

Parameter Extraction Modules

Experiment Object

USER

B[Stand-alone]

A [Experiment]

Fig. 1. PyTrack framework structure. The structure is based on object-
oriented programming concepts where different objects interact with each
other. The “Experiment” object (grey) interacts with multiple “Subject”
objects (stick figure). These in turn interact with multiple “Stimulus”
objects (green) analogous to the stimuli presented to the subjects during
the experiment. Each “Stimulus” object applies the parameter extraction
modules (orange) to the corresponding raw eye-tracking data (blue). The

path A [Experiment] from the User (red) shows the user-toolkit interac-
tion in the experiment design mode as discussed in the section
“Framework Structure". The path B [Stand-alone] from the User shows
the stand-alone design structure where the user can work on a single
subject at the individual stimulus level or just use the parameter extraction
modules independently. The documentation (found here https://pytrack-
ntu.rtfd.io) explains how to use PyTrack in each design mode

2591Behav Res (2020) 52:2588–2603

https://pytrack-ntu.rtfd.io
https://pytrack-ntu.rtfd.io

database and using it to access the data instead of the CSV
files is that it reduces the time required to read data when
conditional querying is implemented. Working with raw
SQL files is inconvenient and hence, we transform the SQL
data into a Pandas DataFrame for internal usage.

We conducted data access tests on two different systems
using datasets of varying number of rows in CSV and SQL
formats. Table 1 shows the difference in data access times for
each of the cases with and without conditional querying. With
an increase in the number of rows, systems with better pro-
cessors and higher random-access memory (RAM) are able to
read the entire data much quicker. This is because a higher
RAM allows more data from the SQL or CSV tables to be
loaded into the main memory for quick access. This in turn
leads to a lower number of page faults (data that need to
be accessed but are not present in the main memory) and
reduces the latency of accessing the secondary memory
(hard disk, solid-state drive etc.). The SQL data access
time shown is the cumulative time for accessing the raw
SQL data in Python and to convert it to a Pandas
DataFrame. The benefit of using Pandas is that it allows
easy and efficient manipulation of SQL and CSV data in
Python. As can be seen, if all the stimuli from an exper-
iment are being analyzed, the CSV reading option is the
faster approach. However, if only a subset of stimuli is
being analyzed which involves conditional data access,
SQL provides a significant decrease in access time.
Therefore, depending on the task, the user may toggle
the access method from CSV to SQL or vice-versa.

Parameter extraction

PyTrack extracts 21 parameters in all, which are commonly
used in eye-tracking research. These comprise pupil size,
blinks, fixations, saccades, microsaccades and reading
behavior.

Pupil size

Pupil size, and parameters derived from it, have been used to
study the dynamics of cognitive brain functions (Beatty,

1982). Research suggests that changes in pupil size can be
used as an index for attentional effort (Kang, Huffer, &
Wheatley, 2014) and non-emotional perceptual tasks (Webb,
Honts, Kircher, Bernhardt, & Cook, 2009). The pupil size
parameters that are provided by PyTrack are: average pupil
size; time to pupil size peak; peak pupil size; and area under
the pupil curve.

Blinks

Parameters related to blinking are used as proxies to medical
conditions and fatigue as mentioned in ‘Introduction’. Blinks
can easily be detected from eye-tracking data by finding seg-
ments of the raw data where the pupil size falls to zero.
However, Hershman, Henik, and Cohen (2018) proposed a
noise-based blink detection algorithm that detects the onset
and offset of the blinks more accurately. Hence, we
adapted their algorithm to implement a python version
and validated it with the original implementations in R
and MATLAB . The compa r i s o n o f t h e two
implementations is shown in Supplementary Fig. 1.
The first step of the algorithm is to identify the missing
values in the pupil size data and mark the last valid
sample before and after the missing segment as the ini-
tial blink onset (sample n) and offset (sample m). The
pupillometry data is then smoothened using a moving
average filter with a window size of 10 ms and the
difference between adjacent samples is calculated. For
example, if pt (t =1, 2, 3, 4, 5, …) is the pupil size
at any time t, the values calculated are p2 – p1, p3 – p2,
p4 – p3, and so on. This difference is calculated in order
to identify monotonic sequences in the smoothened
pupillometry data, which in turn is used to update the
old blink onset and offset (sample n and m, respective-
ly). The blink onset is updated by starting at the initial
onset (sample n) and moving backward (sample n-1, n-
2, …) while the pattern is monotonically increasing.
The index of the last value in this pattern before the
initial onset is selected as the new blink onset.
Similarly, for the blink offset, we move forward from
the initial offset (from sample m to m+1, m+2, …)

Table 1. Data access times (CSV vs. SQL)

System configuration (RAM and CPU) Number of rows CSV (ms) SQL (ms) CSV with condition clause (ms) SQL with condition clause (ms)

RAM: 4 GB CPU: Intel i7-5500U 10,000 26.86 46.67 45.66 17.80

100,000 250.24 455.61 380.89 185.05

1,000,000 2463.14 4558.18 3773.78 1732.73

RAM: 32 GB CPU: Intel i7-8700 10,000 18.62 40.37 44.97 16.80

100,000 185.61 335.48 229.43 119.04

1,000,000 1795.01 3578.18 2230.54 1176.60

2592 Behav Res (2020) 52:2588–2603

while the pattern is monotonically increasing and select
the last value in the pattern after the initial offset as the
new blink offset. The blink parameters that PyTrack
provides are: blink count; peak blink duration; and av-
erage blink duration.

Fixations

The duration and rate of fixations have been used in the past
for studying deception by Cook et al. (2012), and cognitive
process by Just and Carpenter (1976). Furthermore, the ratio
of fixation count and duration inside and outside an AOI can
also help in determining the level of focus of the subject in the
given AOI, which is of importance in a variety of tasks such as
visual marketing research and reading research (Daneman &
Reingold, 1993; Just & Carpenter, 1980). The fixation se-
quences are obtained from the raw data exported from the
eye tracker’s software. In cases where the data does not con-
tain this information, the dispersion-based threshold identifi-
cation (I-DT) algorithm is applied to the gaze data in order to
identify the fixations (Salvucci & Goldberg, 2000). The first
step is selecting a window within which the dispersionD is to
be calculated. We consider a window sizeWthresh of 50 ms as
the minimum duration for a segment to be classified as a
fixation. Starting with the minimum window size i.e. W =
Wthresh, the dispersion is calculated using Eq. (1). In the equa-
tion,Gx andGy are the gaze position vectors in the x and y axes
for a given window and D is the dispersion of that window. If
the D <= Dthresh, the window size is increased by 1, i.e., W =
W+1, and the previous step is repeated. Finally, if D > Dthresh

and W > Wthresh, the points in the window excluding the last
point are considered to be part of a fixation sequence. Then the
window resets to Wthresh and starts at the first point after the
last fixation sequence.

D ¼
ffi

max Gxð Þ−min Gxð Þ½ �2 þ max Gy
� �

−min Gy
� �� �2

� �

r

ð1Þ

After this, for a given stimulus, PyTrack extracts the fixa-
tion count, maximum duration and average duration. In order
to get fixation parameter values inside an AOI, the area can be
specified before analysis, as explained in ‘area of interest
(AOI)’.

Saccades and microsasccades

Saccade sequences are usually marked by the eye tracker’s
recording software in the raw data. For data in which the
saccade sequences are not marked, the velocity-based

threshold identification (I-VT) algorithm is applied (Salvucci
& Goldberg, 2000). The first step in the algorithm is to calcu-
late the pointwise velocity of the gaze data. Points with veloc-
ities of more than around 40 pixels/second are classified as
saccades. Equation (2) shows the computation of the veloci-
ties from gaze data. In the equation, Vt is the velocity in x or y
direction at time t, and Gt is the gaze position in x or y axis at
time t.

Vt ¼ Gt−Gt−1 ð2Þ

A well-known and widely used algorithm for the detection
of microsaccades was first proposed by Engbert and Kliegl
(2003) followed by improvements made by Engbert and
Mergenthaler (2006). In PyTrack, we provide an implemen-
tation of this algorithm in order to extract parameters such as
count, duration, velocity, and amplitude. The first step is to
calculate the velocity from the gaze data using a moving av-
erage , as shown in Equation (3a). The next step is the calcu-
lation of the velocity threshold Vthresh using Equation (3b).
The k value is calculated using Equation (3c), and all points
with k > 1 are considered to be part of a microsaccade se-
quence, provided the sequence contains at least six samples.
Finally, the velocity and amplitude of the microsaccade se-
quence are calculated using Equation (3d & e). The last two
equations are also used to calculate the velocity and amplitude
of the saccades. In Equation (3): Vt is the velocity in x or y axis
at time t; Gt is the gaze position in x or y axis at time t; Sfreq is
the sampling frequency of the eye tracker; Vthresh is the
microsaccade threshold velocity in the x or y axis; Vfac is a
constant value that is used to calculate the microsaccade
threshold velocity in the x or y axis (default value used is 5);
V→ is the velocity vector in the x or y axis; G→ is the gaze
position vector in the x or y axis; Vpeak is the peak velocity of
the microsaccade sequence; and A is the microsaccade se-
quence amplitude.

Vt ¼ Gtþ2 þ Gtþ1−Gt−1−Gt−2ð Þ= 6� Sfreq
� � ð3aÞ

V thresh ¼ V f ac �
ffi

median V
!−median V

!ð Þð Þ2
� �

r

ð3bÞ

k ¼ Vx
	!

=Vxthresh

� �2
þ Vy

	!
=Vythresh

� �2
ð3cÞ

Vpeak ¼ max

ffi

Vx
	!2

þ Vy
	!2

r

 !

ð3dÞ

A ¼
ffi

max Gx
	!

� �

−min Gx
	!

� �h i2
þ max Gy

	!
� �

−min Gy
	!

� �h i2
r

ð3eÞ

In order to ensure that our implementation is in accordance
with the original algorithm adapted for R, we compared the

2593Behav Res (2020) 52:2588–2603

output plots on the same data file. The plot in Supplementary
Fig. 2a shows the microsaccade gaze position and gaze veloc-
ity plots generated by PyTrack. Supplementary Fig. 2b shows
the same plots generated by the MS Toolbox for R (Ralf
Engbert, Mergenthaler, Sinn, & Pikovsky, 2011; Ralf
Engbert, Sinn, Mergenthaler, & Trukenbrod, 2015) as an im-
plementation of their own algorithm. A comparison of the two
plots shows that both implementations work identically.

Reading behavior

PyTrack also extracts parameters to look at reading behavior
of subjects. Cook et al., (Cook et al., 2012) saw that, during
deception detection, reading patterns could be used for differ-
entiating between participants assigned to an ‘innocent’ group
and participants assigned to a ‘guilty’ group. One reading of
the text located in the AOI is defined as the set of consecutive
fixations which are located in the specified region. The read-
ing parameters included in PyTrack are: number of readings;
duration of first reading (first pass); and duration of second
reading (second pass).

Area of interest (AOI)

PyTrack facilitates user specification of an AOI from
which parameters of interest can be extracted. If there is a
common AOI for all stimuli, it can be drawn or specified as
coordinates. The accepted drawn shapes are rectangles,
ellipses, and polygons. If the coordinates are specified,
they can be one of the following shapes: the top-left and
bottom-right coordinates of a rectangle, center and size of
axes (width and height) of an ellipse, or the coordinates of
a polygon's vertices. However, if the AOI is different for
each stimulus, the values must be specified as rectangle,
ellipse, or polygon coordinates in a CSV file, along with
the corresponding stimulus name. The drawing functional-
ity is not supported in this case because the task of drawing
an AOI for all the stimuli is rather tedious and as the AOIs
are usually defined at the time of conducting the experi-
ment, it is more convenient to specify them in a CSV file.
Several experiment presentations and recording software
such as OpenSesame allow exporting such parameters as
CSV files. Figure 2 shows the different types of AOI
PyTrack accepts.

Fig. 2. Different AOI shapes supported by PyTrack

2594 Behav Res (2020) 52:2588–2603

Statistical analysis

The analysis stage of experiments usually involves the compar-
ison of (i) a subject or subject group’s response to different
types or classes of stimuli and (ii) the response of different
subject groups to the same stimulus type. PyTrack has inbuilt
statistical analysis functions (e.g., ANOVA, mixed ANOVA, t
test, etc.) that allows the users to conduct a variety of tests to
compare the various subject and stimuli groups. These tests
provide statistical analyses of the extracted parameters
discussed earlier. The users can either conduct the tests on all
the extracted parameters, or alternatively specify the parameters
of interest and test for statistically significant differences on the
specified parameters. Lines 9 and 13 in Listing 2, respectively,
contain sample code segments to execute these functionalities.

A basic test that is supported is a mixed ANOVA, which
considers stimuli type to be a within group factor and subject
type as the between group factor. In addition to this, as shown
in line 17 of Listing 2, PyTrack also allows for advanced

analysis where the user can specify additional within and be-
tween group factors on which statistical analysis can be per-
formed. It provides for n-way ANOVA, repeated measures
ANOVA (RMANOVA), pairwise Student’s t test and
pairwise Welch t test. The n-way ANOVA accepts any num-
ber of between group factors while the RMANOVA accepts
up to two within group factors. The pairwise Student’s t test
can be used when analysis is conducted for the within-subject
factor, in within-subject designs (one-way) or mixed designs
(with one between group and one within-group factor). The
Welch t test accepts only one within group or one between
group factor. The Mixed ANOVA, RMANOVA, and
pairwise t test are performed by using the functions defined
in the pingouin package (Vallat, 2018), while statsmodels
(Seabold & Perktold, 2010) is used for n-way ANOVA.
Scipy (Oliphant, 2007) provides the functionality to perform
the Welch t test.

Users can perform analysis of a select few parame-
ters, instead of all of them, by specifying the parameters

from PyTrack.Experiment import Experiment

exp = Experiment(
json_file="sample/path/to/experiment/json")

exp.metaMatrixInitialisation()

(a) ANOVA on all extracted features
exp.analyse(parameter_list={"all"},

statistical_test="anova")

(b) ANOVA only on saccade_count and fixation_count features
exp.analyse(parameter_list={"saccade_count"},

statistical_test="anova")

(c) Including additional between and within group factors for advanced
analysis
exp.analyse(parameter_list={"all"},

between_factor_list=["Subject_type", "Gender"],
within_factor_list=["Stimuli_type", "Brightness"],
statistical_test="anova")

(d) Saving all extracted features as csv files without performing any
statistical tests
exp.analyse(parameter_list={"all"},

statistical_test="none")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

17
18
19
20
21
22

23
24
25

Listing 2. Sample code segment to run different statistical tests in
PyTrack. For all tests, the default between group is subject or
participant type. Lines 9–10: Function to run the ANOVA test between
subject groups on all extracted parameters. Lines 13–14: Function to run
the ANOVA test between subject groups only on saccade_count. Lines

17–20: Function specifying gender as the additional between group factor
and brightness as the additional within group factor. It runs the ANOVA
test for the specified between and within group factors on all extracted
parameters. Lines 23–24: Function to export all the extracted parameters
in a formatted CSV file without running any statistical tests

2595Behav Res (2020) 52:2588–2603

of interest. The results of these tests are printed out in
the computer terminal and saved into CSV files for later
reference. PyTrack also provides the option of allowing
users to export all the extracted parameters in the form
of a CSV file without performing any tests, as shown in
line 23 of Listing 2. The data present in the CSV file
contains all the extracted parameters along with the
name of the subject and stimuli that was being ob-
served. This is especially useful if the users wish to
perform statistical tests independent of PyTrack.

Ease of modifying analysis factors

The analysis of the entire experiment is controlled by an intu-
itive JSON file. Users can easily specify the list of participants
and stimuli to be analyzed. Participants and stimuli can also be
grouped as required. They also can be added or removed from
the JSON file in order to modify the analysis and focus on a
subset of the entire corpus. Additionally, every participant or
stimulus can be assigned a list of attributes such as gender and

age for participants, and brightness level for stimuli. This en-
ables the users to apply the statistical tests to more than one
between group factor. To form a baseline for comparisons, the
names of control stimuli can also be specified in PyTrack. The
parameters extracted from these are used to normalize the
parameters extracted from the rest of the stimuli. Parameters
relevant to the hardware used in the experiment such as dis-
play screen dimensions and sampling frequency of the eye
tracker can also be specified here. Essentially, all the pa-
rameters involved with analyzing the experiment data can
be specified in a single file, thereby simplifying and
speeding up the process of analysis. The structure of this
JSON file can be seen in Listing 3. The users need not
write this file from scratch as a template can be
downloaded as part of the sample data.

Visualization

Another set of important features of PyTrack are the visuali-
zation tools it provides. These vary based on the mode

{
"Experiment_name": "Sample_Experiment",
"Path": "path/to/exp/folder",
"Analysis_Params": {

"EyeTracker": {
"Sampling_Freq": 1000,
"Display_width": 1280,
"Display_height": 1024

 � � � }
 � },

"Subjects": {
"Group1": {

"sub_222": {
"Age": 25,
"Eyesight": "Normal"

 � � � � � }
 � � � },

"Group2": {
"sub_333": {

"Age": 22,
"Eyesight": "Corrected"

 � � � � � }
 � � � }
 � },

"Stimuli": {
"Stim_Type_1": [

"stim1_1",
"stim2_1"

 � � �],
"Stim_Type_2": [

"stim2_1",
"stim2_2"

 � � �]
 � }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Listing 3. Sample Experiment JSON file structure. There are two subject
groups – Group 1 and Group 2. Each subject has Age and Eyesight
information associated with them which may be used as additional be-
tween group factors while conducting statistical tests. There are two

stimuli groups – Stim_Type_1 and Stim_Type_2. Although there are
only two groups of subject and stimulus in this example, users may
specify one or more groups

2596 Behav Res (2020) 52:2588–2603

PyTrack is being used in, as mentioned in ‘Framework
Structure’. The interaction in the Experiment Design is via a
simple GUI that allows easy and convenient navigation with
two broad categories—individual subject and aggregate. The
visualization windows are shown in Fig. 3. In the Stand-alone
Design, the visualization is for the individual stimulus.
Function invocations by code can generate the same plots as
in the Experiment Design, with the exception of the aggregat-
ed subject plots.

The individual subject category includes fixation plots,
gaze heat maps and dynamic gaze, and pupil size plots.
The fixation plot, as shown in Fig. 4a, is a gaze plot with
numbered fixation points which enables the user to view
the order in which the subject viewed the stimulus and
what regions they fixated on. Fig. 4b shows the gaze heat
map, which is essentially a smoothed two-dimensional his-
togram of the subject's gaze data. It is a visual representa-
tion of the frequency with which regions of the stimulus
were viewed. The gaze coordinates of the subject, over
time t, are taken and the ‘histogram2d’ function of
NumPy (Oliphant & Millma, 2006) is applied. If the num-
ber of rows and columns of pixels in the original image are
nrows and ncols, the number of histogram bins assigned are
(nrows)/4 and (ncols)/4. This is followed by a Gaussian filter
that smooths the histogram, and a contour plot of the fil-
tered 2D histogram is generated using an appropriate color
map to produce the final heat map. The last type of plot is
the dynamic pupil and gaze plot, which is shown in Fig. 4c.
It is a dynamic (moving) plot of the gaze on the stimulus
along with the corresponding pupil size of the subject at
that time instance. As the navigation is via a GUI, it is
convenient to close a particular plot and generate another

one for the same subject or a different subject .
Furthermore, there is an option to save the plots generated
into the experiment folder which can be accessed at a later
time as needed.

The aggregated subject plot is available if used in the
Experiment Design and shows aggregated heat maps for a
given stimulus. The user has the freedom to select the
subjects that are required for the aggregate analysis and
if desired the plots can be saved along with a text docu-
ment containing the list of subjects included in that plot.
Aggregated heat maps act as a visual representation of the
average time spent by all the subjects in viewing the var-
ious regions of a stimulus. In cases where there are dif-
ferent groups of subjects, this may help provide an insight
into the differences in viewing patterns between said
groups.

Additional features available in the Stand-alone Design
include the generation of microsaccade position and ve-
locity plots and main sequence plots. The main sequence,
in this case, is the plot between the peak velocity and
amplitude of the microsaccades. These can be generated
in the Experiment Design also, but as it is an advanced
feature it requires the user to add an additional line of

Fig. 3. Sample GUI windows in PyTrack visualization. (a) The
individual subject window allows the user to choose a specific subject
and view the various plots of that subject for the various stimuli. (b) The
aggregate or group subject window allows the user to select multiple

subjects simultaneously and view the plots of the selected group for
various stimuli. (c) This page is for the user to specify the plot type –
fixation, gaze heat map, or dynamic pupil size – and the stimulus for
which the plot is desired. There is also an option to save the plots

�Fig. 4. Plots generated by PyTrack visualization. (a) Fixation plot with
the fixations marked with green circles and numbered in order of
occurrence. (b) Gaze heat map illustrating the regions of the stimuli
most viewed by the subject. (c) Snippet of the dynamic pupil size plot
which shows the change in pupil size as the subject views the stimulus.
(d) Microsaccade position-velocity plot for all microsaccades within a
single fixation for a given stimulus. (e) Microsaccade main sequence plot
for all microsaccades within all fixations for a given stimulus

2597Behav Res (2020) 52:2588–2603

2598 Behav Res (2020) 52:2588–2603

2599Behav Res (2020) 52:2588–2603

code. Some samples of the plots generated are shown in
Fig. 4d and Fig. 4e.

Using PyTrack as a parameter extraction tool

PyTrack can also be used just as a parameter extraction
tool instead of an end-to-end solution. The parameters ex-
tracted can then be used to generate custom plots or

Fig. 5. Pupil size plots for each subject group (Group 1 and Group 2)
showing the difference between mean interpolated pupil size for each of
the stimulus conditions (A, B, C, D, E and F). The plot was generated by

Listing 4 using the sample data provided in the NTU_Experiment folder
(https://osf.io/f9mey/files/)

�Listing 4. Sample code segment showing the use of PyTrack as a
parameter extraction tool. In this case, PyTrack is being used to
generate comparative pupil size plots. Lines 15–28: Looping through
all stimuli (in every stimulus condition) for each subject (in all the
subject groups) and accumulating the interpolated pupil size. Lines 30–
32: Finding the mean interpolated pupil size for each stimulus condition
for the different subject groups. Lines 35–44: Plotting the mean
interpolated pupil size data for every stimulus condition for subject
groups 1 and 2

2600 Behav Res (2020) 52:2588–2603

https://osf.io/f9mey/files/

perform custom analyses as desired by the users. Listing 4
contains a code segment showing one possible use of
PyTrack as an extraction tool. The code segment generates
pupil size plots, comparing various stimulus conditions for
each participant or subject group. Lines 15–28 in the code
listing demonstrate how the extracted parameters can be
accessed using Python code. The example parameter
accessed in the listing is InterpPupilSize, which stands
for interpolated pupil size, and demonstrates the generation
of comparative pupil size plots. All parameters can be
accessed in a similar fashion. Lines 35–45 contain the code
to generate the pupil size plots mentioned earlier. This can
be replaced by the users’ code to generate custom plots or
perform their own analyses. The principle behind
accessing the extracted parameters remains the same.
Figure 5 shows the plots generated by this code listing
using the provided sample data.

Comparison

PyTrack offers the same essential functionality present in the
existing toolkits and frameworks discussed in ‘RelatedWork’.
However, there are several features that differentiate it from
existing software: it has the added benefits of being format
agnostic; it is an end-to-end solution with the addition of sta-
tistical analysis capabilities; it is open source; and it is free to
use. The visualization interface is straight-forward and easy to
navigate, and the analysis tools are easy to use. Furthermore, it
can be used in different modes - Experiment and Stand-alone -

and at various levels of abstraction based on the desired flex-
ibility and modification.

A comparison with SMI BeGaze™, Tobii Pro Lab™,
EyeLink Data Viewer™, iMotions™, PyGaze, eyetrackingR,
EMA Toolbox and OGAMA can be seen in Table 2. There are
certain areas in which PyTrack can be improved, as discussed in
‘Conclusions’, but several more in which it proves to be a ben-
eficial tool when compared to similar software.

Conclusions

Considering a trade-off between cost and ease of use, as
outlined in Table 2, PyTrack is a promising option that is
free-for-all. However, we believe that there is scope for in-
cluding more advanced analysis methods, improving the user
interface, and improving parameter detection algorithms with
advances in eye-tracking research.

Analysis methods

The methods provided are variants of the ANOVA and t test,
which are purely statistical methods. There are several machine
learning methods which can aid in further analysis and build
classification models based on the experiment data. Therefore,
it is possible to integrate these methods into the toolkit which
will enable researchers without expertise in machine learning to
train their ownmodels without worrying about the intricacies of
the underlying algorithms and networks.

Table 2. Comparison of eye tracking analysis software

SMI BeGaze Tobii Pro Lab EyeLink Data Viewer iMotions PyGaze OGAMA eyetrackingR EMA
Toolbox

PyTrack

Free to use ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

Format agnostic ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Blink parameters ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓

Fixation parameters ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Saccade parameters ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Microsaccade parameters ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Different AOI shapes ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓

Multiple AOIs ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗

Dynamic AOIs ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗

Fixation plot ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓

Gaze heat map ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

Dynamic gaze and
pupil size plot

✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓

Analysis GUI ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗

Visualization GUI ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓

End-to-end
experiment analysis

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

2601Behav Res (2020) 52:2588–2603

Parameter extraction

PyTrack extracts a total of 21 parameters related to the various
eye movement events. These parameters have been selected
after conducting a thorough survey of the most widely used
parameters in the eye-tracking community. However, it is
possible to add more parameters to the current list based on
the requirements of the users.

Data format support

Currently PyTrack offers support for EyeLink, SMI and Tobii
devices as they are the most popular and widely used. However,
there is scope for adding support for other eye trackers which are
not commonly used or are relatively new in the industry.

AOI

Currently, in order to supply multiple AOIs for a given stim-
ulus, the analyze function of PyTrack has to be run multiple
times. Although this is a relatively quick process, we plan on
including the support for multiple and dynamic AOIs in the
next release, in order to simplify the process.

User Interface

PyTrack's visualization GUI is a convenient and easy to use
interface but the analysis relies on basic coding. With that in
mind, it is possible to convert the analysis component to a GUI
also, thereby improving the user experience.

We believe that PyTrack can be integrated with ease
into the analysis stage of an eye-tracking experiment to
simplify the analysis process by providing a fully auto-
mated end-to-end pipeline that performs the necessary
tasks of parameter extraction, statistical analysis and visu-
alization. At the same time, PyTrack is flexible enough to
allow users to access the internal workings and modify
them according to their needs. As such, it is a solution
that provides the dual functionality of (i) acting as a black
box, thus removing complexities associated with compu-
tation; and (ii) acting as a white box, allowing the users to
modify the pipeline at any stage to suit their needs.

The code, along with installation instructions and docu-
mentation, for PyTrack can be found at https://github.com/
titoghose/PyTrack. Sample data has been provided to test the
toolkit, which can be downloaded from https://osf.io/f9mey/
files/. The SMI and Tobii files provided in the sample data
have been obtained from the EYE-EEG toolbox (Dimigen,
Sommer, Hohlfeld, Jacobs, & Kliegl, 2011).

Author note We would like to thank Dr Dominique
Makowski (School of Social Sciences, NTU, Singapore) for
his helpful discussions and advice in developing PyTrack. We

would also like to thank Nadine Garland for proofreading the
manuscript. The support and assistance of Mr. Shivaprasad G
(Dept. CSE, Manipal Institute of Technology), Dr. Jabez
Christopher (Dept. of CSIS, BITS, Pilani - Hyderabad
Campus), and Dr. Rishi Kumar (Dept. of Economics and
Finance, BITS, Pilani - Hyderabad Campus) is greatly
appreciated.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes weremade. The images or other third party material in this article
are included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Beatty, J. (1982). Task-evoked pupillary responses, processing load, and
the structure of processing resources. Psychological Bulletin, 91(2),
276–292. https://doi.org/10.1037/0033-2909.91.2.276

Bradley,M.M.,Miccoli, L., Escrig,M.A.,&Lang, P. J. (2008). The pupil as
a measure of emotional arousal and autonomic activation.
Psychophysiology. https://doi.org/10.1111/j.1469-8986.2008.00654.x

Chan, R. C. K., & Chen, E. Y. H. (2004). Blink rate does matter: A study
of blink rate, sustained attention, and neurological signs in schizo-
phrenia. The Journal of Nervous andMental Disease https://doi.org/
10.1097/01.nmd.0000144697.48042.eb

Cook, A. E., Hacker, D. J., Webb, A. K., Osher, D., Kristjansson, S. D.,
Woltz, D. J., & Kircher, J. C. (2012). Lyin’ eyes: Ocular-motor mea-
sures of reading reveal deception. Journal of Experimental Psychology:
Applied, 18(3), 301–313. https://doi.org/10.1037/a0028307

Dalmaijer, E. S., Mathôt, S., & Van der Stigchel, S. (2014). PyGaze: an
open-source, cross-platform toolbox for minimal-effort program-
ming of eyetracking experiments. Behavior Research Methods
https://doi.org/10.3758/s13428-013-0422-2

Daneman, M., & Reingold, E. (1993). What eye fixations tell us about
phonological recoding during reading. Canadian Journal of
Experimental Psychology = Revue Canadienne de Psychologie
Expérimentale. https://doi.org/10.1037/h0078818

Dimigen, O., Sommer, W., Hohlfeld, A., Jacobs, A. M., & Kliegl, R.
(2011). Coregistration of eye movements and EEG in natural read-
ing: Analyses and review. Journal of Experimental Psychology:
General. https://doi.org/10.1037/a0023885

Dink, J. W., & Ferguson, B. (2015). eyetrackingR: An R Library for Eye-
trackingData Analysis. Retrieved from https://www.eyetracking-r.com/

Engbert, R, & Mergenthaler, K. (2006). Microsaccades are triggered by
low retinal image slip. Proceedings of the National Academy of
Sciences, 103(18), 7192–7197. https://doi.org/10.1073/pnas.
0509557103

Engbert, Ralf, & Kliegl, R. (2003). Microsaccades uncover the orienta-
tion of covert attention. Vision Research, 43(9), 1035–1045. https://
doi.org/10.1016/S0042-6989(03)00084-1

Engbert, Ralf, Mergenthaler, K., Sinn, P., & Pikovsky, A. (2011). An
integrated model of fixational eye movements and microsaccades.

2602 Behav Res (2020) 52:2588–2603

https://github.com/titoghose/PyTrack
https://github.com/titoghose/PyTrack
https://osf.io/f9mey/files/
https://osf.io/f9mey/files/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1037/0033-2909.91.2.276
https://doi.org/10.1111/j.1469-8986.2008.00654.x
https://doi.org/10.1097/01.nmd.0000144697.48042.eb
https://doi.org/10.1097/01.nmd.0000144697.48042.eb
https://doi.org/10.1037/a0028307
https://doi.org/10.3758/s13428-013-0422-2
https://doi.org/10.1037/h0078818
https://doi.org/10.1037/a0023885
https://www.eyetracking-r.com/
https://doi.org/10.1073/pnas.0509557103
https://doi.org/10.1073/pnas.0509557103
https://doi.org/10.1016/S0042-6989(03)00084-1
https://doi.org/10.1016/S0042-6989(03)00084-1

Proceedings of the National Academy of Sciences of the United
States of America https://doi.org/10.1073/pnas.1102730108

Engbert, Ralf, Sinn, P., Mergenthaler, K., & Trukenbrod, H. (2015).
Microsaccade Toolbox for R. Retrieved from http://read.psych.uni-
potsdam.de/attachments/article/140/MS_Toolbox_R.zip

Gibaldi, A., & Sabatini, S. P. (n.d.). The Saccade Main Sequence Revised: a
Fast and Repeatable Tool for Oculomotor Analysis (under review).

Granka, L. A., Joachims, T., & Gay, G. (2004). Eye-tracking analysis of
user behavior in WWW search. https://doi.org/10.1145/1008992.
1009079

Hershman, R., Henik, A., & Cohen, N. (2018). A novel blink detection
method based on pupillometry noise. Behavior Research Methods,
50(1), 107–114. https://doi.org/10.3758/s13428-017-1008-1

iMotions. (2019). iMotions. Retrieved from https://imotions.com
Just, Marcel A., & Carpenter, P. A. (1980). A theory of reading: From eye

fixations to comprehension. Psychological Review https://doi.org/
10.1037/0033-295X.87.4.329

Just, Marcel Adam, & Carpenter, P. A. (1976). Eye Fixations and
Cognitive. Cognitive Psychology, 8(4), 441–480.

Kang, O. E., Huffer, K. E., & Wheatley, T. P. (2014). Pupil dilation
dynamics track attention to high-level information. PLoS One,
9(8). https://doi.org/10.1371/journal.pone.0102463

Kircher, J. C. (2018). Ocular-Motor Deception Test. In Detecting
Concealed Information and Deception: Recent Developments.
https://doi.org/10.1016/B978-0-12-812729-2.00009-4

Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-
source, graphical experiment builder for the social sciences. Behavior
Research Methods https://doi.org/10.3758/s13428-011-0168-7

Oliphant, T., & Millma, J. K. (2006). A guide to NumPy. In Trelgol
Publishing. https://doi.org/10.1109/MCSE.2007.58

Oliphant, T. E. (2007). SciPy: Open source scientific tools for Python.
Computing in Science & Engineering https://doi.org/10.1109/
MCSE.2007.58

Pedrotti, M., Mirzaei, M. A., Tedesco, A., Chardonnet, J. R., Mérienne, F.,
Benedetto, S., & Baccino, T. (2014). Automatic Stress Classification
With Pupil Diameter Analysis. International Journal of Human
Computer Interaction https://doi.org/10.1080/10447318.2013.848320

Ren, P., Barreto, A., Huang, J., Gao, Y., Ortega, F. R., & Adjouadi, M.
(2014). Off-line and on-line stress detection through processing of

the pupil diameter signal. Annals of Biomedical Engineering https://
doi.org/10.1007/s10439-013-0880-9

SR Research. (2018). EyeLink Data Viewer. SR Research Ltd.
Salvucci, D. D., & Goldberg, J. H. (2000). Identifying fixations and

saccades in eye-tracking protocols. Proceedings of the Symposium
on Eye Tracking Research & Applications - ETRA ’00, 71–78.
https://doi.org/10.1145/355017.355028

Seabold, S., & Perktold, J. (2010). Statsmodels: econometric and statis-
tical modeling with Python. 9th Python in Science Conference.

Sensomotoric Instruments, G. (2016). SMI BeGaze. Retrieved from
http://www.smivision.com/en/gaze-and-eye-tracking-systems/
support/software-download.html

Stern, J. A., Boyer, D., & Schroeder, D. (1994). Blink rate: A possible
measure of fatigue. Human Factors https://doi.org/10.1177/
001872089403600209

Tobii Technology. (2019). Tobii Pro Lab. Retrieved from https://www.
tobiipro.com/product-listing/tobii-pro-lab

Vallat, R. (2018). Pingouin: statistics in Python. Journal of Open Source
Software, 3(31), 1026. https://doi.org/10.21105/joss.01026

Voßkühler, A., Nordmeier, V., Kuchinke, L., & Jacobs, A. M. (2008).
OGAMA (Open Gaze andMouse Analyzer): Open-source software de-
signed to analyze eye andmousemovements in slideshow study designs.
Behavior Research Methods. https://doi.org/10.3758/BRM.40.4.1150

Vrij, A., Oliveira, J., Hammond, A., & Ehrlichman, H. (2015). Saccadic
eyemovement rate as a cue to deceit. Journal of Applied Research in
Memory and Cognition, 4(1), 15–19. https://doi.org/10.1016/j.
jarmac.2014.07.005

Webb, A. K., Honts, C. R., Kircher, J. C., Bernhardt, P., & Cook, A. E.
(2009). Effectiveness of pupil diameter in a probable-lie comparison
question test for deception. Legal and Criminological Psychology,
14(2), 279–292. https://doi.org/10.1348/135532508X398602

Wedel, M., & Pieters, R. (2008). Eye Tracking for Visual Marketing.
Foundations and Trends® in Marketing. https://doi.org/10.1561/
1700000011

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

2603Behav Res (2020) 52:2588–2603

https://doi.org/10.1073/pnas.1102730108
http://read.psych.uni-potsdam.de/attachments/article/140/MS_Toolbox_R.zip
http://read.psych.uni-potsdam.de/attachments/article/140/MS_Toolbox_R.zip
https://doi.org/10.1145/1008992.1009079
https://doi.org/10.1145/1008992.1009079
https://doi.org/10.3758/s13428-017-1008-1
https://imotions.com
https://doi.org/10.1037/0033-295X.87.4.329
https://doi.org/10.1037/0033-295X.87.4.329
https://doi.org/10.1371/journal.pone.0102463
https://doi.org/10.1016/B978-0-12-812729-2.00009-4
https://doi.org/10.3758/s13428-011-0168-7
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1080/10447318.2013.848320
https://doi.org/10.1007/s10439-013-0880-9
https://doi.org/10.1007/s10439-013-0880-9
https://doi.org/10.1145/355017.355028
http://www.smivision.com/en/gaze-and-eye-tracking-systems/support/software-download.html
http://www.smivision.com/en/gaze-and-eye-tracking-systems/support/software-download.html
https://doi.org/10.1177/001872089403600209
https://doi.org/10.1177/001872089403600209
https://www.tobiipro.com/product-listing/tobii-pro-lab
https://www.tobiipro.com/product-listing/tobii-pro-lab
https://doi.org/10.21105/joss.01026
https://doi.org/10.3758/BRM.40.4.1150
https://doi.org/10.1016/j.jarmac.2014.07.005
https://doi.org/10.1016/j.jarmac.2014.07.005
https://doi.org/10.1348/135532508X398602
https://doi.org/10.1561/1700000011
https://doi.org/10.1561/1700000011

	PyTrack: An end-to-end analysis toolkit for eye tracking
	Abstract
	Introduction
	Related work
	Framework structure
	Features of PyTrack
	Format agnostic and quick data access
	Parameter extraction
	Pupil size
	Blinks
	Fixations
	Saccades and microsasccades
	Reading behavior

	Area of interest (AOI)
	Statistical analysis
	Ease of modifying analysis factors
	Visualization
	Using PyTrack as a parameter extraction tool
	Comparison

	Conclusions
	Analysis methods
	Parameter extraction
	Data format support
	AOI
	User Interface

	References

