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Abstract

Background

Episodic memory impairments have been described as initial clinical findings in the Alzheimer’s

Disease (AD) spectrum, which could be associated with the presence of early hippocampal

dysfunction. However, correlates between performances in neuropsychological tests and hip-

pocampal volumes in AD were inconclusive in the literature. Divergent methods to assess epi-

sodic memory have been depicted as a major source of heterogeneity across studies.

Methods

We examined correlates among performances in three different delayed-recall tasks (Rey-

Auditory Verbal-Learning Test–RAVLT, Logical Memory and Visual Reproduction subtests

from the Wechsler Memory Scale) and fully-automated volumetric measurements of the hip-

pocampus (estimated using Neuroquant®) of 83 older subjects (47 controls, 27 Mild Cogni-

tive Impairment individuals and 9 participants with Dementia due to AD).

Results

Inter-method correlations of episodic memory performances were at most moderate. Scores

in the RAVLT predicted up to 48% of variance in HOC (Hippocampal Occupancy Score)

among subjects in the AD spectrum.

Discussion

Tests using different stimuli (verbal or visual) and presenting distinct designs (word list,

story or figure learning) may assess divergent aspects in episodic memory, with heteroge-

neous anatomical correlates.
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Conclusions

Different episodic memory tests might not assess the same construct and should not be

used interchangeably. Scores in RAVLT may correlate with the presence of neurodegenera-

tion in AD.

Introduction

Episodic memory refers to human’s ability to consciously recollect situations and events

through the effective acquisition, retention and recall of verbal and visuospatial data[1]. From

a neural perspective, a rich body of evidence concerning the pivotal role of the hippocampus

for the space-time organization and storage of information has been provided by studies with

geriatric population, especially those focused on the Alzheimer’s Disease (AD) spectrum[2]. In

those cases, it has become accepted that hippocampal dysfunction occurs during the course of

the disorder, following many years of asymptomatic parenchymal accumulation of β-amyloid

peptides and tau protein[3]. With the escalation of this neuropathological process, the clinical

stage of the disorder initiates, typically manifesting as early episodic memory impairments

[3,4].

Regarding the current knowledge about the pathophysiology of AD, episodic memory test-

ing and structural neuroimaging remain relevant for the assessment of older subjects with sus-

pected cognitive impairment[5]. However, findings on the correlates between cognitive and

AD-related anatomical features are largely discordant, which might be attributed to the com-

plex nature of episodic memory itself, as well as to inconsistencies across methods for neuro-

psychological assessment[4] and brain volume estimation[6,7]. For instance, episodic memory

tasks may apply stimuli of different materials (verbal or visuospatial, for example) or they may

assess distinct components within this cognitive ability (acquisition, retention and delayed-

recall)[4]. Moreover, measurement models range from evaluating memory capacity for seman-

tically uncorrelated items (verbal item-memory tasks, such as word lists[8]) to investigating

recollection of sequences of logically-linked ideas (for example, story learning)[9]. Thus, dis-

crepant episodic memory performances across studies could be interpreted as effects of sam-

ples with different levels of cognitive impairment or as influence of disproportional task-

specific demands[10,11].

Likewise, an array of strategies has been described in the literature for the evaluation of

medial temporal cortex atrophy in AD, such as visual rating scales and computer-based meth-

ods, namely manual, semi-automated and automated volumetric measurements[12]. Translat-

ing brain volumetrics into clinical practice has been hampered by many factors, such as the

high cost of the instruments, the time-consuming processing operations, the lack of harmo-

nized approaches across laboratories and the paucity of normative data for grey and white

matter volumes among older population [11,13,14]. As an effort to overcome those limitations,

NeuroQuant1, an FDA approved software for automatic labeling, visualization and volumet-

ric quantification of brain structures, was commercially released by CorTechs Laboratories in

2007. This method has been cross-validated with manual segmentation[15] and with other

well-known brain morphometry procedures in AD samples (FreeSurfer, for example)[16]. In

addition, neuroimaging parameters in NeuroQuant1 for each subject have been compared to

an extensive and continuously growing cloud-based normative database[17].

Analyzing correlations across different episodic memory tasks would allow inferring about

whether those instruments could be employed interchangeably. Specifically, it would clarify
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about the construct validity of those neuropsychological tests. In addition, according to stud-

ies, hippocampal volume appears to be the strongest individual predictor of short-term cogni-

tive decline in older population, compared to other AD biomarkers[18]. Estimating

associations between scores in memory tests and brain volumes could indicate which cognitive

index best reflects neurodegeneration in subjects within the AD spectrum. Therefore, the pres-

ent study aimed at investigating: (1) the convergent validity of different measures of episodic

memory; and (2) the clinical-anatomical correlation between memory performances and volu-

metric indices in normal older controls and individuals in the AD continuum.

Methods

Participants

The present study is a branch of a larger longitudinal study on cognitive impairment in the

Brazilian population conducted in the D’Or Institute of Research and Education and the Fed-

eral University of Rio de Janeiro since 2011. Eligible participants were non-institutionalized

older adults (>55 years old), with 7 or more years of schooling, native Brazilian Portuguese

speakers, presenting memory complaints. Exclusion criteria were as follows: current major

depressive disorder (according to the 5th edition of the Diagnostic and Statistical Manual of

Mental Disorders—DSM-5)[5]; current delirium[5]; history of severe psychiatric disorders

(e.g., schizophrenia, intellectual disability, bipolar disorder)[5]; history of substance-related

disorders[5]; severe visual or auditory impairments that precluded neuropsychological testing;

refusal to complete the neuropsychological and neuroimaging protocol; and contraindications

to brain MRI (e.g., ferromagnetic intracranial aneurysm clips or cardiac pacemaker).

Procedures

Initially, participants were submitted to a clinical interview by a physician, followed by physi-

cal examination, to verify the eligibility for the study. Subsequently, a neuropsychologist

administered the Brazilian versions of the following instruments: the Mini-Mental State Exam-

ination[19], the Rey-Auditory Verbal-Learning test (RAVLT)[20], the Logical Memory and

the Visual Reproduction subtests of the Wechsler Memory Scale[21]. Verbal item-memory

evaluation encompassed scores in RAVLT A5, which correspond to the number of acquired

information in the last trial of the learning phase of the test, and in RAVLT A7, which refer to

the 30-minute delayed recall trial[20]. Moreover, raw values of recollected items in Logical

Memory and Visual Reproduction tests were used in this analysis.

Behavioral and functional assessment questionnaires comprised: the Neuropsychiatric

Inventory[22], the Geriatric Depression Scale[23] and Lawton-Brody Instrumental Activities

of Daily Living Scale[24].

Participants underwent an image acquisition protocol in a 3T magnetic resonance scanner

(Achieva, Philips Medical Systems) including an isotropic high-resolution 3D T1-weighted

sequence (TR/TE 13/ 1.4 ms; matrix 256 x 256 mm; FOV 240 mm; slice thickness 1 mm; 140

slices). Trained radiologist and medical physicists blinded to all evaluations analyzed the

images for potential exclusion criteria. Moreover, visual assessment of images for potential

hippocampal atrophy was conducted[13].

Raw T1-weighted DICOM sequences were processed by the Neuroquant1 software–ver-

sion 2 package. The algorithm used in this procedure has been previously detailed[15] and it

encompasses the following stages: (i) quality assessment of structural MRI data for artifacts;

(ii) gradient and B1 field corrections; and (iii) automated segmentation of brain regions-of-

interest (ROIs), based on the neuroanatomical label attributed to each voxel within the tar-

geted structure by a probabilistic atlas. Output of this method includes volumetric data (in
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cubic centimeters and percentage of intracranial volume—ICV) and images with each segmen-

tal structure marked in a specific color. ICV-corrected volumes of the total cortical grey matter

(CGM), hippocampi and inferior lateral ventricles (ILV) from each hemisphere were

extracted. In addition, the Hippocampal Occupancy Score (HOC) was automatically calcu-

lated, using the following equation: (left hippocampal volume / left hippocampal volume + left

inferior lateral ventricle volume) + (right hippocampal volume / right hippocampal volume +

right inferior lateral ventricle volume)[25].

Diagnoses

Participants were classified as normal controls (NC), Mild Cognitive Impairment due to AD

(MCI) and dementia due to AD (DAD) using the 2011 National Institute on Aging-Alzhei-

mer’s Association criteria[26,27]. For this purpose, analyses of clinical and neuropsychological

data, as well as a visual inspection of MRI, were conducted and integrated by the whole multi-

disciplinary team. Evidence of AD pathology was determined by the presence of hippocampal

atrophy using MTA visual assessment[13].

Ethical standards

All the participants provided a written informed consent prior to the inclusion in the study.

Capacity to provide consent to participation in the research was determined during the initial

interview and the following principles were adopted: (i) persons with cognitive impairment or

dementia were presumed to have the capacity to consent unless established otherwise; (ii)

regardless of their cognitive status, the participants’ preferences regarding their inclusion on

the research were guaranteed; and (iii) since no structured instrument for consent assessment

is available for older Brazilian population, a qualitative assessment was conducted and deci-

sions to include or not the volunteer were based on the clinician’s impression about the sub-

jects’ understanding and reasoning capacities[28,29].

The project was approved by the Research Ethics Committee of the D’Or Institute under

the protocol no. 226/11. The principles of the Resolution n. 510/2016 of the Brazil’s National

Health Council, which regulates research involving human beings in the country were fol-

lowed. In addition, the authors assert that all procedures contributing to this work comply

with the ethical standards of the Helsinki Declaration of 1975, as revised in 2008.

Statistical analysis

Data was checked for parametric assumptions based on visual inspection of histograms and

values of skewness and kurtosis <1.96[30]. Mean differences in continuous data were com-

pared across diagnostic groups using one-way analysis of variance (ANOVA), for normally

distributed variable, or Kruskal-Wallis test, for the other cases. Welch’s test was applied for

normally distributed data that violated the assumption of homogeneity of variance. Dunnett’s

T3 post-hoc test was used to allow adequate pairwise comparisons, considering that groups

showed unequal and small sample sizes [31,32]. Alternatively, when significant group differ-

ences were detected in Kruskal-Wallis test, serial Mann-Whitney tests were conducted to

detect pairwise distinct medians. Distribution of sex among groups were analyzed using Pear-

son’s Chi Square. To assess convergent validity within episodic memory domain, partial corre-

lations among the three memory tests were tested, adjusting for age and schooling. In

addition, correlations between memory tasks and brain volumes were investigated. Analyses

were conducted for the whole sample and for subjects with MCI and DAD. Value of α was

adjusted for multiple comparisons and was set at p< 0.005 for all correlations. Due to unequal

sample sizes across groups, correlation analyses were conducted using the whole sample and a
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combination of MCI+DAD participants. In addition, minimum correlation coefficient was

corrected for the sample sizes, for a power of 80%, as follows: for the whole sample, lowest size-

able correlation was established as r = 0.4 to 0.5; whereas for analysis restricted to the MCI

+DAD, moderate correlations corresponded to 0.5<r<0.7[28]. Rule-of-thumb for interpret-

ing size of correlation coefficients were adopted, as depicted in previous studies[33]. Correla-

tions between RAVLT and HOC were plotted. For all calculations, the IBM Statistical Package

for the Social Sciences v. 25 (IBM Corp. IBM SPSS Statistics for Windows, Version 25.0.

Armonk, NY: IBM Corp.) was used.

Results

Descriptive analyses

A total of 83 subjects were included in the study and were classified into three groups: NC

(n = 47), MCI (n = 27) and DAD (n = 9). Participants in the NC group were significantly

younger and presented more years of schooling than MCI subjects (p<0.001 and p = 0.001,

respectively). No significant differences regarding sex distribution across diagnostic categories

was found (p = 0.33). Performances in the MMSE and in all memory tasks distinguished the

three diagnostic groups (p<0.001 for all comparisons). Adjusting for intracranial volumes,

bilateral hippocampal and ILV volumes, as well as HOC and right CGM, differentiated the

three groups (p<0.001 for all analyses), whereas left CGM volumes were only significant when

comparing controls with MCI and DAD (p<0.001). Table 1 depicts those results.

Convergent validity of memory tests

For the whole sample, after controlling for age and schooling, scores in RAVLT A5 strongly

correlated with RAVLT A7 (r = 0.80, p<0.001) and were moderately associated with perfor-

mances in Logical Memory (r = 0.45, p<0.001) and Visual Reproduction test (r = 0.47,

p<0.001). Similarly, performance in RAVLT A7 was moderately related to Logical Memory

(r = 0.54, p<0.001) and Visual Reproduction tasks (r = 0.56, p<0.001), whereas relationships

between scores in Logical Memory and Visual Reproduction tests were also moderate

(r = 0.44, p<0.001). For MCI+DAD groups, strong correlation was found between RAVLT A5

and A7 (r = 0.79, p<0.001), while a moderate association was detected between Visual Mem-

ory and RAVLT A7 (r = 0.53, p = 0.001). Those data are displayed on Table 2.

Clinical-anatomical correlates of memory tests

For the whole sample, significant moderate positive correlations were found between bilateral

hippocampal volumes and HOC, and RAVLT indices (A5 and A7). Left ILV moderately and

negatively correlated with RAVLT and Visual Reproduction tests, whereas right ILV showed

negative moderate associations with RAVLT A7 and Visual Reproduction. Right CGM related

with scores in Visual Reproduction task. As for MCI+DAD group, both RAVLT A5 and A7

were moderately associated with bilateral hippocampal volumes and HOC. Right hippocampal

volume was also moderately correlated with performance in Visual Reproduction. Those data

are summarized in Table 2.

Fig 1 illustrates partial correlations between RAVLT A5 and A7 and HOC for the whole

sample (A and B) and MCI+DAD (C and D). Scores in RAVLT A5 and A7 predicted, respec-

tively, 35–37% and 39–48% of variance in HOC volumes.
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Discussion

Performances in episodic memory tests using stimuli of different materials (verbal or visual)

and displaying divergent designs (delayed recall for word lists, stories or figures) were, at most,

moderately correlated in our sample, comprising controls and subjects with MCI and DAD.

Likewise, scores in those tasks were also fairly associated with hippocampal and other related

brain volumetric indices. Of all those measures, the RAVLT (both A5 and A7) showed the best

criterion validity, exhibiting significant, yet also moderate, relationships with HOC and hippo-

campal volumes in subjects within the clinical spectrum of AD. RAVLT A7 predicted 39–48%

of variance in HOC volumes in our sample. In contrast, delayed-recall for items of stories

(assessed by Wechsler Memory Scale’s Logical Memory subtest) did not correlate with hippo-

campal volume measurements. Figure-learning abilities (Wechsler Memory Scale’s Visual

Reproduction subtest) moderately correlated with right hippocampal volumes in MCI+AD

subjects.

Given the heterogeneity of tasks designed to investigate episodic memory deficits, deter-

mining whether they could be applied interchangeably for the assessment of patients with sus-

pected AD-related disorders, or rather, if they tap different aspects of this cognitive domain

would opportunely provide guidance when defining neuropsychological protocols in clinical

and research practices. Additionally, appraising the impact of distinct approaches over out-

comes could be valuable for the interpretation of contrasting results across studies. In this

regard, ours findings are in line with a meta-analysis addressing cognitive impairments in the

AD spectrum, which indicated that discrepant effect-sizes in episodic memory performances

could be explained by heterogeneities regarding neuropsychological instruments adopted in

the studies[34]. Hence, considering that medial temporal atrophy has been depicted as an

early biomarker of AD pathology according to a large multicenter longitudinal research[35], it

Table 1. Sociodemographic characteristics, mean scores in cognitive assessment and brain volumes, corrected for intracranial volumes of the sample.

Variables All NC MCI DAD p-value Contrasts

n 83 47 27 9 - -

Age (years), mean (SD) 70.07 (7.08) 67.36 (6.36) 72.85 (4.94) 75.88 (8.62) < .001 NC6¼MCI

Schooling (years), mean (SD) 14.57 (2.59) 15.61 (1.54) 12.85 (2.82) 14.33 (3.60) .001� NC6¼MCI

Sex (% female) 66.3% 72.3% 55.6% 66.7% .33 -

MMSE, mean (SD) 26.71 (2.60) 27.97 (1.51) 26.07 (1.87) 22.00 (3.04) < .001�� NC6¼MCI; NC6¼DAD; MCI6¼DAD

RAVLT A5, mean (SD) 10.54 (2.86) 12.19 (1.72) 9.11 (2.53) 6.22 (1.85) < .001 NC6¼MCI; NC6¼DAD; MCI6¼DAD

RAVLT A7, mean (SD) 7.68 (3.99) 10.02 (2.42) 5.46 (3.57) 2.11 (1.96) < .001 NC6¼MCI; NC6¼DAD; MCI6¼DAD

Logical Memory, mean (SD) 17.82 (9.63) 22.86 (6.88) 13.92 (8.79) 3.33 (2.29) < .001� NC6¼MCI; NC6¼DAD; MCI6¼DAD

Visual reproduction, mean (SD) 35.22 (25.67) 47.58 (22.64) 24.57 (20.09) 2.77 (4.17) < .001� NC6¼MCI; NC6¼DAD; MCI6¼DAD

Left CGM (%ICV), mean (SD) 13.57 (1.04) 13.92 (1.08) 13.30 (0.67) 12.54 (0.84) < .001 NC6¼MCI; NC6¼DAD

Right CGM (%ICV), mean (SD) 13.66 (1.08) 14.08 (1.04) 13.39 (0.66) 12.31 (1.00) < .001 NC6¼MCI; NC6¼DAD; MCI6¼DAD

Left Hippocampus (%ICV), mean (SD) 0.21 (0.03) 0.46 (0.06) 0.41 (0.05) 0.33 (0.06) < .001 NC6¼MCI; NC6¼DAD; MCI6¼DAD

Right Hippocampus (%ICV), mean (SD) 0.22 (0.04) 0.23 (0.03) 0.21 (0.02) 0.15 (0.02) < .001 NC6¼MCI; NC6¼DAD; MCI6¼DAD

Left ILV (%ICV), mean (SD) 0.08 (0.04) 0.06 (0.02) 0.08 (0.02) 0.16 (0.09) < .001� NC6¼MCI; NC6¼DAD; MCI6¼DAD

Right ILV (%ICV), mean (SD) 0.08 (0.04) 0.06 (0.02) 0.08 (0.03) 0.16 (0.02) < .001� NC6¼MCI; NC6¼DAD; MCI6¼DAD

HOC, mean (SD) 0.72 (0.12) 0.78 (0.08) 0.69 (0.09) 0.51 (0.09) < .001 NC6¼MCI; NC6¼DAD; MCI6¼DAD

�Welch’s ANOVA

��Kruskal-Wallis test; n = sample size; SD = Standard Deviation; MMSE = Mini-Mental State Examination; NC = Normal controls; MCI = Mild Cognitive Impairment;

DAD = Dementia due to Alzheimer’s Disease; CGM = Cortical Grey Matter; ILV = Inferior Lateral Ventricle; RAVLT = Rey-Auditory Verbal Learning Test;

ICV = Intracranial volume; HOC = Hippocampal Occupancy Score.

https://doi.org/10.1371/journal.pone.0223731.t001
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could be speculated that variations on methods to assess episodic memory may have accounted

to some extent for inconclusive clinical-anatomical relationships across studies.

Some other inferences regarding the definition and the neural correlates of the episodic

memory construct could be drawn from our results. The lack of robust associations among

cognitive tests in our study might suggest that, instead of a unitary entity, episodic memory

might represent a broad overarching functional system, involving a set of distinct and loosely

correlated factors. Although the number and the nature of those components remain undeter-

mined, task- and material-specific double-dissociation frameworks have been proposed in the

literature, including: verbal versus visuospatial memory[36], temporal versus spatial memory

[37], recent versus remote autobiographical memory[38] and memory for content (“item

memory”) versus memory for context (“source memory”)[39], among others. Those paradigms

may recruit different brain circuits, such as connections of the medial temporal cortices, but

also widely distributed tracts throughout the frontal, parietal and occipital lobes[36,37,39,40].

Consistently, studies assessing neurodegenerative disorders with divergent patterns of brain

changes (AD versus Frontotemporal Lobar Degeneration and AD versus Parkinson’s Disease)

have yielded discrepant amnestic profiles[10,41].

Table 2. Partial correlations among scores in cognitive tests and brain volumes (corrected for intracranial volumes), controlling for age and schooling.

RAVLT A5 RAVLT A7 Logical Memory Visual Reproduction

Whole sample
Cognitive tests:
RAVLT A5 -

RAVLT A7 .80� -

Logical Memory .45� .54� -

Visual Reproduction .52� .56� .44� -

Brain volumes:
Left CGM .29 .28 .25 .34

Right CGM .32 .32 .29 .41�

Left Hippocampus .41� .48� .33 .29

Right Hippocampus .41� .46� .34 .32

Left ILV -.41� -.45� -.27 -.43�

Right ILV -.36 -.46� -.28 -.43�

HOC .51� .59� .38 .40

MCI + DAD
Cognitive tests:
RAVLT A5 - -

RAVLT A7 .79� -

Logical Memory .35 .49 -

Visual Reproduction .42 .53� .38 -

Brain volumes:
Left CGM .16 .15 .23 .14

Right CGM .30 .26 .28 .22

Left Hippocampus .54� .54� .46 .32

Right Hippocampus .57� .59� .48 .51�

Left ILV -.39 -.32 -.25 -.36

Right ILV -.38 -.40 -.28 -.39

HOC .59� .59� .37 .37

�p<0.005; CGM = Cortical Grey Matter; ILV = Inferior Lateral Ventricle; RAVLT = Rey-Auditory Verbal Learning Test; HOC = Hippocampal Occupancy Score.

https://doi.org/10.1371/journal.pone.0223731.t002
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From this perspective, it could be accepted that differential demands regarding other cogni-

tive abilities may also influence performances in memory tasks. Encoding and retrieval strate-

gies applied during tests might differ according to the presence of neurocognitive disorders or

to the properties of the test itself. For instance, memory for paragraph-length data (stories), as

evaluated in Logical Memory test, requires contextual comprehension and semantic organiza-

tion of the material[10]. In those cases, linguistic skills, semantic memory and executive func-

tion may favor associative binding of information. Appropriately, increased activation of brain

areas related to working memory, such as the cingulate and the left inferior and middle frontal

gyri, was detected during recollection of semantically-associated words in healthy older sub-

jects[42]. On the other hand, encoding unrelated items from a word-list, as in the RAVLT,

usually imposes more difficulty for engaging learning strategies. Hence, delayed-recall of items

in word-lists has been depicted as highly dependent on the hippocampus[43], although some

encoding processes have been described in the literature during this task, comprising mental

imagery-creation or semantic link-inducing (for example, creating a narrative out of the

words) [44,45], In addition, learning non-verbal material (as in Visual Reproduction test, for

example) may also benefit from verbally recoding the stimuli[46].

Accordingly, data from a meta-analysis suggested that delayed-recall on word-lists may

show higher accuracy for the diagnoses of MCI and DAD than impairments in story-learning

Fig 1. Partial correlations between RAVLT and HOC for the whole sample (A and B) and MCI+DAD (C and D).

https://doi.org/10.1371/journal.pone.0223731.g001
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tests[4]. It could be hypothesized whether higher demands of hippocampal-dependent pro-

cesses in tasks assessing recollection of randomly unrelated set of items, as in word-lists, could

account for this finding in AD subjects[47]. In contrast, recalling structured information in a

story could be facilitated by relatively spared executive and language-related networks during

the initial stages of the disorder. Furthermore, the relationship between scores in Visual Repro-

duction and the right hippocampal volumes may evoke a long-existing theory of left-right dis-

sociation of memory systems. This disputed hypothesis implies that verbal information may

depend on the left hippocampus, whereas visuospatial data may be stored within the structure

in the right hemisphere[48,49].

Some limitations of the present study ought to be acknowledged. For example, since Neuro-

quant1 does not provide segmentation of prefrontal cortex, relationships among memory

indices and areas associated with fronto-executive functions could not be investigated[15].

Secondly, analyses were not controlled for medication use (e.g., antidepressants, antipsychotics

and anticonvulsants), which could have negatively influenced cognitive performances. In addi-

tion, language and executive function were not analyzed in this study and effects of those abili-

ties on episodic memory were merely inferential and should be considered with caution[50].

Moreover, the small sample size did not allow testing all the different stages of episodic mem-

ory within each task (acquisition and retention) without compromising the statistical power.

Conclusions

In conclusion, we state that different tests assessing episodic memory are not robustly corre-

lated and should not be used interchangeably. Furthermore, performances in the RAVLT A7

significantly predicted up to 48% of the variance of the HOC volume in controls and individu-

als within the AD spectrum, whereas no other memory test showed similar associations with

anatomical variables. Determining cognitive parameters mostly correlated with AD biomark-

ers might contribute for improving the characterization of the condition in clinical and

research practices.
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