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Abstract
Similarity or distance measures are core components used by distance-based clustering

algorithms to cluster similar data points into the same clusters, while dissimilar or distant

data points are placed into different clusters. The performance of similarity measures is

mostly addressed in two or three-dimensional spaces, beyond which, to the best of our

knowledge, there is no empirical study that has revealed the behavior of similarity measures

when dealing with high-dimensional datasets. To fill this gap, a technical framework is pro-

posed in this study to analyze, compare and benchmark the influence of different similarity

measures on the results of distance-based clustering algorithms. For reproducibility pur-

poses, fifteen publicly available datasets were used for this study, and consequently, future

distance measures can be evaluated and compared with the results of the measures dis-

cussed in this work. These datasets were classified as low and high-dimensional categories

to study the performance of each measure against each category. This research should

help the research community to identify suitable distance measures for datasets and also to

facilitate a comparison and evaluation of the newly proposed similarity or distance mea-

sures with traditional ones.

Introduction
One of the biggest challenges of this decade is with databases having a variety of data types. Vari-
ety is among the key notion in the emerging concept of big data, which is known by the 4 Vs:
Volume, Velocity, Variety and Variability [1,2]. Currently, there are a variety of data types avail-
able in databases, including: interval-scaled variables (salary, height), binary variables (gender),
categorical variables (religion: Jewish, Muslim, Christian, etc.) and mixed type variables (multiple
attributes with various types). Despite data type, the distance measure is a main component of
distance-based clustering algorithms. Partitioning algorithms, such as k-means, k-medoids and
more recently soft clustering approaches for instance fuzzy c-means [3] and rough clustering [4],
are mainly dependent on distance measures to recognize clusters in a dataset.

In data mining, ample techniques use distance measures to some extent. Clustering is a
well-known technique for knowledge discovery in various scientific areas, such as medical
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image analysis [5–7], clustering gene expression data [8–10], investigating and analyzing air
pollution data [11–13], power consumption analysis [14–16], and many more fields of study.
Improving clustering performance has always been a target for researchers. Since in distance-
based clustering similarity or dissimilarity (distance) measures are the core algorithm compo-
nents, their efficiency directly influences the performance of clustering algorithms. These
algorithms use similarity or distance measures to cluster similar data points into the same clus-
ters, while dissimilar or distant data points are placed into different clusters. Examples of dis-
tance-based clustering algorithms include partitioning clustering algorithms, such as k-means
as well as k-medoids and hierarchical clustering [17].

Although there are various studies available for comparing similarity/distance measures for
clustering numerical data, but there are two difference between this study and other existing
studies and related works: first, the aim in this study is to investigate the similarity/distance
measures against low dimensional and high dimensional datasets and we wanted to analyse
their behaviour in this context. Second thing that distinguish our study from others is that our
datasets are coming from a variety of applications and domains while other works confined
with a specific domain. In essence, the target of this research is to compare and benchmark
similarity and distance measures for clustering continuous data to examine their performance
while they are applied to low and high-dimensional datasets. For the sake of reproducibility, fif-
teen publicly available datasets [18,19] were used for this study, so future distance measures
could consequently be evaluated and compared with the results of traditional measures dis-
cussed in this study. These datasets are classified into low and high-dimensional, and each
measure is studied against each category. But before doing the study on similarity or dissimilar-
ity measures, it needs to be clarified that they have significant influence on clustering quality
and are worthwhile to be studied. In sections 3 (methodology) it is elaborated that the similar-
ity or distance measures have significant influence on clustering results.

The key contributions of this paper are as follows:

• Twelve similarity measures frequently used for clustering continuous data from various fields
are compiled in this study to be evaluated in a single framework. Most of these similarity
measures have not been examined in domains other than the originally proposed one.

• A technical framework is proposed in this study to analyze, compare and benchmark the influ-
ence of different similarity measures on the result of distance-based clustering algorithms.

• Similarity measures are evaluated on a wide variety of publicly available datasets. Particularly,
we evaluate and compare the performance of similarity measures for continuous data against
datasets with low and high dimension.

The rest of paper is organized as follows: in section 2, a background on distance measures is dis-
cussed. In section 3, we have explained the methodology of the study. Experimental results with a
discussion are represented in section 4, and section 5 summarizes the contributions of this study.

Background on Distance Measures for Continuous Data
Utilization of similarity measures is not limited to clustering, but in fact plenty of data mining
algorithms use similarity measures to some extent. To reveal the influence of various distance
measures on data mining, researchers have done experimental studies in various fields and
have compared and evaluated the results generated by different distance measures. Although it
is not practical to introduce a “Best” similarity measure or a best performing measure in gen-
eral, a comparison study could shed a light on the performance and behavior of measures. For
instance, Boriah et al. conducted a comparison study on similarity measures for categorical
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data and evaluated similarity measures in the context of outlier detection for categorical data
[20]. It was concluded that the performance of an outlier detection algorithm is significantly
affected by the similarity measure. In their research, it was not possible to introduce a best per-
forming similarity measure, but they analyzed and reported the situations in which a measure
has poor or superior performance. In another research work, Fernando et al. [21] reviewed,
compared and benchmarked binary-based similarity measures for categorical data. With some
cases studies, Deshpande et al. focused on data from a single knowledge area, for example bio-
logical data, and conducted a comparison in favor of profile similarity measures for genetic
interaction networks. They concluded that the Dot Product is consistent among the best mea-
sures in different conditions and genetic interaction datasets [22].

Similarly, in the context of clustering, studies have been done on the effects of similarity mea-
sures., In one study Strehl and colleagues tried to recognize the impact of similarity measures on
web clustering [23]. In another, six similarity measure were assessed, this time for trajectory clus-
tering in outdoor surveillance scenes [24]. In chemical databases, Al Khalifa et. al. [25] examined
performance of twelve coefficients for clustering, similarity searching and compound selection.
From the results they concluded that no single coefficient is appropriate for all methodologies.

Despite these studies, no empirical analysis and comparison is available for clustering con-
tinuous data to investigate their behavior in low and high dimensional datasets. At the other
hand our datasets are coming from a variety of applications and domains and while they are
limited with a specific domain. In this study, we gather known similarity/distance measures
available for clustering continuous data, which will be examined using various clustering algo-
rithms and against 15 publicly available datasets. It is not possible to introduce a perfect simi-
larity measure for all kinds of datasets, but in this paper we will discover the reaction of
similarity measures to low and high-dimensional datasets. The similarity measures with the
best results in each category are also introduced.

Before presenting the similarity measures for clustering continuous data, a definition of a
clustering problem should be given. Assuming that the number of clusters required to be cre-
ated is an input value k, the clustering problem is defined as follows [26]:

Definition 1
Given a dataset D = {v1, v2, . . ., vn} of data vectors and an integer value k, the clustering
problem is to define a mapping f: D! {1, . . ., k} where each vi is assigned to one cluster Cj,
1� j� k. A cluster Cj contains precisely those data vectors mapped to it; that is, Cj = {vi | f(ti) =
Cj, 1� i� n, and vi 2 D}.

In the rest of this study, v1, v2 represent two data vectors defined as v1 = {x1, x2, . . ., xn}, v2 =
{y1, y2, . . ., yn}, where xi, yi are called attributes.

Subsequently, similarity measures for clustering continuous data are discussed. Some of
these similarity measures are frequently employed for clustering purposes while others have
scarcely appeared in literature.

Minkowski
The Minkowski family includes Euclidean distance and Manhattan distance, which are
particular cases of the Minkowski distance [27–29]. The Minkowski distance is defined by

dmin ¼ ðPn
i¼1jxi � yijmÞ

1
m; m � 1; wherem is a positive real number and xi and yi are two vec-

tors in n-dimensional space. The Minkowski distance performs well when the dataset clusters
are isolated or compacted; if the dataset does not fulfil this condition, then the large-scale attri-
butes would dominate the others [30,31]. Another problem with Minkowski metrics is that the
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largest-scale feature dominates the rest. Thus, normalizing the continuous features is the solu-
tion to this problem [31].

A modified version of the Minkowski metric has been proposed to solve clustering obstacles.
For example, Wilson and Martinez presented distance based on counts for nominal attributes
and a modified Minkowski metric for continuous features [32].

Manhattan distance
Manhattan distance is a special case of the Minkowski distance at m = 1. Like its parent, Man-
hattan is sensitive to outliers. When this distance measure is used in clustering algorithms, the
shape of clusters is hyper-rectangular [33]. A study by Perlibakas demonstrated that a modified
version of this distance measure is among the best distance measures for PCA-based face rec-
ognition [34]. This measure is defined as dman ¼

Pn
i¼1jxi � yij.

Euclidean distance
The most well-known distance used for numerical data is probably the Euclidean distance.
This is a special case of the Minkowski distance when m = 2. Euclidean distance performs well
when deployed to datasets that include compact or isolated clusters [30,31]. Although Euclid-
ean distance is very common in clustering, it has a drawback: if two data vectors have no attri-
bute values in common, they may have a smaller distance than the other pair of data vectors
containing the same attribute values [31,35,36]. Another problem with Euclidean distance as a
family of the Minkowski metric is that the largest-scaled feature would dominate the others.
Normalization of continuous features is a solution to this problem [31].

Average distance
Regarding the above-mentioned drawback of Euclidean distance, average distance is a modified
version of the Euclidean distance to improve the results [27,35]. For two data points x, y in n-

dimentional space, the average distance is defined as dave ¼ 1
n

Pn
i¼1ðxi � yiÞ2

� �1
2.

Weighted euclidean distance
If the relative importance according to each attribute is available, then the Weighted Euclidean
distance—another modification of Euclidean distance—can be used [37]. This distance is

defined as dwe ¼ ðPn
i¼1wiðxi � yiÞ2Þ

1
2, where wi is the weight given to the ith component.

This distance measure is the only measure which is not included in this study for compari-
son since calculating the weights is closely related to the dataset and the aim of researcher for
cluster analysis on the dataset. As an instance of using this measure reader can refer to Ji et. al.
research work. They used this measure for proposing a dynamic fuzzy cluster algorithm for
time series [38].

Chord distance
Chord distance is one more Euclidean distance modification to overcome the previously men-
tioned Euclidean distance shortcomings. It can solve problems caused by the scale of measure-
ments as well. Chord distance is defined as the length of the chord joining two normalized
points within a hypersphere of radius one. This distance can be calculated from non-normal-

ized data as well [27]. Chord distance is defined as dchord ¼ 2� 2

Pn

i¼1
xiyi

kxk2kyk2

� �1
2

, where kxk2 is the

L2-norm kxk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1x
2
i

p
.
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Mahalanobis distance
Mahalanobis distance is a data-driven measure in contrast to Euclidean and Manhattan dis-
tances that are independent of the related dataset to which two data points belong [20,33]. A
regularized Mahalanobis distance can be used for extracting hyperellipsoidal clusters [30]. On
the other hand, Mahalanobis distance can alleviated distortion caused by linear correlation
among features by applying a whitening transformation to the data or by using the squared

Mahalanobis distance [31]. Mahalanobis distance is defined by dmah ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � yÞS�1ðx � yÞT

q
where S is the covariance matrix of the dataset [27,39].

Cosine deasure
The Cosine similarity measure is mostly used in document similarity [28,33] and is defined as

Cosine x; yð Þ ¼
Pn

i¼1
xiyi

kxk2kyk2 , where kyk2 is the Euclidean norm of vector y = (y1, y2, . . ., yn) defined

as kyk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 þ y22 þ . . .þ y2n

p
. The Cosine measure is invariant to rotation but is variant to

linear transformations. It is also independent of vector length [33].

Pearson correlation
Pearson correlation is widely used in clustering gene expression data [33,36,40]. This similarity
measure calculates the similarity between the shapes of two gene expression patterns. The Pear-

son correlation is defined by Pearsonðx; yÞ ¼
Pn

i¼1
ðxi�mxÞðyi�myÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi�yiÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi�yiÞ2

p , where μx and μy are

the means for x and y respectively. The Pearson correlation has a disadvantage of being sensi-
tive to outliers [33,40].

The similarity measures explained above are the most commonly used for clustering contin-
uous data. Table 1 represents a summary of these with some highlights of each.

Methodology of the Study

3.1 Experimental design
This section is devoted to explain the method and the framework which is used in this study
for evaluating the effect of similarity measures on clustering quality. The main objective of this
research study is to analyse the effect of different distance measures on quality of clustering
algorithm results. As it is illustrated in Fig 1 there are 15 datasets used with 4 distance based
algorithms on a total of 12 distance measures. All the distance measures in Table 1 are exam-
ined except the Weighted Euclidean distance which is dependent on the dataset and the aim of
clustering.

Fig 2 explains the methodology of the study briefly. For each dataset we examined all four
distance based algorithms, and each algorithms’ quality of clustering has been evaluated by
each 12 distance measures as it is demonstrated in Fig 1. It makes a total of 720 experiments in
this research work to analyse the effect of distance measures. Representing and comparing this
huge number of experiments is a challenging task and could not be done using ordinary charts
and tables. Consequently we have developed a special illustration method using heat mapped
tables in order to demonstrate all the results in the way that could be read and understand
quickly. This method is described in section 4.1.1.

Comparison on Similarity Measures in Clustering Continuous Data

PLOS ONE | DOI:10.1371/journal.pone.0144059 December 11, 2015 5 / 20



Table 1. Similarity Measures for continuous data (in time complexity, n is the number of dimensions of x and y).

Distance
Measure

Equation Time
complexity

Advantages Disadvantages Applications

Euclidean
Distance deuc ¼

Xn
i¼1

ðxi � yiÞ2
" #1

2 O(n) Very common, easy to
compute and works well
with datasets with
compact or isolated
clusters [27,31].

Sensitive to outliers [27,31]. K-means algorithm,
Fuzzy c-means
algorithm [38].

Average
Distance dave ¼ 1

n
Xn
i¼1

ðxi � yiÞ2
 !1

2 O(n) Better than Euclidean
distance [35] at handling
outliers.

Variables contribute
independently to the
measure of distance.
Redundant values could
dominate the similarity
between data points [37].

K-means algorithm

Weighted
Euclidean dwe ¼

Xn
i¼1

wiðxi � yiÞ2
 !1

2 O(n) The weight matrix allows
to increase the effect of
more important data
points than less
important one [37].

Same as Average Distance. Fuzzy c-means
algorithm [38]

Chord
dchord ¼ 2� 2

Pn

i¼1
xi yi

kxk2kyk2

� �1
2 O(3n) Can work with un-

normalized data [27].
It is not invariant to linear
transformation [33].

Ecological
resemblance
detection [35].

Mahalanobis
dmah ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� yÞS�1ðx� yÞT

q
O(3n) Mahalanobis is a data-

driven measure that can
ease the distance
distortion caused by a
linear combination of
attributes [35].

It can be expensive in terms
of computation [33]

Hyperellipsoidal
clustering algorithm
[30].

Cosine
Measure

Cosine x; yð Þ ¼
Pn

i¼1
xiyi

kxk2kyk2
O(3n) Independent of vector

length and invariant to
rotation [33].

It is not invariant to linear
transformation [33].

Mostly used in
document similarity
applications [28,33].

Manhattan
dman ¼

Xn
i¼1

ðxi � yiÞ
O(n) Is common and like

other Minkowski-driven
distances it works well
with datasets with
compact or isolated
clusters [27].

Sensitive to the outliers.
[27,31]

K-means algorithm

Mean
Character
Difference

dMCD ¼ 1
n
Xn
i¼1

jxi � yij
O(n) *Results in accurate

outcomes using the K-
medoids algorithm.

*Low accuracy for high-
dimensional datasets using
K-means.

Partitioning and
hierarchical
clustering
algorithms.

Index of
Association dIOA ¼ 1

n
Xn
i¼1

xiPn

i¼1
xi
� yiPn

i¼1
yi

��� ��� O(3n) - *Low accuracy using K-
means and K-medoids
algorithms.

Partitioning and
hierarchical
clustering
algorithms.

Canberra
Metric dcanb ¼

Xn
i¼1

jxi�yi j
ðxiþyi Þ

O(n) *Results in accurate
outcomes for high-
dimensional datasets
using the K-medoids
algorithm.

- Partitioning and
hierarchical
clustering
algorithms.

Czekanowski
Coefficient dczekan ¼ 1� 2

Pn

i¼1
minðxi ;yiÞPn

i¼1
ðxiþyiÞ

O(2n) *Results in accurate
outcomes for medium-
dimensional datasets
using the K-means
algorithm.

- Partitioning and
hierarchical
clustering
algorithms.

Coefficient of
Divergence dcanb ¼ 1

n
Xn
i¼1

xi�yi
xiþyi

� 	2

 !1
2 O(n) *Results in accurate

outcomes using the K-
means algorithm.

- Partitioning and
hierarchical
clustering
algorithms.

(Continued)
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3.2 Rand Index
In this study, we used Rand Index (RI) for evaluation of clustering outcomes resulted by vari-
ous distance measures. This section is an overview on this measure and it investigates the rea-
son that this measure has been chosen.

Rand index is frequently used in measuring clustering quality. It is a measure of agreement
between two sets of objects: first is the set produced by clustering process and the other defined
by external criteria. Although there are different clustering measures such as Sum of Squared
Error, Entropy, Purity, Jaccard etc. but among them the Rand index is probably the most used
index for cluster validation [17,41,42]. Assuming S = {o1, o2, . . ., on} is a set of n elements and
two partitions of S are given to compare C = {c1, c2, . . ., cr}, which is a partition of S into r sub-
sets and G = {g1, g2, . . ., gs}, a partition of S into s subsets, the Rand index (R) is defined as
follows:

Definition 2

RI ¼ aþ b
aþ bþ cþ d

1

where:

• a is the number of pairs of vectors in S that are in the same set in C and in the same set in G.

• b is the number of pairs of elements in S that are in different sets in C and in different sets in
G.

• c is the number of pairs of elements in S that are in the same set in C and in different sets in
G.

• d is the number of pairs of elements in S that are in different sets in C and in the same set in
G.

There is a modified version of rand index called Adjusted Rand Index (ARI) which is pro-
posed by Hubert and Arabie [42] as an improvement for known problems with RI. These prob-
lems happen when the expected value of the RI of two random partition does not take a
constant value (zero for example) or the Rand statistic approaches its upper limit of unity as
the number of cluster increases. However, since our datasets don’t have these problems and
also owing to the fact that the results generated using ARI were following the same pattern of
RI results, we have used Rand Index in this study due to its popularity in clustering community
for clustering validation.

Table 1. (Continued)

Distance
Measure

Equation Time
complexity

Advantages Disadvantages Applications

Pearson
coefficient Pearsonðx; yÞ ¼

Pn

i¼1
ðxi�mx Þðyi�my ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi�yi Þ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi�yi Þ2

p O(2n) *Results in accurate
outcomes using the
hierarchical single-link
algorithm for high
dimensional datasets.

- Partitioning and
hierarchical
clustering
algorithms.

*Points marked by asterisk are compiled based on this article’s experimental results.

doi:10.1371/journal.pone.0144059.t001
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Fig 1. Overview of experimental study.

doi:10.1371/journal.pone.0144059.g001

Fig 2. Arrangement of experiments.

doi:10.1371/journal.pone.0144059.g002
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In this study we normalized the Rand Index values for the experiments. The normalized val-
ues are between 0 and 1 and we used following formula to approach it:

zi ¼
ri �minðrÞ

maxðrÞ �minðrÞ 2

where r = (r1, . . ., rn) is the array of rand indexes produced by each similarity measure.

3.3 Analysis of variance (ANOVA) test
Before continuing this study, the main hypothesis needs to be proved: “distance measure has a
considerable influence on clustering results”. In order to show that distance measures cause sig-
nificant difference on clustering quality, we have used ANOVA test. For this purpose we will
consider a null hypothesis: “distance measures doesn’t have significant influence on clustering
quality”. Using ANOVA test, if the p value be very small, it means that there is very small
opportunity that null hypothesis is correct, and consequently we can reject it.

ANOVA analyzes the differences among a group of variable which is developed by Ronald
Fisher [43]. ANOVA is a statistical test that demonstrate whether the mean of several groups
are equal or not and it can be said that it generalizes the t-test for more than two groups. It is
useful for testing means of more than two groups or variable for statistical significance. Statisti-
cal significance in statistics is achieved when a p-value is less than the significance level [44].
The p-value is the probability of obtaining results which acknowledge that the null hypothesis
is true [45].

For ANOVA test we have considered a table with the structure shown in Table 2 which cov-
ers all RI results for all four algorithms and each distance/similarity measure and for all data-
sets. Table is divided into 4 section for four respective algorithms. In each sections rows
represent results generated with distance measures for a dataset.

ANOVA test is performed for each algorithm separately to find if distance measures have
significant impact on clustering results in each clustering algorithm.

The ANOVA test result on above table is demonstrated in the Tables 3–6.
The small Prob values indicates that differences between means of the columns are signifi-

cant. From that we can conclude that the similarity measures have significant impact in cluster-
ing quality. In the rest of this study we will inspect how these similarity measures influence on
clustering quality.

Experimental Results
It is noted that references to all data employed in this work are available in acknowledgment
section. A diverse set of similarity measures for continuous data was studied on low and high-
dimensional continuous datasets in order to clarify and compare the accuracy of each similarity
measure in different datasets with various dimensionality situations and using 15 datasets
[18,19,46–49]. Details of the datasets applied in this study are represented in Table 7.

The experiments were conducted using partitioning (k-means and k-medoids) and hierar-
chical algorithms, which are distance-based. As it is discussed in section 3.2 the Rand index
served to evaluate and compare the results. The results for each of these algorithms are dis-
cussed later in this section.

The k-means and k-medoids algorithms were used in this experiment as partitioning algo-
rithms, and the Rand index served accuracy evaluation purposes. Due to the fact that the k-
means and k-medoids algorithm results are dependent on the initial, randomly selected cen-
ters, and in some cases their accuracy might be affected by local minimum trap, the experiment

Comparison on Similarity Measures in Clustering Continuous Data
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was repeated 100 times for each similarity measure, after which the maximum Rand index was
considered for comparison.

4.1 Illustration technique
A summary of the normalized Rand index results is illustrated in color scale tables in Fig 3 and
Fig 4. Since the aim of this study is to investigate and evaluate the accuracy of similarity mea-
sures for different dimensional datasets, the tables are organized based on horizontally ascend-
ing dataset dimensions. After the first column, which contains the names of the similarity
measures, the remaining table is divided in two batches of columns (low and high-dimen-
sional) that demonstrate the normalized Rand indexes for low and high-dimensional datasets,
respectively. The final column considered in this table is ‘overall average’ in order to explore
the most accurate similarity measure in general. This illustrational structure and approach is
used for all four algorithms in this paper.

4.2 Benchmarking similarity measures for partitioning algorithms
Fig 3 represents the results for the k-means algorithm. According to the figure, for low-dimen-
sional datasets, the Mahalanobis measure has the highest results among all similarity measures.
On the other hand, for high-dimensional datasets, the Coefficient of Divergence is the most
accurate with the highest Rand index values. Fig 4 provides the results for the k-medoids algo-
rithm. Mean Character Difference is the most precise measure for low-dimensional datasets,
while the Cosine measure represents better results in terms of accuracy for high-dimensional
datasets. Overall, Mean Character Difference has high accuracy for most datasets.

As a general result for the partitioning algorithms used in this study, average distance results
in more accurate and reliable outcomes for both algorithms. It is the most accurate measure in
the k-means algorithm and at the same time, with very little difference, it stands in second
place after Mean Character Difference for the k-medoids algorithm.

From another perspective, similarity measures in the k-means algorithm can be investigated
to clarify which would lead to the k-means converging faster. However the convergence of k-
means and k-medoid algorithms is not guaranteed due to the possibility of falling in local mini-
mum trap. For this reason we have run the algorithm 100 times to prevent bias toward this
weakness. Fig 5 shows two sample box charts created by using normalized data, which repre-
sents the normalized iteration count needed for the convergence of each similarity measure.

Table 4. ANOVA results for k-medoids.

K_medoids SS df MS F Prob>F

Columns 0.69565 11 0.06324 2.62 0.0042

Error 4.05766 168 0.02415

Total 4.75331 179

doi:10.1371/journal.pone.0144059.t004

Table 3. ANOVA results for k-means.

K_means SS df MS F Prob>F

Columns 0.68317 11 0.06211 2.96 0.0013

Error 3.52624 168 0.02099

Total 4.20942 179

doi:10.1371/journal.pone.0144059.t003
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Results were collected after 100 times of repeating the k-means algorithm for each similarity
measure and dataset.

Fig 6 is a summarized color scale table representing the mean and variance of iteration
counts for all 100 algorithm runs. Pearson has the fastest convergence in most datasets. After
Pearson, Average is the fastest similarity measure in terms of convergence.

Regarding the discussion on Rand index and iteration count, it is manifested that the Aver-
age measure is not only accurate in most datasets and with both k-means and k-medoids algo-
rithms, but it is the second fastest similarity measure after Pearson in terms of convergence,
making it a secure choice when clustering is necessary using k-means or k-medoids algorithms.

4.3 Benchmarking similarity measures for hierarchical algorithms
In a previous section, the influence of different similarity measures on k-means and k-medoids
algorithms as partitioning algorithms was evaluated and compared. In this section, the results
for Single-link and Group Average algorithms, which are two hierarchical clustering

Table 5. ANOVA results for HSingle.

HAvrage SS df MS F Prob>F

Columns 0.47251 11 0.04296 2.62 0.0043

Error 2.52617 154 0.0164

Total 8.91175 175

doi:10.1371/journal.pone.0144059.t005

Table 6. ANOVA results for HSingle.

HSingle SS df MS F Prob>F

Columns 0.3194 11 0.02903 2.38 0.0095

Error 1.8788 154 0.0122

Total 10.2233 179

doi:10.1371/journal.pone.0144059.t006

Table 7. Dataset Details.

Dataset Name Dimensions Clusters Vectors

Aggregation 2 7 788

Compound 2 6 399

D31 2 31 3100

Flame 2 2 240

Path based 2 3 300

R15 2 15 600

Sensor_2 2 4 5456

Spiral 2 3 312

Iris 4 3 150

Sensor_4 4 4 5456

Data_User_Modeling 5 4 258

Seeds 7 3 210

Glass 9 7 214

Sensor_24 24 4 5456

Movement Libera 90 15 360

doi:10.1371/journal.pone.0144059.t007
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algorithms, will be discussed for each similarity measure in terms of the Rand index. Fig 7 and
Fig 8 represent sample bar charts of the results. The bar charts include 6 sample datasets.
Because bar charts for all datasets and similarity measures would be jumbled, the results are
presented using color scale tables for easier understanding and discussion. As discussed in the
last section, Fig 9 and Fig 10 are two color scale tables that demonstrate the normalized Rand
index values for each similarity measure. The results in Fig 9 for Single-link show that for low-
dimensional datasets, the Mahalanobis distance is the most accurate similarity measure and
Pearson is the best among other measures for high-dimensional datasets. The overall average
column in this figure shows that generally, Pearson presents the highest accuracy and the Aver-
age and Euclidean distances are among the most accurate measures. For the Group Average
algorithm, as seen in Fig 10, Euclidean and Average are the best among all similarity measures
for low-dimensional datasets. For high-dimensional datasets, Cosine and Chord are the most
accurate measures. Generally, in the Group Average algorithm, Manhattan and Mean Charac-
ter Difference have the best overall Rand index results followed by Euclidean and Average.
Considering the overall results, it is clear that the Average measure is constantly among the
best measures, and for both Single-link and Group Average algorithms.

A review of the results and discussions on the k-means, k-medoids, Single-link and Group
Average algorithms reveals that by considering the overall results, the Average measure is regu-
larly among the most accurate measures for all four algorithms.

According to heat map tables it is noticeable that Pearson correlation is behaving differently
in comparison to other distance measures. It specially shows very weak results with centroid
based algorithms, k-means and k-medoids. Based on the results in this research, in general,

Fig 3. K-means color scale table for normalized Rand index values (green represents the highest and it changes to red, which is the lowest Rand
index value).

doi:10.1371/journal.pone.0144059.g003

Fig 4. K-medoids color scale table for normalized Rand index values (green is the highest and changes color to red, which is the lowest Rand
index value).

doi:10.1371/journal.pone.0144059.g004
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Pearson correlation doesn’t work properly for low dimensional datasets while it shows better
results for high dimensional datasets.

Fig 11 illustrates the overall average RI in all 4 algorithms and all 15 datasets also uphold the
same conclusion. Fig 12 at the other hand shows the average RI for 4 algorithms separately. It
can be inferred that Average measure among other measures is more accurate.

Furthermore, by using the k-means algorithm, this similarity measure is the fastest after
Pearson in terms of convergence.

Concluding Remarks
Selecting the right distance measure is one of the challenges encountered by professionals and
researchers when attempting to deploy a distance-based clustering algorithm to a dataset. The
variety of similarity measures can cause confusion and difficulties in choosing a suitable mea-
sure. Similarity measures may perform differently for datasets with diverse dimensionalities.
The aim of this study was to clarify which similarity measures are more appropriate for low-
dimensional and which perform better for high-dimensional datasets in the experiments. In
this work, similarity measures for clustering numerical data in distance-based algorithms were
compared and benchmarked using 15 datasets categorized as low and high-dimensional

Fig 5. Sample box charts for k-means iteration counts created with a collection of normalized results after 100 times of repeating the algorithm for
each similarity measure and dataset.

doi:10.1371/journal.pone.0144059.g005
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datasets. The accuracy of similarity measures in terms of the Rand index was studied and the
best similarity measures for each of the low and high-dimensional datasets were discussed for
four well-known distance-based algorithms. Overall, the results indicate that Average Distance
is among the top most accurate measures for all clustering algorithms employed in this article.
Moreover, this measure is one of the fastest in terms of convergence when k-means is the target
clustering algorithm. Based on results in this study, in general, Pearson correlation is not rec-
ommended for low dimensional datasets. It also is not compatible with centroid based algo-
rithms. However, this measure is mostly recommended for high dimensional datasets and by
using hierarchical approaches.

Fig 6. Color scale table for iteration count mean and variance (green is the lowest and it changes color to red, which shows the greatest iteration
count value).

doi:10.1371/journal.pone.0144059.g006

Fig 7. Bar chart of normalized Rand index values for selected datasets using the Single-link algorithm.

doi:10.1371/journal.pone.0144059.g007
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Fig 8. Bar chart of normalized Rand index values for selected datasets using the Group Average algorithm.

doi:10.1371/journal.pone.0144059.g008

Fig 9. Color scale table of normalized Rand index values for the Single-link method (green is the highest and it changes color to red, which
represents the lowest Rand index value).

doi:10.1371/journal.pone.0144059.g009

Fig 10. Color scale table of normalized Rand index values for Group Average (green is the highest and it changes color to red, which signifies the
lowest Rand index value).

doi:10.1371/journal.pone.0144059.g010
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