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ABSTRACT
Objective SARS- CoV- 2 has caused a pandemic claiming 
more than 4 million lives worldwide. Overwhelming 
COVID- 19 respiratory failure placed tremendous demands 
on healthcare systems increasing the death toll. Cost- 
effective prognostic tools to characterise the likelihood of 
patients with COVID- 19 to progress to severe hypoxemic 
respiratory failure are still needed.
Design We conducted a retrospective cohort study to 
develop a model using demographic and clinical data 
collected in the first 12 hours of admission to explore 
associations with severe hypoxemic respiratory failure in 
unvaccinated and hospitalised patients with COVID- 19.
Setting University- based healthcare system including 
six hospitals located in the Galveston, Brazoria and Harris 
counties of Texas.
Participants Adult patients diagnosed with COVID- 19 and 
admitted to one of six hospitals between 19 March and 30 
June 2020.
Primary outcome The primary outcome was defined 
as reaching a WHO ordinal scale between 6 and 9 at any 
time during admission, which corresponded to severe 
hypoxemic respiratory failure requiring high- flow oxygen 
supplementation or mechanical ventilation.
Results We included 329 participants in the model 
cohort and 62 (18.8%) met the primary outcome. Our 
multivariable regression model found that lactate 
dehydrogenase (OR 2.36), Quick Sequential Organ Failure 
Assessment score (OR 2.26) and neutrophil to lymphocyte 
ratio (OR 1.15) were significant predictors of severe 
disease. The final model showed an area under the curve 
of 0.84. The sensitivity analysis and point of influence 
analysis did not reveal inconsistencies.
Conclusions Our study suggests that a combination of 
accessible demographic and clinical information collected 
on admission may predict the progression to severe 
COVID- 19 among adult patients with mild and moderate 
disease. This model requires external validation prior to its 
use.

INTRODUCTION
SARS- CoV- 2 is a novel coronavirus discov-
ered in 2019. It is the aetiological agent for 
the largest viral pandemic of the 21st century 
thus far, followed by H1N1 influenza A that 
emerged in 2009–2010.1 2 During the early 
pandemic, a case series from the Wuhan 
province showed that 81% of COVID- 19 
cases were mild, 14% progressed to severe 
disease, and 5% developed critical illness 
defined as respiratory failure, septic shock 
and/or multiple organ dysfunction.3 COVID- 
19- associated hospitalisation caused an over-
whelming demand on the healthcare system 
of the USA. Shortage in ventilators and 

Strengths and limitations of this study

 ► Our study used objective and measurable demo-
graphic and clinical information regularly available 
in healthcare settings even among patients unable 
to communicate.

 ► Our primary outcome corresponds to the WHO or-
dinal score which would allow us to compare our 
results with other studies and in other settings.

 ► Our model could serve as an effective point of ser-
vice tool during early admission to assist in clinical 
management and allocation of resources to unvac-
cinated patients.

 ► Our study is a retrospective study of unvaccinated 
patients with COVID- 19, and validation of our pre-
diction model in the rest of our study population is 
still needed.

 ► In addition, testing our model in a more recent co-
hort after emergence of new SARS- CoV- 2 variants 
will be needed to assess its robustness.
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personal protection equipment posed significant chal-
lenges in management of cases in US hospitals early in the 
pandemic.4 During 2020, the Center of Disease Control 
and Prevention estimated 375 000 deaths attributed to 
COVID- 19.5

Unfortunately, there has been a global lag in uptake 
of COVID- 19 vaccines due to hesitancy and logistics. 
Unvaccinated individuals with COVID- 19 remain up to 25 
times more likely to be hospitalised or dead compared 
with vaccinated individuals. Rising hospitalisation and 
deaths among unvaccinated individuals are driving a new 
pandemic surge posing again a significant burden to the 
health system.6 7

Studies evaluating the risk of progression among 
infected subjects admitted to the hospital have used 
different outcomes to define severe diseases. These 
included criteria from the American Thoracic Society on 
severity of community- acquired pneumonia,8 the Berlin 
definition of acute respiratory distress syndrome,9 death 
or mechanical ventilation,10 11 and/or the WHO ordinal 
scale.12 13 The WHO ordinal scale to classify the clinical 
status of patients with COVID- 19 has been widely adopted 
in randomised control trials such as ACTT- 1 and ACTT- 
2.14–16 Harmonisation of the measures used to evaluate 
the severity of COVID- 19 across different studies could 
ease the comparison of study results and application of 
evidence- based interventions. However, the heteroge-
neity in the definitions of severe illness and the limited 
availability of certain laboratory tests, especially in low- 
resource settings, have decreased the generalisability of 
these tools. Laboratory tests such as serum interleukin 6 
or procalcitonin may not be accessible in small medical 
centres. Similarly, information on comorbidities may 
not be available in patients unable to provide a history. 
Simple, objective and accessible tools to predict progres-
sion to severe COVID- 19 are still needed to guide clini-
cians during case surges and dwindling of resources.

To address this need, we conducted a retrospective 
cohort study in the University of Texas Medical Branch 
(UTMB) Health System to develop an exploratory model 
for severe hypoxemic respiratory failure in unvaccinated 
hospitalised patients with COVID- 19.

METHODS
Study design
We hypothesised that a combination of objective clin-
ical and laboratory findings on admission can identify 
subjects with higher risk of progression to severe respi-
ratory failure due to COVID- 19 in our hospitals. To test 
this hypothesis, we performed a retrospective, multisite 
cohort study on adult patients admitted for COVID- 19 to 
the UTMB Health System.

UTMB Health System includes six hospitals located 
in the Galveston, Brazoria and Harris counties of Texas. 
These hospitals are distributed across over 50 miles, 
though populations served are similar overall. We retrieved 
the medical record numbers of all patients ≥18 years old 

admitted to hospitals in any of the four campuses with 
a positive SARS- CoV- 2 molecular test between 19 March 
and 30 June 2020. We used the WHO ordinal scale of 
disease severity for COVID- 19 to define our outcomes.17 
This is an 11- category ordinal scale ranging from a value 
of 0 for patients with no virological evidence of infec-
tion to 10 for patients who died due to COVID- 19. Our 
primary outcome was defined as reaching a WHO ordinal 
scale between 6 and 9 during admission corresponding 
to severe respiratory failure requiring oxygen supple-
mentation using high- flow nasal cannula (HFNC) or 
mechanical ventilation. Patients initially presenting with 
a WHO ordinal scale <6 who were discharged at the time 
of review of their medical record were enrolled. Patients 
who met ordinal scale 6–9 on the first vital signs obtained 
on admission were excluded. The maximum ordinal scale 
score met during admission was considered the subjects’ 
ordinal score.

Patient and public involvement
None.

Data collection
We collected data directly from the Epic (Verona, 
Wisconsin, USA) electronic medical records. The data 
were transcribed into a questionnaire created in the 
REDCap (Nashville, Tennessee, USA) data capture system. 
Data coders were trained using a dummy dataset before 
using medical records. All coders were trained until they 
could obtain 100% accuracy on dummy datasets before 
proceeding to data collection. Eighty- nine randomly 
selected charts underwent evaluation by the principal 
investigators and the data extraction personnel. These 
evaluations were compared to calculate the inter- rater 
reliability using kappa statistics. When the personnel had 
a kappa <0.8, they were retrained, and discrepancies were 
discussed with the principal investigators. Evaluations 
were repeated until a kappa >0.8 was reached. The data 
extraction personnel collected data on demographics, 
clinical history and course, vital signs, peak oxygen 
requirement and laboratory results (online supplemental 
eTable A). The maximum oxygen requirement at any 
given day after admission was used as the peak oxygen 
requirement, and the subject was deemed to have met 
the primary endpoint if the peak oxygen requirement 
was HFNC or more intensive. Data on admission labora-
tory results include absolute neutrophil and lymphocyte 
counts; serum lactate dehydrogenase (LDH), D- dimer, 
C reactive protein (CRP), procalcitonin and troponin I. 
Only the first laboratory tests obtained within 12 hours of 
admission were recorded. If these labs were not obtained 
during this window, they were registered as missing.

Statistical analysis
The REDCap dataset was downloaded to a database on SAS 
(V.9.4) and R (V.4.0.2). Frequencies, means with SDs (±SD), 
and medians with IQRs were calculated to describe the distri-
bution of the variables. Pearson correlations were performed 
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for bivariate analysis; variance inflation factors (VIFs) were 
calculated for each variable prior to initial modelling, with a 
factor ≥5 being considered possibly collinear.18 Mean impu-
tation was used to replace body mass index (BMI) when the 
value was missing. Multiple imputation was not performed 
because data were not missing at random relative to the 
primary outcome. To evaluate the effect of using the sample 
mean to replace BMI missing values, the analysis was also 
performed excluding those cases.

A multivariable logistic regression analysis was conducted 
to model variables with the highest predictive value for severe 
COVID- 19. Variables for the model were selected based on 
review of the literature on COVID- 19 and clinical relevance 
(eg, objectivity and availability). The composite variables 
age/BMI and age/sex were created and used in the models 
because of existing evidence of interactions between those 
variables individually. Stratified analysis was performed for 
interaction terms ultimately included in the model. Step-
wise Akaike Information Criteria (AIC) reduction was used 
to optimise the model, reducing residual deviance while 
prioritising model simplicity. Cook’s Distance method was 
used for assessing points of influence, where a Cook’s D≥1 
was considered highly influential. The Hosmer- Lemeshow 
goodness- of- fit (GOF) test statistic was used to evaluate the 
match between the predicted and observed risk of progres-
sion to WHO ordinal score 6–9. A receiver operating char-
acteristic curve (ROC) and area under the curve (AUC) 
analysis was performed to assess overall model fidelity.

Several sensitivity analyses were performed. One was to 
assess the biasing effect of mean imputation on BMI. We 
excluded all cases where BMI was missing for this analysis. 
The second was to assess whether DNI status meaningfully 
affected results. Because some patients may have initiated 
DNI during the course of admission (which we could not 
verify), we excluded all patients who had a DNI in place by 
the time of discharge or death. The final was to examine 
whether a model that ordinally discriminated between 
HFNC and intubation was more robust (where <HFNC=3, 
HFNC=5 and intubation=6; values according to WHO scale). 
Because comparative AUC analysis between cumulative logit 
and binomial logistic regression is not possible, qualitative 
differences parameter selection, magnitude and per cent 
concordance were assessed. Proportional odds assumptions 
were tested using Χ2 methods.

RESULTS
We identified 930 subjects admitted to the UTMB 
Health System with a positive SARS- CoV- 2 test during 19 
March–30 June 2020. The first 352 consecutive charts 
were reviewed to develop the predictive models. The 
demographics and clinical characteristics of the cohort 
prior to exclusion are shown in online supplemental 
figure 1. Twenty- three subjects were excluded because 
they met WHO ordinal scale scores between 6 and 9 on 
the first vital signs measured or because most values of 
interest were missing (figure 1).

Three hundred twenty- nine subjects were included 
in the final cohort and 62 (18.8%) met the primary 
endpoint. The Texas Department of Criminal Justice 
population accounted for 27.6% of cohort population 
but there were no significant differences in the propor-
tion of subjects meeting the primary endpoint according 
to inmate status (p=0.459, data not shown). Subjects 
reaching the ordinal scale 6–9 were significantly older 
than subjects who did not (table 1). More male subjects 
met the primary endpoint but the difference between 
groups was not statistically significant (table 1). The top 
three comorbidities for subjects with ordinal scales <6 
were cardiovascular, 51.5%; diabetes mellitus, 32.4%; and 
pulmonary, 21.0%. For subjects with ordinal scale 6–9, the 
top three conditions were cardiovascular, 67.3%; diabetes 
mellitus, 38.5%; and liver disease, 15.4% (table 1). 
Twenty- four subjects died during admission (7.3%) and 
20 of them met criteria for ordinal score 6–9. Seven per 
cent (6.7%) of subjects with ordinal score <6 and 9.7% of 
subjects with ordinal scale 6–9 had DNI order. Comfort 
care was implemented in 1.9% of those with ordinal score 
<6 and in 16.1% of those with ordinal score 6–9. The 
characteristics of subjects with ordinal scales 6–9 across 
all campuses are shown in table 1. Fourteen (4.3%) were 
missing BMI values.

The variables included in the initial regression model 
were admission date, age/sex, age/BMI, oxygen satu-
ration, neutrophil to lymphocyte ratio (NLR), procal-
citonin, D- dimer, LDH, CRP, troponin I, duration of 
symptoms prior to admission and Quick Sequential 
Organ Failure Assessment (qSOFA) score (online supple-
mental figure 2).

The initial model was highly significant and identi-
fied several candidate predictive variables; none of these 
variables had a VIF >3. The candidate clinical and labo-
ratory variables age, BMI, oxygen saturation, qSOFA 
score, CRP, procalcitonin, NLR, D- dimer and LDH were 
incorporated into prognostic model. All subjects with 
elevated troponin I levels (6 of 6) were intubated which 
precluded the evaluation of this variable as a predictor 
in the analysis. After stepwise AIC reduction, the final 
model included seven variables: oxygen saturation, NLR, 
D- dimer, qSOFA, LDH, AgexBMI and admission date 

Figure 1 Flow chart for cohort selection.
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(table 2). Because admission date did not meaningfully 
improve model performance (AUC=0.84 without vs 0.85 
with) and complicates clinical use, we exclude that factor 
here.

Stratified analysis (BMI ≥30 vs BMI <30) was limited due 
to small sample of patients with lower BMIs. The higher 
BMI strata, however, demonstrated similar effect sizes 

for age and BMI; qSOFA score was not retained (online 
supplemental figure 3). Running the model excluding 
subjects with missing BMI values (n=34) did not affect the 
general significance or GOF of the model (table 3).

ROC/AUC analysis of the final model indicated an 
AUC of 0.84, indicating high efficacy of the overall model 
in predicting severe disease (figure 2).

Table 1 Demographic and clinical characteristics of subjects included in the cohort

WHO ordinal scale <6
(N=267)

WHO ordinal scale 6–9
(N=62)

P valueMean (±SD)

  Age, years 55.9 (17.8) 62.9 (13.4) <0.001

  qSOFA 0.288 (0.478) 0.581 (0.560) <0.001

  Oxygen saturation, % 95.9 (3.38) 93.4 (4.56) <0.001

  C reactive protein, mg/dL 4.60 (7.78) 11.7 (10.1) <0.001

  NLR 5.69 (5.10) 9.92 (11.2) 0.005

  BMI 31.7 (7.44) 33.9 (8.93) 0.068

  D- dimer, ɥg/mL 2.10 (8.13) 3.35 (16.6) 0.564

Categorised LDH LDH, ULN 180 (67.4) 18 (29.0) <0.001

  1–2× ULN 76 (28.5) 30 (48.4)

  >2× ULN 11 (4.1) 14 (22.6)

    N (%)

Discharge status Death 4 (1.5) 20 (32.3) <0.001

  Alive 263 (98.5) 42 (67.7)

Code status Regular 244 (91.4) 46 (74.2) <0.001

  Do Not Intubate 18 (6.7) 6 (9.7)

  Comfort care 5 (1.9) 10 (16.1)

Sex Male 154 (57.7) 41 (66.1) 0.282

Female 113 (42.3) 21 (33.9)

Campus Galveston 150 (57.3) 23 (44.2) –

  Angleton 20 (7.6) 4 (7.7)

  League City 40 (15.3) 15 (28.8)

  Clear Lake 47 (17.9) 8 (15.4)

  Non- UTMB transfer 4 (1.5) 2 (3.8)

Comorbidities Cardiovascular 161 (51.5) 35 (67.3) –

  Diabetes mellitus 85 (32.4) 20 (38.5)

  Pulmonary 55 (21.0) 6 (11.5)

  Renal 34 (13.0) 5 (9.6)

  Liver 22 (8.4) 8 (15.4)

  HIV 2 (0.8) 2 (3.8)

  Malignancy on chemotherapy 3 (1.1) 1 (1.9)

  Solid organ transplant 6 (2.3) 1 (1.9)

  Dementia 11 (4.2) 2 (3.8)

  Other 35 (13.4) 5 (9.6)

  No known medical conditions 34 (13.0) 6 (11.5)

*One subject (0.4%) with ordinal scale <6 lacked information on this variable.
BMI, body mass index; LDH, lactate dehydrogenase; NLR, neutrophil to lymphocyte ratio; qSOFA, Quick Sequential Organ Failure 
Assessment; ULN, upper limit of normal; UTMB, University of Texas Medical Branch.
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ROC/AUC analysis of the BMI sensitivity analysis was 
nearly identical to the final model (AUC=0.83; figure 3).

Modelling with a cohort excluding patients with 
active DNI likewise did not result in meaningful change 
(AUC=0.82; online supplemental figure 4).

The ordinal logit model (table 4) reached similar param-
eter selection, but had slightly lower concordance (80%) 
than the binary model (85%) and did not include admis-
sion CRP or biological sex. The proportional odds assump-
tion was not obviously violated by Χ2 testing (p=0.11).

DISCUSSION
Our study evaluated demographic and clinical vari-
ables measured within 12 hours of hospital admission 
in patients with COVID- 19 as potential predictors of 

progression to severe respiratory failure. We used the 
WHO ordinal scale 6–9 to define patients with severe 
respiratory failure requiring significant life- sustaining 
therapies. Our analysis demonstrated that a combina-
tion of routine accessible laboratory tests, vital signs and 
demographic variables may yield a useful clinical tool to 
assess risk of COVID- 19 severe respiratory failure among 
patients admitted to our health system. This model used 
objective and measurable information available in acute 
care settings even if the patient is unable to communicate. 
The model could serve as an effective point of service tool 
during early admission to assist in clinical management 
and allocation of resources to unvaccinated persons. The 
significant factors, like admission LDH, were robust to 
numerous sensitivity analyses.

Table 2 Final multivariable regression model after stepwise AIC reduction

Analysis of maximum likelihood estimates

Parameter Estimate SE Wald Χ2 Pr>Χ2

Intercept 1 92.286697 235.9925 0.6859 0.4076

Female sex 1 0.5398305 1.489291 2.3955 0.1217

Age 1 0.9602131 1.053376 0.6092 0.4351

BMI 1 0.917319 1.10683 0.722 0.3955

Age×BMI 1 1.0025633 1.001641 2.4406 0.1182

Admit SpO2 1 0.9231163 1.044982 3.3067 0.069

Admit NLR 1 1.1506189 1.056224 6.5748 0.0103

Admit D- dimer 1 0.9823575 1.013389 1.7929 0.1806

Admit LDH 1 2.3615071 1.331625 9.0006 0.0027

Admit CRP 1 2.0990818 1.476538 3.6211 0.057

qSOFA 1 2.261436 1.395566 5.9946 0.0143

LDH was categorised as normal, 1×<×<2× upper limit of normal (ULN), and >2× ULN. 85% concordance statistic was reached.
AIC, Akaike Information Criteria; BMI, body mass index; CRP, C reactive protein; LDH, lactate dehydrogenase; NLR, neutrophil to lymphocyte 
ratio; qSOFA, Quick Sequential Organ Failure Assessment; SpO2, oxygen saturation.

Table 3 Multiple regression model excluding cases with missing BMI

Analysis of maximum likelihood estimates

Parameter DF Estimate SE Wald Χ2 Pr>Χ2

Intercept 1 26.754428 385.484 0.3047 0.581

Sex 1 0.4730283 1.56643 2.7828 0.0953

Age 1 0.9660883 1.0577 0.3771 0.5391

BMI 1 0.9214562 1.11293 0.5847 0.4445

Age×BMI 1 1.0024029 1.00177 1.8542 0.1733

Admit SpO2 1 0.9326736 1.05222 1.8764 0.1707

Admit NLR 1 1.1614857 1.06162 6.2591 0.0124

Admit D- dimer 1 0.9360373 1.04039 2.7825 0.0953

Admit LDH 1 2.9730846 1.35459 12.8919 0.0003

Admit qSOFA 1 2.7751367 1.446 7.6616 0.0056

LDH was categorised as normal, 1×<×<2× ULN, and >2× ULN.
BMI, body mass index; LDH, lactate dehydrogenase; NLR, neutrophil to lymphocyte ratio; qSOFA, Quick Sequential Organ Failure 
Assessment; SpO2, oxygen saturation; ULN, upper limit of normal.
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LDH was highly predictive of severe disease in our 
model and was robust to sensitivity analysis. Subjects 
with abnormal LDH on admission were 2.36 times 
more likely to progress to severe hypoxemic respiratory 
failure after controlling for other factors. This finding is 
supported by prior reports that LDH can predict severity 
of disease.8 9 However, our findings differ from those by 
Liang et al showing increased LDH only increases the like-
lihood of severe disease by 0.2%.8 A recent meta- analysis 
by Katzenschlager et al evaluated the association between 

LDH levels and admission to the intensive care unit 
(ICU) (12 studies) or death (23 studies) in patients with 
COVID- 19. Although LDH levels were statistically higher 
in those critically ill (pooled difference of medians: 140 
U/L (95% CI 81 to 199)) and those who died (pooled 
difference of medians: 189 U/L (95% CI 155 to 223)), 
the modest absolute increase in LDH levels was deemed 
clinically irrelevant by the authors.19 The differences 
between these studies and ours may be explained by the 
different outcome definitions used. In our system, the use 
of HFNC was not necessarily associated with ICU admis-
sion but was included as part of the endpoint. The ordinal 
logistic regression performed, however, supports that 
collapsing these two outcomes into a composite outcome 
yields comparable predictive utility.

NLR has been associated with adverse outcomes 
in patients with COVID- 19.8 11 13 Adverse outcomes 
observed in these studies also included death, which 
likely accounted for the absolute risk difference in our 
study.8 13 Ioannou et al reported that a ratio higher than 
12.7 was associated with a 2.5- fold increase in the odds 
for mechanical ventilation in patients with COVID- 19.11 
In our cohort, a higher NLR was associated with modest 
increases in the odds for reaching ordinal scale 6–9. The 
contrast between our results and those of Ioannou et al 
may be related to the inclusion of less severe disease cate-
gories in our primary endpoint such as receiving HFNC.

In our cohort, age and BMI were important predictors 
of COVID- 19 respiratory failure. BMI was positively associ-
ated with progression to WHO ordinal score 6–9. Because 
the average BMI was >30 in our study, meaningful stratifi-
cation analysis was precluded. While the mean BMI impu-
tation biases towards significance, multiple imputation 
is not appropriate when data are not missing randomly 
relative to primary outcome. However, excluding patients 
who did not have valid BMI data did not meaningfully 
change our model findings. In addition, the overall AUC 
did not change in comparison with the original model. 
Although the age/BMI composite variable was retained 
by stepwise AIC reduction after excluding cases without 
valid BMI data, using a composite variable introduces 
unneeded complexity to the model. Thus, we ultimately 
decided to exclude the term to maintain simplicity. These 
data highlighted the association of BMI with severe 
COVID- 19 and add to previous studies that support this 
association.11 20 21 A proposed mechanism for this associ-
ation is the increased work of breathing in patients with 
high BMI that impairs their capacity to adjust to changes 
in lung function leading to earlier non- invasive ventila-
tion or mechanical ventilation.21

We have chosen our predictors based on clinical prac-
ticality and mechanistic plausibility. Several factors—D- -
dimer, CRP and sex—were not significant predictors but 
augmented the AUC collectively. Thus, it is not surprising 
that some sensitivity analyses (ie, ordinal logistic 
regression) did not retain some or all of these factors. 
While D- dimer elevation was not found to be a signif-
icant predictor for respiratory failure or death in some 

Figure 2 ROC curve, final model. ROC, receiver operating 
characteristic.

Figure 3 ROC curve, BMI sensitivity analysis. BMI, body 
mass index; ROC, receiver operating characteristic.
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studies,8 12 others found an association with adverse 
outcomes early in the pandemic.22 23 Pulmonary vascu-
lature thrombosis was observed in autopsies of patients 
with COVID- 19,24 and a recent study has suggested that 
heparin- based anticoagulation may protect non- critical 
patients with COVID- 19 from inpatient death.25 In our 
model, D- dimer was not statistically associated with devel-
oping the primary endpoint in the multivariable analysis.

A smaller proportion of subjects in our cohort met 
the WHO ordinal scale 6–9 than subjects in other early 
2020 cohorts. Only 19% of the subjects included in our 
modelling cohort met the primary endpoint compared 
with 22%–26% reported by other authors.10 12 Our 
cohort was enrolled during a phase of rapidly evolving 
COVID- 19 therapies and management approaches. With 
improvements in early interventions against virus replica-
tion and associated inflammation, the number of patients 
requiring high- flow oxygen or mechanical ventilation 
is expected to change. We also found a lower inpatient 
death rate compared with reports published around the 
same period.12 All the subjects included in our cohort 
have been discharged at the time of data collection. It is 
possible that a subpopulation of these subjects was read-
mitted and expired after data collection was completed. 
Our study design limited data collection to the primary 
subject admission and may have missed mortality that 
occurred in subsequent encounters.

We included patients with DNI and comfort care orders 
in our cohort. Although this is a group of subjects that 
would have not been able to reach all the ordinal scale 
scores in our endpoint, they would have been eligible for 
high- flow oxygen and vasopressors. The sensitivity anal-
ysis that omitted subjects with DNI did not significantly 
change the predictive fidelity of the model. The inclu-
sion of this subpopulation in our cohort likely provided 
a conservative estimate of the odds of meeting ordinal 
scales 6–9.

Our study has several limitations to acknowledge. 
Troponins were not included in our model because all 

subjects with abnormal troponin met the primary outcome. 
Elevated troponin suggested myocardial injury which 
can be due to a direct effect from SARS- CoV- 2 infection 
and/or a complication from sepsis and the inflammatory 
response described in COVID- 19. The role of troponin 
as a predictor of COVID- 19- associated mortality has been 
suggested in other studies.26 27 However, larger studies 
are necessary to evaluate their role in predicting severe 
COVID- 19 respiratory failure. Additionally, our cohort 
was constructed prior to introduction of COVID- 19 vacci-
nation and therapeutic interventions such as dexameth-
asone or remdesivir.28 Most importantly, the validation of 
our prediction model in the rest of our study population 
and in more recent cohorts after the emergence of new 
SARS- CoV- 2 variants will be critical to assess its real- world 
clinical utility. Our prediction model could contribute 
by aiding clinicians who desire point- of- care decision 
support in early COVID- 19.

CONCLUSION
This study provides a preliminary model for early identi-
fication of patients with COVID- 19 at odds of progressing 
to severe COVID- 19 within the first 12 hours of admis-
sion. This model will require further validation in larger 
datasets. Future studies will use this model as a tool for 
predicting severe COVID- 19 in resource- limited settings 
where effective vaccines and therapies are still unavailable.
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