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Abstract
Melanoma, as for many other cancers, undergoes a selection process during progres-
sion that limits many innate and adaptive tumor control mechanisms. Immunotherapy 
with immune checkpoint blockade overcomes one of the escape mechanisms but 
if the tumor is not eliminated other escape mechanisms evolve that require new 
approaches for tumor control. Some of the innate mechanisms that have evolved 
against infections with microorganisms and viruses are proving to be active against 
cancer cells but require better understanding of how they are activated and what 
inhibitory mechanisms may need to be targeted. This is particularly so for inflam-
masomes which have evolved against many different organisms and which recruit a 
number of cytotoxic mechanisms that remain poorly understood. Equally important 
is understanding of where these mechanisms will fit into existing treatment strate-
gies and whether existing strategies already involve the innate killing mechanisms.

K E Y W O R D S

adaptive resistance, IL-1β, inflammasomes, innate killing, melanoma, pyroptosis, TCGA

www.wileyonlinelibrary.com/journal/pcmr
mailto:﻿
https://orcid.org/0000-0001-5518-6605
http://creativecommons.org/licenses/by/4.0/
mailto:peter.hersey@sydney.edu.au


     |  661EMRAN Et Al.

1  | INTRODUC TION

The introduction of drugs that targeted the BRAFV600E mutation in 
the MAPK signal pathway and advances in immunotherapy based on 
blockade of immune checkpoints on lymphocytes ushered in a new 
era in treatment of melanoma (Luke, Flaherty, Ribas, & Long, 2017). 
Despite these advances, not all patients respond to such treatments 
and even in responding patients therapy resistance occurs in the ma-
jority of patients. Multiple causes of resistance to immunotherapy 
have been defined (Ribas & Wolchok, 2018; Sharma, Hu-Lieskovan, 
Wargo, & Ribas, 2017) including defects in antigen presentation 
(Sade-Feldman et al., 2017) and low T-cell infiltration into tumors 
(Li et al., 2019). Similarly, resistance to targeted therapies involves a 
diverse array of causes including reactivation of the MAPK pathway 
(Song, Piva, et al., 2017) and epigenetic changes (Hugo et al., 2015; 
Shaffer et al., 2017).

Recent studies on resistance mechanisms have placed increas-
ing importance on the plasticity of some melanoma and adaptive 
changes induced by treatment (Bai, Fisher, & Flaherty, 2019). These 
concepts have led to classifications based on different states of dif-
ferentiation (Tsoi et al., 2018) and that treatment resistance can in-
volve dedifferentiation of melanoma to relatively undifferentiated 
states (Tsoi et al., 2018). These effects of therapy with MAPKi had 
been shown previously in melanoma (Hugo et al., 2015). Similarly, 
resistance to immunotherapy had been shown in previous studies 
to be associated with dedifferentiation and loss of melanoma an-
tigens due to TNF production by T cells responding to the tumor 
(Landsberg et al., 2012). Similar findings were reported in adoptive 
T-cell therapy in melanoma with loss of differentiation antigens 
MART1 and gp100 (Mehta et al., 2018).

An important finding in studies on melanoma resistance was 
that certain dedifferentiated resistant melanoma was nevertheless 
sensitive to anti-cancer drugs when their expression profiles were 
matched to drugs in a pharmacogenomics portal (Seashore-Ludlow 
et al., 2015). In particular, dedifferentiated melanoma was sensitive 
to ferroptosis-inducing drugs. These studies have raised questions 
as to whether other innate cytotoxic mechanisms may have differ-
ent resistance mechanisms that can be targeted particularly in mel-
anoma not responding to targeted or immunotherapy. The following 
sections review the studies on ferroptosis and then review evidence 
that pyroptotic cell death induced by inflammasomes may also pro-
vide novel approaches against resistant melanoma.

2  | FERROPTOSIS A S A MODEL OF 
INNATE CELL DE ATH MECHANISMS IN 
C ANCERS

Ferroptosis is a non-apoptotic form of cell death resulting from iron-de-
pendent lipoxygenase enzyme peroxidation of polyunsaturated fatty 
acids in cell membranes (Dixon, 2017). These enzymes are normally 
inhibited by glutathione-dependent anti-oxidants such as glutathione 
peroxidase 4 (GPX4; Yang et al., 2016). Ferroptosis can therefore be 

induced by inhibition of GPX4. The production of GPX4 is dependent 
on membrane transporters that transport cysteine needed for produc-
tion of glutathione. The transporters can be inhibited by drugs like 
erastin or sorafenib and GPX4 itself by RSL3 and FIN56. Anti-oxidants 
like ferrostatin-1 also inhibit ferroptosis. The significance of GPX4 in 
treatment resistance of cancer cells was revealed in studies on drug-
tolerant persister cells from several types of cancer that were found to 
be vulnerable to inhibition of GPX4 (Hangauer et al., 2017; Viswanathan 
et al., 2017). Further interest in ferroptosis was generated by the dis-
covery that immunotherapy with anti-CTLA4 and anti-PD1 was inhib-
ited by the anti-oxidant liprostatin-1 (Wang et al., 2019), indicating that 
although ferroptosis was an endogenous cytotoxic mechanism, it could 
also be induced by T cells. The mechanism of induction of ferroptosis 
by the T cells appeared to involve interferon (IFN)-γ-mediated down-
regulation of the glutamate–cystine transporter system required for 
production of GPX4 (Zitvogel & Kroemer, 2019).

3  | INFL AMMA SOME-INDUCED CELL 
DE ATH IN C ANCERS

These studies on ferroptosis-induced death in cancer cells that are 
resistant to treatment raise the possibility that other innate cell death 
mechanisms may also be recruited against melanoma. These include 
regulated pathways such as necroptosis and pyroptosis. Necroptosis 
is a programmed form of necrosis showing morphological features 
similar to necrosis that is dependent on activation of the receptor-
interacting serine/threonine kinases (RIPK)1, RIPK3 and mixed line-
age kinase domain-like pseudo-kinase (MLKL). The latter is recruited 
to phosphotidylinosites and oligomerizes in the plasma membrane 
(Kaczmarek, Vandenabeele, & Krysko, 2013; Tang, Kang, Berghe, 
Vandenabeele, & Kroemer, 2019). It does not involve caspases but 
can be induced by death receptor ligands such as TNF and Fas when 
caspase-8 is inhibited or at low expression levels. It was found that 
RIPK3 mRNA and protein were absent or poorly expressed in most 
metastatic melanoma (Geserick et al., 2015) which is a limitation in 
targeting necroptosis in new treatment initiatives.

Pyroptosis is also a regulated form of cell death resulting from 
activation of inflammasomes as outlined in several reviews (Lee & 
Kang, 2019; Moossavi, Parsamanesh, Bahrami, Atkin, & Sahebkar, 
2018; Xia et al., 2019). Inflammasomes have been mainly of interest 
in defense of cells against infections. However, their association with 
inflammation and cell death has created interest in their involvement 
in a wide range of diseases such as obesity, dementia, diabetes, and 
cancers (Guo, Callaway, & Ting, 2015).

There are many different types of inflammasomes but in general 
they are cytosolic protein complexes composed of sensors that rec-
ognize microbial components and products of cell injury, an adaptor 
protein apoptosis-associated speck-like protein containing a caspase 
recruitment domain (ASC), and caspase-1 that binds to ASC. The 
formation of such a complex leads to the activation of caspase-1, 
which induces the cleavage and secretion of pro-inflammatory cy-
tokine interleukin-1β (IL-1β) and IL-18 (Lamkanfi & Dixit, 2014). The 
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sensors are categorized according to their structural characteristics 
into nucleotide-binding domain-like receptors (NLRs), and absent 
in melanoma 2 (AIM2)-like receptors (ALRs). The NLR sensors can 
be specific for certain bacterial products such as the lethal toxin of 
Bacillus anthracis in NLRP1 and bacterial flagellin in NLRC4. NLRP3 
appears less specific and can be activated by crystalline structures 
such as uric acid crystals and a range of bacterial products and vi-
ruses (Lamkanfi & Dixit, 2014).

Activation of NLRP3 is believed to occur in two stages with an 
initial priming step resulting from activation of NF-kB, for example, 
by toll-like receptors (TLR) which increases the levels of proteins in 
the complex. Deubiquitination of NLRP3 by deubiquitinating en-
zymes (Py, Kim, Vakifahmetoglu-Norberg, & Yuan, 2013) and phos-
phorylation steps mediated by c-Jun terminal kinase (JNK1; Song, 
Liu, et al., 2017) are also involved. Following the priming step, acti-
vation of the complex can occur in response to a number of stimuli 
including particulate matter, bacterial and viral products, and ATP. It 
was proposed that the common mechanism may be potassium (K+) 
efflux and low K levels. This would be consistent with the proposed 
mechanism of activation by the antibiotic nigericin, which is believed 
to cause efflux of K+ in exchange for H+ (Próchnicki, Mangan, & Latz, 
2016). Another protein involved in assembly of the inflammasome is 
the enzyme NEK7 that binds to the so-called LRR domain of NLRP3. 
This forms a connection with adjacent NLRP3 proteins allowing 
oligomerization to occur (Nozaki & Miao, 2019).

The AIM2 sensor was discovered in experiments designed to sup-
press tumorigenicity of melanoma cells by transfer of chromosome 6 
from normal cells. One of the resulting differentially expressed genes 
was AIM2 which belonged to the family of interferon-inducible genes 
(DeYoung et al., 1997). Subsequent studies have shown that it binds to 
double-stranded DNA (dsDNA) in the cytosol either released from the 
nucleus or from bacteria and DNA viruses (Lugrin & Martinon, 2018). 
Once bound to DNA, it forms a helical structure with ASCs by their pyrin 
domain (PYD) and caspase-1 then binds to ASC proteins via the CARD 
domains (Wang & Yin, 2017). In addition to recognition of dsDNA, 
AIM2 can also recognize endogenous retroviruses (Sharma, Karki, & 
Kanneganti, 2019)that leads to activation of endogenous IFN pathways 
in immune responses (Chuong, Elde, & Feschotte, 2016). AIM2 is sub-
ject to degradation by autophagy once it is bound by tripartite motif 
protein 11 (TRIM11). This is viewed as an autoregulatory mechanism 
to control inflammation (Liu et al., 2016). Immunohistochemistry stud-
ies have shown high levels of AIM2 in inflammatory skin disorders (de 
Koning et al., 2012) and in primary melanoma (de Koning, van Vlijmen-
Willems, Zeeuwen, Blokx, & Schalkwijk, 2014).

4  | CY TOKINES AND CELL DE ATH 
RESULTING FROM AC TIVATION OF THE 
INFL AMMA SOME

The key downstream events of activation of inflammasomes are 
activation of caspase-1 which converts pro-interleukin (IL)-1β and 
pro-IL-18 into the active cytokines IL-1β and IL-18. Caspase-1 also 

cleaves a protein called gasdermin D. Gasdermin D is a member of 
a family of conserved proteins that includes gasdermin A, B, C, D, 
E, and DFNB59 (Orning, Lien, & Fitzgerald, 2019). They have an 
N-terminal pore forming domain (PFD) composed of 242 amino acids 
(aa) connected by a 43-aa linker to a 199-aa carboxy-terminal do-
main. After cleavage by caspase-1, the N-terminal PFDs oligomerize 
and integrate into the cell membranes to form large diameter pores 
of 10-15nm which allows entry of solutes and disruption of the cell 
as well as release of IL-1β and IL-18. Most of the gasdermins have 
pore-forming ability that is held in check by their C-terminal domain 
(Kovacs & Miao, 2017). Gasdermin E can be cleaved by caspase-3 
and can thereby increase apoptosis induced by intrinsic pathways. 
Both gasdermin D and E also permeabilize mitochondrial membranes 
and provide a link between these two death pathways (Rogers et al., 
2019). The central role of gasdermins in pyroptosis has led to the 
proposal that it be referred to as gasdermin mediated programmed 
necrotic cell death (Shi, Gao, & Shao, 2017).

5  | GOOD AND BAD A SPEC TS OF 
INFL AMMA SOME AC TIVATION IN C ANCERS

The activation of inflammasomes while potentially inducing cell death 
in cancers may also have tumor-promoting properties due to induc-
tion of chronic inflammation. The potential effects on individual tu-
mors have been reviewed elsewhere (Liu et al., 2015; Moossavi et al., 
2018; Xia et al., 2019). Inflammasomes were found to be inactive in 
primary melanoma but constitutively active in high-grade metastatic 
melanoma (Dunn, Ellis, & Fujita, 2012; Okamoto et al., 2010). Nodular 
melanoma was reported to be more common in certain polymor-
phisms of NLRP3 and NLRP1 (Verma et al., 2012). One of the main 
products of inflammasome activation is IL-1β which has been impli-
cated in promotion of lung cancers. This was based on a significant 
reduction of lung cancers in the CANTOS trial on 10,061 patients 
with cardiovascular disorders and high C-reactive proteins (CRPs) 
who were randomized to placebo or different doses of canakinumab, 
an antibody against IL-1β. The trial was positive in terms of reduction 
of cardiovascular events. In addition, a retrospective analysis showed 
a highly significant reduction in incidence of lung cancers in patients 
receiving the two higher doses of canakinumab (Ridker et al., 2017).

Retrospective analysis of an immunotherapy trial in melanoma 
also raised questions about association of high CRPs with suppres-
sion of responses against immunotherapy with anti-CTLA4. This 
trial compared results of immunotherapy with tremelimumab (an-
ti-CTLA4) with those against standard chemotherapy. The intent-to-
treat results were negative (Ribas et al., 2013) but a retrospective 
analysis showed that when patients with high CRPs were excluded, 
the patients treated with tremelimumab did have better survival 
than the chemotherapy treated patients (Marshall, Ribas, & Huang, 
2010). A small phase 2 study on 37 patients treated with interferon 
and tremelimumab showed increased survival was associated with 
low baseline CRP levels (Tarhini et al., 2012). CRPs are induced in 
the liver by IL-6 which is upregulated by activation of NF-kB by IL-1β 
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so this is again indirect evidence for an adverse effect of activated 
inflammasomes on immune responses against melanoma.

In contrast, the importance of inflammasomes in immune re-
sponses against cancers received strong support from studies on an 
innate immune checkpoint referred to as transmembrane protein 176B 
(TMEM176B). TMEM176B regulates Ca2+-dependent K+ channels and 
thereby prevents development of low levels of K+ in the cytosol that 
is a strong activator of NLRP3 inflammasomes. Block of this check-
point in models of several murine tumors allowed activation of NLRP3 
inflammasomes and enhanced immune responses against the tumors. 
Immunotherapy with anti-PD1 and anti-CTLA4 against EG7 lympho-
mas was also enhanced by blockade of TMEM176B. Importantly, they 
found that human melanoma tumors responding to anti-CTLA4 and 
anti-PD1 had upregulation of 15/16 inflammasome-related genes that 
was not detected in melanoma that did not respond to ICB (Segovia 
et al., 2019). These gene expression differences were not observed in 
pretreatment samples. Pharmacological inhibition of TMEM176B was 
associated with increased infiltration of tumors by CD8 T cells. Similar 
enhanced anti-PD1 responses were seen against mice bearing a mu-
rine melanoma. The authors suggested that TMEM176B may be a use-
ful marker to predict responses to ICB immunotherapy with high levels 
being associated with poor responses (Segovia et al., 2019).

Dendritic cells (DCs) provide the essential link between innate and 
adaptive immunity and evidence suggests the CD141+ (cDC1) sub-
set are of critical importance in generation of CD8 T-cell responses 
(van der Aa, van Montfoort, & Woltman, 2015; Roberts et al., 2016). 
Inflammasomes are known to be expressed in DCs but whether they 
are critical for directing type 1 responses is not known (Ferreira et al., 
2017). AIM2 in plasmacytoid DCs in lung carcinoma was considered 
responsible for immunosuppression associated with IL-1 alpha pro-
duction (Sorrentino et al., 2015). NLRC4 inflammasome in cDC1 was 
the target for dabrafenib activation (Hajek et al., 2018) but its role in 
treatment responses remains to be studied. The need for priming steps 
for activation of inflammasomes may provide a strategy for selective 
activation of cells in the immune system and thereby increase immune 
responses against cancers. Recent studies have shown impressive re-
sponses in patients that had failed anti-PD1 treatment when treated 
with TLR9 agonists. TLR9 expression is confined to plasmacytoid DCs 
and CD141 DCs so that activation of inflammasomes by these agonists 
would be selective for the immune cells (Poh, 2018; Ribas et al., 2018).

6  | DE VELOPING A UNIF YING 
HYPOTHESIS

These and previous studies indicate that inflammasomes have diverse 
roles in cancer with some cancers benefiting from IL-1β and IL-18, 
whereas in others, the IL-1 signaling pathway promoted cancer growth 
(Karki & Kanneganti, 2019; Karki, Man, & Kanneganti, 2017). We sug-
gest the best unifying hypothesis is that the outcomes depend on 
whether inflammasome activation is predominantly within the tumor 
or the immune cells. In the Segovia et al. study, the benefits appeared 

to be clearly focused on immune responses to the tumors and the 
TMEM176B checkpoint did not work through changes in the tumor 
cells. It also appeared that the effects of blocking this checkpoint were 
mainly evident in immunogenic tumors and not in tumors unresponsive 
to immunotherapy (Segovia et al., 2019; Figure 1).

7  | CLUES FROM THE C ANCER GENOME 
ATL A S ( TCGA) MEL ANOMA DATA

Studies on information in the TCGA have proven useful in identifying 
subgroups of patients with different outcomes. It was reasoned that 
high levels of proteins associated with inflammasomes may iden-
tify their effect on survival. RNA-seq data from 458 patients with 
cutaneous melanoma were interrogated for associations of inflam-
masome proteins with patient survival by comparing outcomes in 
patients with high (>median) versus low (<median) levels. The forest 
plots shown in Figure 2 indicate that the RNA-seq expression levels, 
above or below the median, of AIM2, NLRP3, NLRP1, and NLRC4 
show a strong positive correlation with survival. Expression of ASC 
(PYCARD) adaptor proteins was not related to survival.

As discussed above, the outcome of inflammasome activation 
may depend on whether inflammasomes are activated in immune 
cells or in cancer cells. TCGA analyses shown in Figure 2 did not 
discriminate between these effects but we reasoned that if the re-
sults were due to effects related to activation in immune cells this 
would be most evident in melanoma with high levels of T cells infil-
trating lymphocytes (TILs). The effects on survival were therefore 
compared in patients with <5% TILs and those with >5% TILs using 
information reported elsewhere (Chen, Khodadoust, Liu, Newman, 
& Alizadeh, 2018; Saltz et al., 2018). The improvement in survival 
with high levels of inflammasome receptors NLRP1 and NLRP3 was 
abrogated in patients with low TILs (Figure 3a). In contrast, the im-
proved survivals seen with high AIM2 and high NLRC4 were retained 
in patients with high or low TILs score suggesting the beneficial ef-
fect might be intrinsic to melanoma cells and independent of TILs 
level (Figure 3b).

NLRP1 activation is of particular interest in that recent studies 
suggest that it is held in an inactive state by the serine dipeptidyl 
peptidases (DPP)8 and 9 and that inhibitors of these dipeptidases 
result in activation of NLRP1.(Zhong et al., 2018) Preclinical studies 
with non-specific inhibitors of DPP8/9 (also known as PT100 or ta-
labostat) had previously shown that these inhibitors had anti-tumor 
effects that appeared mainly related to effects on the immune sys-
tem(Adams et al., 2004).

NLRC4 is believed to be activated by the NOD-like apopto-
sis-inducing protein (NAIP) sensor which binds a number of dif-
ferent gram-negative bacteria. It can bind directly to caspase-1 
rather than through binding to ASC and can activate caspase-8. It 
has also been associated with high levels of IL-18 (Duncan & Canna, 
2018). In a murine model of melanoma, NLRC4 was found to sup-
press tumor growth by non-inflammasome activation involving 
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interferon-gamma production from tumor-associated macrophages. 
The latter were prominent in primary melanoma but not in meta-
static melanoma (Janowski et al., 2016). AIM2 is activated by dsDNA 

from pathogens or damaged nuclei. It was also activated by IFN in 
a network involving endogenous retroviruses upstream of AIM2 
(Chuong et al., 2016).

F I G U R E  1   Possible mechanisms of pyroptotic cell death through inflammasome activation. Epigenetic drugs such as DNA 
methyltransferase inhibitor (DNMTi) and CDK9 inhibitors (CDK9i) can activate ERVs and dsDNA in the cancer cells. Inflammatory protein 
AIM2 binds dsDNA and subsequently activates caspase-1 through forming a complex with ASC protein. Whereas, DAMPs, PAMPs binds 
to TLRs on the plasma membrane and subsequently activate inflammatory sensor NLRC4, which can directly activate caspase-1. Activated 
caspase-1 directs pyroptotic cell death and converts IL-1β, IL18 from inactive Pro-IL-1β, Pro-IL18 that releases from the cells to drive 
inflammation (left panel). Intrinsic inflammatory gene signatures in the dendritic cells or macrophages augment response to ICB. TMEM176B 
is a negative regulator of the inflammatory proteins such as NLRP3 and NLRP1. Blocking TMEM176B by small molecule inhibitor leads 
to activation of caspase-1 and IL-1β. This promotes the recruitment of CD8+ T cells in the tumor microenvironment thus enhancing the 
therapeutic response of ICB (right panel) (modified from Segovia et al., 2019). DAMPs, damage-associated molecular patterns; ERVs, 
endogenous retroviruses; ICB, immune checkpoint blockade; PAMPs, pathogen-associated molecular patterns; TLR, toll-like receptor.

F I G U R E  2   Low expression of 
inflammasome mediators is associated 
with poor prognosis in melanoma. RNA-
seq data of skin cutaneous melanoma 
(SKCM) patients were retrieved from 
TCGA database (N = 458). Patients were 
dichotomized based on median expression 
(>median = high; <median = low) of the 
corresponding genes. (a) A forest plot was 
generated based on the computed hazard 
ratio (HR) and 95% confidence intervals 
(CI) of survival for each gene. Logrank 
p value refers to the significance of the 
overall survival adjusted to 10 years. (b) 
A KM-plot is showing overall survival of 
SKCM patients based on AIM2 median 
expression
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7.1 | C-reactive proteins as markers of harmful 
inflammasome activation

IL-1β is a very pleiotropic cytokine that has effects that can promote 
or inhibit growth of tumors (Bent, Moll, Grabbe, & Bros, 2018). It can 
also have downstream effects resulting in activation of NF-kB and 
production of cytokines like IL-6 that activate acute phase proteins 
like CRP (Slaats, Ten Oever, van de Veerdonk, & Netea, 2016). CRP 
levels are recognized markers of inflammation, and several studies 
have identified high CRP levels (>10 mg) to be associated with an 
adverse prognosis in melanoma. A comprehensive study on 1,144 
patients found that approximately 10% of patients had elevated 
levels, and this was an adverse prognostic indicator at all stages of 
the disease (Fang et al., 2015). Sequential studies also showed that 
increased levels could predict recurrences.

Certain forms of metastatic melanoma when they involve subcu-
taneous sites can be associated with clinical appearances of marked 
inflammation and systemic symptoms of fevers, anorexia, and 
weight loss. The clinical appearance of one such metastasis is shown 
in Figure 4a. Melanoma cultures from this patient (patient 7) were 
shown to produce high levels of a range of cytokines including IL-1β, 
IL-6, IL-8, and VEGF, which were associated with constitutive acti-
vation of NF-kB (Gallagher et al., 2014). The BET protein inhibitor, 
I-BET151, was very effective in inhibiting the cytokine production 
in vitro and this or more recently developed BET protein inhibi-
tors (Xu & Vakoc, 2017) may have a role against the severe forms 

of inflammatory melanoma (Gallagher et al., 2014). We have subse-
quently shown that such melanoma can be associated with marked 
global hypomethylation of DNA and expression of inhibitory ligands 
such as PD-L1 (Chatterjee et al., 2018; Emran et al., 2019). These 
studies are consistent with an adverse effect of inflammasome acti-
vation in melanoma due to both growth-promoting effects and im-
munosuppression from low-grade chronic inflammation.

8  | DIFFERENTIATION STATE OF 
MEL ANOMA A S DETERMINANTS OF 
INFL AMMA SOME AC TIVATION

Part of the paradigm introduced by the studies of Tsoi et al. was 
that different states of differentiation of melanoma have different 
sensitivity to particular treatments. In the case of ferroptosis, the 
susceptible melanoma cells appeared to have a neural crest-like 
phenotype. Triggers for cell death were agents that reduced or in-
hibited the anti-oxidants like GPX4 that inhibit the lipoxygenase 
enzymes (Tsoi et al., 2018). In the case of NLRP3 in normal cells, a 
priming step increases the concentration of proteins in the complex 
and also involves deubiquitination and phosphorylation steps re-
ferred to above. Whether a priming step is needed in cancer cells is 
not clear as the malignant state may provide this priming step. This 
was supported by studies on melanoma that showed constitutive 
activation of NALP (NLRP3) inflammasomes in melanoma occurred 

F I G U R E  3   Association of TILs level 
and gene expression of the inflammasome 
mediators with overall survival in 
melanoma. (a) Skin cutaneous melanoma 
(SKCM) patients were separated 
based on the median expression of the 
corresponding gene and the TILs level 
(>5% refers to high TILs). TILs proportion 
in the tumor were retried based on deep 
learning pathology images (Saltz et al., 
2018). (b) Similarly, SKCM patients were 
stratified based on low TILs level (<5% 
refers to low TILs) and median expression 
of the selected gene. Forest plot refers 
to the HR with 95% CI and logrank p 
value were calculated for overall survival. 
Statistical analysis was performed in 
GraphPad prism, and p < .05 refers to 
significance of overall survival
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in late-stage metastatic melanoma but not in intermediate or early-
stage melanoma. The inflammasomes in intermediate stage mela-
noma could however be activated by exposure of the melanoma to 
IL-1 (Okamoto et al., 2010). Studies on melanoma cell lines suggest 
that sensitivity to the nigericin activator of NLRP3 was associated 
with high levels of NLRP3 complex proteins and other inflamma-
some sensors (unreported data) but whether levels are associ-
ated with different states of differentiation remains to be studied 
(Figure 4b).

The need for priming steps for activation of inflammasomes may 
provide a strategy for selective activation of cells in the immune sys-
tem and thereby increase immune responses against cancers. Recent 
studies have shown impressive responses in melanoma patients that 
had failed anti-PD1 treatment when treated with TLR9 agonists. 
TLR9 expression is confined to plasmacytoid DCs so that activation 
of inflammasomes by these agonists would be selective for the im-
mune cells (Poh, 2018; Ribas et al., 2018).

9  | REPURPOSING DRUGS TO AC TIVATE 
INFL AMMA SOMES

Recent studies showing that the serine dipeptidases DPP8/9 inhibit 
activation of NLRP1 has put renewed interest in past studies on in-
hibitors of these peptidases (like talabostat) as anti-tumor agents 
(Eager et al., 2009). In particular, studies on AML have shown that 
with appropriate selection a large proportion of AML lines can be 
killed by these and more specific inhibitors of DDP8/9 (Johnson 
et al., 2018). In addition, a number of chemotherapy agents that 
have modest activity against cancers such as melanoma may have 
ancillary effects on inflammasomes. For example, paclitaxel was 
shown to activate TLR in macrophages and to prime macrophages 
for NLRP3 inflammasome activation by ATP or nigericin (Son, Shim, 
Hwang, Park, & Yu, 2019). IL-1β production was totally dependent 
on presence of NLRP3. Doxorubicin was found to induce pyroptosis 
in several melanoma lines in vitro particularly when autophagy was 
inhibited by chloroquine (Yu et al., 2019).

Autophagy is a critical regulator of inflammasome activation by 
removal of endogenous signals that would otherwise activate inflam-
masomes. It is also critical for degradation of inflammasome compo-
nents and may be a physiological feedback mechanism to control 
inflammation (Harris et al., 2017; Seveau et al., 2018). Chloroquine 
and several derivatives are currently in clinical trials with chemo-
therapy but whether inflammasomes were involved is not known 
(Amaravadi, Kimmelman, & Debnath, 2019; Rebecca et al., 2019). 
Temozolomide was shown to induce responses in 3 patients who had 
failed immunotherapy with pembrolizumab (Swami et al., 2019) but 
whether activation of inflammasomes was involved is an intriguing 
possibility. A particularly interesting report was the activation of in-
flammasomes by the BRAFV600E targeting drug dabrafenib (Hajek 
et al., 2018). As reviewed elsewhere (Hersey, Tiffen, & Gallagher, 
2019), the cause of fevers induced by dabrafenib has long been a 
puzzle and this report provides a plausible explanation as well as 
opening up new areas of research such as whether off-target effects 
of dabrafenib on inflammasomes may increase immune responses 
against melanoma.

Drugs that demethylate DNA in the nucleus like decitabine or 
azathioprine may activate AIM2 inflammasomes. Endogenous ret-
roviral elements (ERV) in particular were shown to activate AIM2, 
and further studies are needed to examine whether cell death in-
duced by these drugs is associated with activation of AIM2 (Chuong 
et al., 2016). Inhibitors of CDK4/6 were also reported to expose ERV 
elements and potentially be involved in the activation of immune re-
sponses by these drugs (Goel et al., 2017). CDK9 inhibitors are prov-
ing to be another class of epigenetic regulators that can reactivate 
genes silenced in heterochromatin to an active state in euchromatin 
by phosphorylation of BRG1 in the SWI/SNF complex (Zhang et al., 
2018). These brief references indicate there is much scope for ex-
amining the role of inflammasomes in the activity of these agents 
(Figure 1).

F I G U R E  4   High expression of inflammatory gene signatures 
induced cell death in patient-derived melanoma cells. (a) Clinical 
appearance of melanoma in patient 7. (b) Melanoma with strong 
inflammasome RNA-seq signatures (patient 7, C027M) display 
nigericin-dependent lytic cell death. The THP-1 human monocytic 
cell line was used as a positive control; C086M human melanoma 
cell line has weaker inflammasome RNA-seq signatures
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10  | CONCLUSION

Pyroptosis induced by activation of inflammasomes is poten-
tially an additional cell death mechanism that is not subject to 
the obstacles that limit apoptosis and other forms of cell death. 
Nevertheless, the role of inflammasomes in cancer and melanoma 
in particular is complicated in that the inflammatory response 
generated may promote tumorigenesis as suggested for lung car-
cinoma in the CANTOS trial. There is also indirect evidence that 
inflammation from activation of inflammasomes may be immuno-
suppressive and inhibit immunotherapy induced by ICB. In con-
trast, data from TCGA analyses can be interpreted to suggest that 
inflammasomes in melanoma may be associated with improved 
prognosis.

We suggest these different interpretations may depend on 
whether there is chronic activation of inflammasomes in the tumor 
itself giving rise to tumor promotion and immunosuppression or 
whether the site of inflammasome activation is in the immune sys-
tem (particularly DCs) as shown in Figure 1. The latter may amplify 
the inherent cytotoxic mechanisms and lead to tumor control. The 
TCGA data, though indirect, would be consistent with this interpre-
tation and is supported by studies in murine models.

Should these interpretations prove valid a two-pronged treat-
ment approach might be considered that would involve selection 
of patients with evidence of chronic activation of inflammasomes 
in their tumor such as high CRP levels and treatment with agents 
that limit inflammation such as inhibition of circulating IL-1β and 
inhibition of NF-kB by use of BET protein inhibitors. On the other 
hand, should favorable outcomes depend on activation of inflam-
masomes in the cells of the immune system, selection of patients 
might be based on those not responding to ICB and treatment 
with agents that activate the inflammasome. There is very lim-
ited understanding of the role of inflammasomes in relation to 
different subsets of DCs and whether activation of different in-
flammasomes has different treatment outcomes. New initiatives 
that target inflammasomes in the immune system might include 
blockade of the TMEM176B checkpoint that limits activation of 
inflammasomes in T cells as reviewed above. There may also be 
scope for treatments with drugs that have selectivity for partic-
ular inflammasomes. The targeting of NLRP1 inflammasomes by 
DPP8/9 inhibitors or the targeting of NLRC4 inflammasomes by 
dabrafenib may be examples of such agents as well as the well-
known TLR9 agonists mentioned above. Blocking autophagy to 
increase activation of inflammasomes might also be worthy of in-
vestigation in drugs shown in past studies to have only modest 
benefits against melanoma.
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