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Robot-assisted motion compensated beating heart surgery has the advantage over the conventional Coronary Artery Bypass Graft
(CABG) in terms of reduced trauma to the surrounding structures that leads to shortened recovery time. The severe nonlinear
and diverse nature of irregular heart rhythm causes enormous difficulty for the robot to realize the clinic requirements, especially
under arrhythmias. In this paper, we propose a fusion prediction framework based on InteractiveMultipleModel (IMM) estimator,
allowing each model to cover a distinguishing feature of the heart motion in underlying dynamics. We find that, at normal state,
the nonlinearity of the heart motion with slow time-variant changing dominates the beating process. When an arrhythmia occurs,
the irregularity mode, the fast uncertainties with random patterns become the leading factor of the heart motion. We deal with
prediction problem in the case of arrhythmias by estimating the state with two behavior modes which can adaptively “switch”
from one to the other. Also, we employed the signal quality index to adaptively determine the switch transition probability in the
framework of IMM.We conduct comparative experiments to evaluate the proposed approach with four distinguished datasets.The
test results indicate that the new proposed approach reduces prediction errors significantly.

1. Introduction

Robot-assisted motion compensation, as one of the promis-
ing treatment modalities for Coronary Artery Disease (CAD)
related surgery, including Coronary Artery Bypass Graft
(CABG) Surgery, and Beating Heart Intracardiac Surgery, has
some expected advantages, such as the relative high accuracy
and the possibility of new surgery techniques, for example,
minimally invasive beating heart surgery. The off-pump sur-
gery also brings central nervous riskandneurocognitive prob-
lems [1]; meanwhile, the surgeon has the limitation of the
hand movement bandwidth to track beating heart motion
and ensure a high-accurate operation. The surgery-assisted
robot system provides a relatively stationary scenario for
the surgeon by eliminating the relative motion between the
beating heart and robotic tools. Typically, the system needs

a high tracking accuracy while in moving status in order of
100–250𝜇m root mean square (RMS) [2].

Similar to typical object tracking problems, the modeling
of the target motion dynamics issue in the beating heart
motion compensation procedure is an essential challenge.
However, the major difficulty of beating heart motion track-
ing arises from the target motion uncertainty exhibiting itself
in diverse situations where a target may undergo uncertain
trajectory pattern during elusive time instants. The beating
heart motion results from the autonomic neural regulation
of the heart and the circulatory system with variant complex
fluctuations [3, 4]. At a normal state, the heart motion regu-
larly beats with respiratory sinus arrhythmia, which demon-
strates a distinct phase coupling nonlinearity in its beat to
beat pattern [5]. The beating heart motion trajectory from
Coronary Heart Disease (CHD) patients usually involves
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arrhythmia as well, such as atrial fibrillation and prema-
ture ventricular contraction (PVC), which have abnormal
rhythms as a result of the defected cardiac conduction system.
In general, the beating heart motion with strong variability
dictating its beat to beat trajectory not only in continuously
changed heart rate but also in its varied movement patterns.

There are several research groups that devoted numerical
efforts [2, 6–11] on the topic of robotics-assisted motion
compensation problems. Proportional-derivative (PD), pole
placement (PP), and linear quadratic controllers [7] were
first implemented to solve the tracking control problem.
However, these controllers are inadequate in the performance
due to their phase lag caused by the feedback measurement
[2]. In the literature [8, 12–18], researchers proposed higher
effective model predictive control approaches by importing
the prediction of the future heart motion in the feed-forward
loop as in [2, 12, 16, 19].

As a prerequisite for the control strategy to achieve robust
and precise position tracking, the heart futuremovement pre-
diction is widely studied [2, 7]. In general, the current meth-
ods could be categorized into (1)methodbased onnonmodel:
the model-free Taken Theory based prediction method [20];
(2) methods based on the linear or nonlinear model: linear
model based prediction methods [17, 21], for example, time
domain AR model [2] and Fourier Series based prediction
method [9, 11]; nonlinearmodel based predictionmethod: for
example, Saritas [22] proposed a prediction method by using
artificial neural network, Bachta et al. [8] proposed an ampli-
tude modulation based prediction method, and Liang et al.
[13, 16] described the cardiorespiration coupling by a quadratic
nonlinear model; (3) uncertainty compensation method:
Liang et al. [14] using a master-slave Kalman filter to dynam-
ically estimate the process noise covariance; and (4) other
physiological signal assisted methods: these studies [15, 19,
23] investigated the correlation between ECG and beating
heart motion.

To deal with the specific features of rhythm irregularities,
Tuna proposed an adaptive motion estimation algorithm.
However, the study covers atrial fibrillation arrhythmia con-
dition only, and the other types of arrhythmias like PVCs still
need to be validated.

In the abovemethod, intensive studiesmake considerable
efforts on two issues in beating heart motion compensation;
one is the nonlinearity, and the other is uncertainty. The two
distinct features are dominant in the dynamics of beating
heart motion, which hinders the accurate motion prediction.
The nonlinearity derived from the coupling of breath and
heart beat motion is the dominant mode in the dynamics of
the heart rhythm, which shows a small amount of time-
variant statistics changing.We also noted that the uncertainty
exists in and prevails in some specific situations, which has an
extreme unpredictable pattern in the arrhythmias and could
not be recognized from the prior knowledge.

In general, themajoritymethods in the literature have the
flaw to cover varying characteristics of beating heart motion.
Thus, a signal model could be problematic due to either over-
fitting or underfitting the actual state under the variations
caused by the nonstationary nature and noise.

Although there is no universal model that can character-
ize the motion of a beating heart, a finite number of models

can adequately describe the heart behavior in different
regimes [24, 25]. We need to consider both normal heart
beating situations and those arrhythmia-related irregularities
to improve the prediction accuracy and thus enhance the
robot system performance. Therefore, it is clear that purely
quadratic nonlinear model could not fully describe the beat-
ing heartmotion dynamics. Anothermore general prediction
framework,which covers both the normal nonlinearity-domi-
nant beating mode and the abnormal arrhythmia-related
irregular beating mode necessary for surgery of each patient
with an individual difference, is needed.

In this paper, we propose a Nonlinear Fusion Adaptive
Model (NFAM) based heart motion prediction method. In
NFAM, we employ IMM Kalman filter approach capturing
every possible mode of beating heart motions. The hybrid
model fuses the dynamics of the modulated sinusoids model
[14, 16] to describe the normal nonlinear heart motion mode
and uncertainty irregular model [15, 19] to handle various
unforeseen arrhythmia patterns, especially for the quick
changing pattern of AF and PVCs.The novelty of thismethod
lies in that we import the fusion framework to handle the
unpredictable fast time-variant uncertainty in the case of
arrhythmia during heart beating as well as maintaining the
good prediction performance under regular heart rhythm.
The NFAM could enhance the robust ability to deal with
the abrupt, unforeseen uncertainties and approximate the
motion with sufficient detail.

2. Methodology

2.1. Beating Heart Motion Characteristics. The heart motion
dynamics is a nonlinear, nonstationary process with complex
fluctuating. The interpretation of the complicated mecha-
nisms of the cardiovascular system that derives the nonlin-
earity and uncertainty are diverse, such asmultiple oscillators
interaction [3], autonomic neural regulation of the heart and
the circulatory system [5], and stochastic feedback regulation
parasympathetic and sympathetic branch of nerve system [4].

The dynamics of beating heart motion demonstrates two
trajectory patterns, the regular one and the irregular one.
Although the beating heart motion does not beat with a
constant period, it has the relative regular pattern with small
time-varying statistics at a normal state. The regular pattern
roots from regulation of the heart function showing the fix-
chained phases. And there is another important phenomenon
called arrhythmia in cardiac physiology, strongly impacting
the dynamics of beating heart motion. The most common
CHD patients associated arrhythmias are AF and PVCs
which would make the motion beat either slower (commonly
known as bradyarrhythmias) or faster (commonly known
as tachyarrhythmias). AF is one of the most common types
of serious arrhythmia, which involves a fast and irregular
contraction of the atria. Atrial fibrillation would cause symp-
toms like a “fluttering” heartbeat or an irregular pulse. The
morphology of PVCs is highly variable and relies on the
place of origin and the presence of structural heart disease.
In addition, the trajectory of PVCs is hard to predict because
sometimes the activation spread occurs from a ventricle to
the contralateral one through nonspecialized myocardium;
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however, when activation comes from a fascicle through a
specific conduction system, both ventricles could be activated
“synchronously.”

TheAF and PVCs arrhythmias are with different irregular
pattern case by case. After exploration of the physiology
nature and observations of themeasured trajectory of beating
heart motion, we noted the following:

(1) The features in each mode: at the regular heart beat
state, time-varying cardiorespiration interaction,
which has the “fixed” pattern within limited uncer-
tainty range, is the regular dominant pattern run-
ning in the beating heart dynamics. At irregular beat-
ing state, relatively large variation occurs under
arrhythmia such that beating heart motion under-
takes a huge alteration from normal beat and transits
into another mode that we could not determine
accurately due to the insufficient knowledge of the
underlying mechanism.

(2) The overall states feature: the states of beating heart
dynamics are neither only “fixed,” demonstrating the
regular beating, nor only the “chaos,” demonstrating
the irregular beating. The states are merging the
two modes characterized by being sometimes dom-
inated by “fixed” mode and sometimes dominated by
“chaos” mode, and others are something in between.

2.2. Nonlinear Fusion, Adaptive Model
of Beating Heart Motion

2.2.1. Nonlinear Adaptive Model. The normal state dynamics
of the beating heart motion is a process driven by coupled
respiration motion and cardiac motion, each with indi-
vidual characteristic frequency. Coupled oscillators interact
with each other through their amplitudes and phases [16].
Therefore, we approximate the beating heart motion by the
superposition of three parts: cardiac motion 𝑋𝑐, respiration
motion𝑋𝑟, and interactionmotion part𝑋𝑚.Themodel could
be represented as

𝑋 (𝑡) = 𝑋𝑐 (𝑡) + 𝑋𝑟 (𝑡) + 𝑋𝑚 (𝑡) (1)

in which

𝑋𝑐 (𝑡) =
𝑁𝑐∑
𝑘=1

𝑎𝑐𝑘 cos (2𝜋𝑓𝑐𝑘 𝑡 + 𝜙𝑐𝑘) (2)

𝑋𝑟 (𝑡) =
𝑁𝑟∑
𝑙=1

𝑎𝑟𝑙 cos (2𝜋𝑓𝑟𝑙 𝑡 + 𝜙𝑟𝑙 ) (3)

𝑋𝑚 (𝑡) = 𝑋𝑐 ⋅ 𝑋𝑟 =
𝑁𝑐1∑
𝑘=1

𝑁𝑟1∑
𝑙=1

𝑎𝑚𝑘𝑙 cos (2𝜋𝑓𝑚𝑘𝑙 𝑡 + 𝜙𝑚𝑘𝑙) . (4)

In (2)–(4), generally 𝑎 denotes the magnitude, 𝑓 denotes
the frequency component, and 𝜙 denotes the phase. Equa-
tions (2) and (3) are the linear combinations of the significant
cardiac harmonics and respiration harmonics, respectively.
Equation (4) is the quadratic term with meaning of modu-
lating the cardiac signal by respiration signal.

The state space model for this system is

𝑥 (𝑡 + Δ𝑡) = 𝐴 (Δ𝑡) 𝑥 (𝑡) + 𝜇 (𝑡)
𝑧 (𝑡) = ℎ (𝑥 (𝑡)) + V (𝑡) (5)

with state vector defined as 𝑥(𝑡) = [𝑐(𝑡), 𝑎𝑐𝑘(𝑡), 𝑎𝑟𝑙(𝑡), 𝑎𝑚𝑘𝑙(𝑡),𝑓𝑐(𝑡), 𝑓𝑟(𝑡), 𝑓𝑚(𝑡), 𝜃𝑐𝑘(𝑡), 𝜃𝑐𝑙 (𝑡), 𝜃𝑟𝑙 (𝑡), 𝜃𝑚𝑘𝑙(𝑡)]𝑇 Here the trans-
fer matrix 𝐴 could be derived if the variable 𝑐(𝑡) and all 𝑎(𝑡),𝑓(𝑡), and 𝜙(𝑡) could evolve through a random walk.

𝐴 (Δ𝑡) =

[[[[[[[[[[[[[[[[[[[
[

1
𝐼𝑁𝑐+𝑁𝑟+𝑁𝑟1 𝐴𝑓 (Δ𝑡)

𝑘Δ𝑡
...
𝑙Δ𝑡 𝐴𝜃 (Δ𝑡)
...

𝑁𝑟1Δ𝑡

]]]]]]]]]]]]]]]]]]]
]

, (6)

where 𝐴𝑓(Δ𝑡) and 𝐴𝜃(Δ𝑡) hold the same structure to repre-
sent the coupling feature of the heart motion.

𝐴𝑓 (Δ𝑡) =
[[[[[[[[[[[
[

𝐼𝑁𝑐 𝐼𝑁𝑟1 1
1 1

1 1 0𝑁𝑐11 1

]]]]]]]]]]]
]

. (7)

Also the ℎ(𝑥(𝑡)) could be formulated as

𝐻𝑇 = (𝛿ℎ𝛿𝑥)
𝑇󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥(𝑡+Δ𝑡)=𝐴𝑥(𝑡)

=

[[[[[[[[[[[[[[[[[[[[[
[

1
cos 𝜃𝑐1 (𝑡 + Δ𝑡)

...
cos 𝜃𝑚𝑘𝑙 (𝑡 + Δ𝑡)

...
−𝑎𝑐𝑘 (𝑡 + Δ𝑡 | 𝑡) sin 𝜃1 (𝑡 + Δ𝑡)

...
−𝑎𝑚𝑘𝑙 (𝑡 + Δ𝑡 | 𝑡) sin 𝜃𝑚 (𝑡 + Δ𝑡)

]]]]]]]]]]]]]]]]]]]]]
]

.
(8)

2.2.2. Uncertainty Irregular Model. In this mode, we describe
the irregular beating heart motion as the combination of
adaptive linearity. Specifically, first, we model the main part
of the arrhythmia via autoregressive (AR) model. Second,
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we loosely chose the process noise covariance due to the
significant uncertainty existing in the irregular pattern. The
reason we choose the AR to model the beating heart motion
arises from the following facts. The underlying electrophysi-
ological mechanisms of arrhythmia are very complex and are
affected by a multitude of factors [26]. It is not practical to
construct in vivo models of arbitrary arrhythmia types. After
some experiments, we found that the frequency spectrum
of two kinds of arrhythmias derived by FFT algorithm
matches the spectrum generated by high-order AR model.
Furthermore, the former study [27] which adopts the AR
model shows successful results that if the behavior of the heart
changes abruptly especially under the arrhythmia situations,
the predictors can adapt the new heart behavior and can track
the ideal time-varying solution.

󳨀⇀𝑥 (𝑘) = 𝐴1󳨀⇀𝑥 (𝑘 − 1) + 𝐴2󳨀⇀𝑥 (𝑘 − 2) + ⋅ ⋅ ⋅
+ 𝐴𝑝󳨀⇀𝑥 (𝑘 − 𝑝) + 󳨀⇀V (𝑘) . (9)

Each observation is given by sum of weighted past 𝑝
observations along with the zero-mean white noise 󳨀⇀V (𝑘). We
also take the 𝑝 as the order of the AR model.

The state space canonical form of the UIM could be
reformulated as

𝑥𝑘 = 𝐹𝑥𝑘−𝑖 + 𝐵V𝑘
𝑦𝑘 = 𝐶𝑥𝑘 + 𝑛𝑘. (10)

𝐹 is the canonical form of dimensions 𝑝 by 𝑝:

𝐹 =
[[[[[
[

𝐴1 𝐴2 ⋅ ⋅ ⋅ 𝐴𝑝
𝐼 0 ⋅ ⋅ ⋅ 0
0 𝐼

d 0

]]]]]
]
. (11)

In algorithm design, we select the two different model
orders of 8 and 12, respectively, to adapt diverse and complex
irregular situations.Wename themodel asUIM8 andUIM12,
respectively.

2.2.3. Fusion Method. The biggest challenge of beating heart
motion prediction arises from the target motion uncertainty.
The conventional solutions to the prediction problems in
beating heart surgery follow the strategy that can be charac-
terized as “firstly build a parameter model as accurate as pos-
sible and then adaptively estimate the parameters to imple-
ment the model, which approximate the trajectory [28].”
This approach has some drawbacks: (1) possible errors in the
decision on the model are not likely to be accounted in the
estimation process and (2) the determined singlemodel is not
able to account for all possible situations of the right trajec-
tory.The InteractiveMultipleModel (IMM) based prediction
method reduces the difficulty due to model uncertainty by
using more than one model, which the models interplay with
each other to achieve better performance. The conventional
algorithm relies entirely on the performance of one single
“best” model decided by the prior knowledge of the target

motion. In contrast, the IMM call all the individuals (mod-
els) in a group simultaneously to produce overall estima-
tion.

The fusion method diagram is illustrated in Figure 1.
In the NFAM approach, IMM uses two distinct possible

models simultaneously; the first one is an adaptive nonlinear
model, and the other is irregular uncertainty model. In
addition, IMM employs a probabilistic switching mechanism
for exchanging of some information between the filters in the
fusion task [29]. We unify the evolving target motion and
measurement as the following equations:

𝑋 (𝑘 + 1) = 𝐹𝑗𝑋(𝑘) + 𝑤𝑗 (𝑘)
𝑧 (𝑘 + 1) = 𝐻𝑗𝑋 (𝑘 + 1) + V𝑗 (𝑘 + 1) . (12)

(a) Interaction andMixing. In themode𝑀𝑗(𝐾+1), the mixed
estimate 𝑋0𝑗(𝑘 | 𝑘) and the covariance matrix 𝑃0𝑗(𝑘 | 𝑘) in
each cycle are computed as

𝑋0𝑗 (𝑘 | 𝑘) = 𝑟∑
𝑖=1

𝜇𝑖𝑗 (𝑘 | 𝑘)𝑋𝑖 (𝑘 | 𝑘)

𝑃̂0𝑗 (𝑘 | 𝑘) = 𝑟∑
𝑖=1

𝜇𝑖𝑗 (𝑘 | 𝑘) {𝑃̂𝑖 (𝑘 | 𝑘)
+ [𝑋𝑖 (𝑘 | 𝑘) − 𝑋0𝑗 (𝑘 | 𝑘)]
× [𝑋𝑖 (𝑘 | 𝑘) − 𝑋0𝑗 (𝑘 | 𝑘)]𝑡} .

(13)

The mixing probability 𝜇𝑖|𝑗(𝑘 | 𝑘) is given by

𝜇𝑖𝑗 (𝑘 | 𝑘) = 1
𝜇𝑗 (𝑘 | 𝑘)𝑝𝑖𝑗𝜇𝑖 (𝑘 | 𝑘) , (14)

where the predicted mode probability 𝜇𝑗(𝑘 + 1 | 𝑘) =
∑𝑟𝑖=1 𝑝𝑖𝑗𝜇𝑖(𝑘 | 𝑘) and 𝑝𝑖𝑗 is the probability from 𝑀𝑖(𝑘) to𝑀𝑗(𝑘 + 1).
(b) Kalman Filter. In the Kalman filter framework, each
KF/EKF would update the mixed state estimation with
current measurement. The innovation covariance is given by

𝑆𝑗 = 𝐻𝑗𝑃̃𝑗 (𝑘 + 1 | 𝑘)𝐻𝑇𝑗 + 𝑅𝑗. (15)

We model the likelihood function for the matched filter
as Gaussian pdf as the form:

Λ 𝑗 = 1
(2𝜋)0.5√󵄨󵄨󵄨󵄨󵄨𝑆𝑗󵄨󵄨󵄨󵄨󵄨

exp {−0.5V𝑇𝑗 𝑆−1𝑗 V𝑗} , (16)

where

V𝑗 = 𝑧 (𝑘 + 1) − 𝑧̃𝑗 (𝑘 + 1 | 𝑘) . (17)

(c) Mode Probability Update. Once each model has been
updated with measurement 𝑧(𝑘 + 1), the mode probability
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Figure 1: Diagram of beating heart motion prediction algorithm based on IMM.

𝜇𝑗(𝑘 + 1 | 𝑘 + 1) is updated by mode likelihood Λ 𝑗 and the
predicted mode probability 𝜇𝑗(𝑘 + 1 | 𝑘) with normalization
factor 𝑐 = ∑𝑟𝑖=1 𝜇𝑖(𝑘 + 1 | 𝑘)Λ 𝑗 is

𝜇𝑗 (𝑘 + 1 | 𝑘 + 1) = 1
𝑐 𝜇𝑗 (𝑘 + 1 | 𝑘) Λ 𝑗. (18)

(d) State and Covariance Combiner.The state estimation and
associated covariance are combined using the updated mode
probability:

𝑋0𝑗 (𝑘 + 1 | 𝑘 + 1) = 𝑟∑
𝑖=1

𝜇𝑖𝑗 (𝑘 + 1 | 𝑘 + 1)𝑋𝑖 (𝑘 + 1 | 𝑘
+ 1)

𝑃̂0𝑗 (𝑘 + 1 | 𝑘 + 1) = 𝑟∑
𝑖=1

𝜇𝑖𝑗 (𝑘 + 1 | 𝑘 + 1)
⋅ {𝑃̂𝑖 (𝑘 + 1 | 𝑘 + 1)
+ [𝑋𝑖 (𝑘 + 1 | 𝑘 + 1) − 𝑋0𝑗 (𝑘 + 1 | 𝑘 + 1)]
× [𝑋𝑖 (𝑘 + 1 | 𝑘 + 1) − 𝑋0𝑗 (𝑘 + 1 | 𝑘 + 1)]𝑡} .

(19)

3. Evaluation

3.1. Experiment Setup. We use four distinct sets of biological
data to evaluate the proposed method. The first two datasets

are heat motion positon datasets using the Sonomicrometry
system [30]. The last two are arrhythmia ECG signals from
MIT-BIH arrhythmia database [31]. The 3D beating heart
motion positions are collected on the heart surface locating
at a point one-third of the way from the starting point of
the Left Anterior Descending (LAD) artery. The difference
between two Sonomicrometry datasets lies in the heartrate,
in which one is normal heart beat rhythm with more
“constant” period and the other one is varying heart rate
dataset (we exert the external stimuli occasionally to obtain
the arrhythmia-like heart motion). The more detailed heart
motion measurement information could be referred to [27].
The reason we select ECG signal datasets is that the ECG
signals not only share the similar dynamics with heartmotion
but also contain different types of arrhythmia, which provides
different situations occurring in the beating heart surgery to
evaluate the proposedmethod.The ECG dataset 107m is Pre-
mature Ventricular Contraction (PVC) arrhythmia com-
monly occurring among peoplewith orwithout heart disease.
The dataset 202m is with atrial fibrillation (AF) and atrial
fibrillation aberrated beat arrhythmia, which are the most
common irregular heart rhythm and occur most often in
people with heart disease.

The ability of theNFAM to track the beating heartmotion
through the complexed situation and provide accurate state
estimates is assessed using combinations of the two models
described in Section 2. To bring out of the benefits of includ-
ing more than one model in IMM estimator, the following
comparative cases have been studied with the four sets of
experimental data.
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Figure 2: Long time scale prediction results of 𝑥-axis in heart
motion constant dataset.

(1) Only NAM using four datasets

(2) Only UIM8 using four datasets

(3) Only UIM12 using four datasets

(4) IMM8 using four datasets

(5) IMM12 using four datasets

We evaluate the tracking performance of the filter in
each case regarding root mean square position error, 𝜒𝑛𝑚𝑠 =√(1/𝑛)(𝜒2err1 + 𝜒2err2 + ⋅ ⋅ ⋅ + 𝜒2err𝑛).

Under the KF/EKF framework, the parameters in the all
three algorithms are tuned by minimizing the RMS errors
using the first 10-second data in each dataset. Since NAM
is frequency domain based method such that its number
of frequency components is determined by observing the
frequency response, namely, PSD then is modified by trial
and error method. In UIM, the model order variable (8
and 12) is firstly determined by doubling the number of
harmonies in PSD of the heart motion and then corrected
by trial and error method. We select the forgetting factor in
both algorithms close to 1 such that the memory horizon at
least covers one respiration motion period.The process noise
covariance inNAM is chosenwithin certain scalar factor such
that the RMS prediction errors are minimizing. The initial
mode probability 𝜇 is decided according to the rough guess
of the possibility level corresponding to eachmode in specific
dataset.The switching probabilities𝑝𝑖𝑗 are estimated based on
the sojourn time.

3.2. Results. We summarize RMS prediction results and
algorithm variance analysis in Table 1. We also present the
comparative prediction curves in Figures 2–6.

3.3. Discussion. As the evaluation results shown, NFAM
outperforms other two models regarding prediction RMS. In
particular, NFAM has the capability to handle the situation
where the diversity is severe and prior knowledge of the signal

model is inadequate. We discuss the results through different
comparative experimental scenarios.

(1) NAM, UIM8, and IMM in Constant and Slowing Varying
Heart Motion Datasets. The “constant” beating heart motion
preserves the inherited nonlinearity. We could observe that
its trajectory pattern is relatively predictable over other chaos
patterns. The quadratic term in the NAM is mainly used to
account for the cardiorespiration interaction which is the
most significant coupling existing in the normal cardiovas-
cular signals, whereas UIM is lack of the quadratic term for
this nonlinearity modeling. From Table 1 and Figures 2–4,
we could clearly observe the prediction errors for constant
dataset; IMM and NAM are almost at the same level and
much better than UIM. For the slow varying heart motion
case, IMM has lower prediction errors than NAM since the
irregular pattern is beginning to show and pure nonlinearity
is not the only dominant part anymore.

(2) NAM, UIM, and IMM in Two Arrhythmia ECG Datasets.
With the insufficient prior knowledge of the heart motion
signal, we need to deal with the miscellaneous heart motion
signals from the Coronary Artery Disease patients. IMM
towers in all the algorithms with regard to the compensation
of modeling uncertainties by using fused states from two
models. Either NAM or UIM has limitation since its single
model deficiency could not adaptively estimate all the states
during all the regimes of themotion. NAM is worse at this sit-
uation due to the overfitting. In contrast, IMM has the mech-
anism to take into account the uncertainties. The prediction
results in Table 1 and Figures 5 and 6 show the robustness of
the IMM.

4. Conclusions

The proposed method is a self-adjusting variable-bandwidth
filter, which is natural and suitable for target tracking task.
The beating heart motion is complex and diverse such that it
is necessary for the model to not only characterize the non-
linearity with small amount trajectory uncertainties but also
cover the larger amount of uncertainties (arrhythmia-related
pattern irregularities). We include the nonlinear handling
model in IMM estimator along with the uncertainty adaption
model to track beating heart motion. The motivation for
combining two models is that agile target motion is likely to
have more significant variations which single tracking model
cannot adequately handle. After conducting the comparative
experiments and discussion through the proposed ANM
method, we conclude that we have improved beating heart
motion prediction performance by dynamically fusing the
states in the IMM framework covering both the nonlin-
earity description and model uncertainty dealing function.
The more accurate and robust NFAM algorithm will allow
us to expect improved tracking control performance with
integration with model based control algorithm.
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Figure 3: Middle time scale prediction of 𝑦-axis in heart motion varying dataset.
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Figure 4: Short time scale prediction of 𝑧-axis in heart motion varying dataset.

Table 1: Prediction results of comparative methods.

Algorithms
Heart motion datasets ECG arrhythmia datasets

Constant
3D RMS [mm] ± SD

Varying
3D RMS [mm] ± SD

107-V1
1D RMS [mv] ± SD

202-MLII
1D RMS [mv] ± SD

UIM8 0.587 ± 0.01 0.276 ± 0.01 0.036 ± 0.003 0.034 ± 0.003
UIM12 0.547 ± 0.01 0.152 ± 0.01 0.028 ± 0.004 0.029 ± 0.004
NAM 0.184 ± 0.01 0.102 ± 0.01 0.046 ± 0.003 0.053 ± 0.003
IMM8 0.195 ± 0.01 0.096 ± 0.01 0.024 ± 0.003 0.021 ± 0.003
IMM12 0.189 ± 0.01 0.093 ± 0.01 0.021 ± 0.003 0.018 ± 0.003
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Figure 5: ECG PCV arrhythmia (107m) signal and prediction error comparison.
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Figure 6: ECG AF arrhythmia (202m) signal prediction short time scale results.
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