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Somatostatin is a neuropeptide hormone that inhibits pituitary growth hormone (GH) release. Using microarray
analysis of gene expression in the livers of wildtype control and somatostatin knockoutmice, we have previously
identified a panel of genes whose GH-dependent and sexually dimorphic expression patterns are significantly
altered by the absence of somatostatin (1). Here, we provide methodological and analytical details of that
study, the raw data of which is deposited in the Gene Expression Omnibus as data set GSE56520. In addition,
we performed further gene ontology analysis of the data and found that the differential expression of a second
subset of genes in the livers of somatostatin-knockout mice versus wildtype controls is likely independent of
GH signaling and involved in the innate immune response.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Direct link to deposited data

All data can be found at http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE56520.

2. Experimental design

Somatostatin (SST) is a highly evolutionarily conserved peptide hor-
mone that is expressed in many tissues. Its most studied function is as
an inhibitor of endocrine and exocrine secretions [2]. Indeed, it was
first discovered as an inhibitor of growth hormone (GH) release from
the pituitary gland [3]. Sex-specific properties of pulsatile GH secretion
induce well-characterized sexually dimorphic gene expression patterns
in the mouse liver [4]. To test the involvement of SST in this phenome-
non, we generated Sst-knockout (KO) mice and performed microarray
gene expression profiling on RNA isolated from the liver of knockouts
and wildtype controls of both sexes. We confirmed that SST is essential

Sample source location N/A
. This is an open access article under
for the sexually dimorphic hepatic expression of a large panel of genes
[1]. We also found a non-overlapping subset of differentially expressed
genes, discussed here, that appear to be regulated independently of
sexually dimorphic GH signaling.

3. Animals

The generation of somatostatin (Sst)-knockout mice has been
described previously [5]. The mutant allele was backcrossed onto the
C57BL/6J background for 14 generations and heterozygous breeding
pairs were used to produce the experimental mice for this study. All
mice were housed in a temperature- and light-controlled murine-
specific pathogen free environment (72 ± 2 F, lights on 7:00 am to
7:00 pm) with free access to standard laboratory chow and water. All
animal studies were approved by the IACUC at Oregon Health and
Science University. Experimental knockout and wildtype control mice
(12 total, 3 biological replicates per sex and genotype) were euthanized
by cervical dislocation between 9:00 am and 12:00 pm at age 16weeks.
Liver tissue was immediately dissected, frozen on dry ice and stored
at−80 °C until RNA extraction.

As controls for a separate experiment, the female mice of both
genotypes had received a single subcutaneous injection of 10 μL sterile
sesame oil at postnatal day 1, and had an empty 1 cm long piece of
medical grade silastic tubing (Dow Corning, 0.0635″ inner diameter)
implanted subcutaneously between the shoulder blades under anesthe-
sia with 2% Avertin at age 8 weeks. Male mice of both genotypes
underwent 2 sham gonadectomy surgeries at postnatal day 1 and at
8 weeks of age under general anesthesia either by hypothermia or 2%
Avertin, respectively. For both surgeries, a small incision was made
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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over the lower abdomen and the gonads were visualized, then the skin
incision was closed with either medical grade super glue (neonates) or
stainless steel wound clips (adults). During the second surgery, an
empty piece of silastic tubingwas inserted between the shoulder blades
as described for the females. We have no reason to believe that these
interventions, performed on both genotypes of mice, would result in
altered hepatic gene expression patterns 8 weeks later.

4. RNA isolation

100mgof liver from eachmousewas homogenized in 1mL of TRIzol
reagent (Invitrogen) for 60 s using a rotor–stator mechanical homoge-
nizer. All subsequent centrifugation steps were carried out for 10 min
at 12,000 rpm and 4 °C. First, samples were centrifuged and the upper
phasewas transferred to a new tubewith addition of 200 μL chloroform.
Following an additional centrifugation, the aqueous (upper) phase was
carefully removed and the RNA precipitated with 500 μL isopropanol.
Samples were centrifuged again and a pellet containing RNA was
obtained and washed first with 1 mL of 4 M LiCl and then with 70%
EtOH. The pellet was allowed to air dry and then the RNA was resus-
pended in 100 μL of diethylpyrocarbonate (DEPC)-treated H2O. RNA
was quantified using a spectrophotometer. Concentrations were
between 420 and 1200 ng/μL with OD 260:280 values ranging from
1.94 to 2.06 and OD 260:230 values from 1.81 to 2.24. Further quality
control was performed using Agilent 2100 BioAnalyzer chips and the
RNA Integrity Numbers (RINs) ranged from 7.4–7.9. All samples are
listed in Table 1.

5. Microarray

RNA samples were submitted to the University of Michigan
Microarray Core Facility, where 250 ng total RNA per sample was
used to synthesize cDNA, generate biotin-modified amplified RNA
and prepare the aRNA for hybridization utilizing 3′ IVT Express Kits
(Affymetrix). 16 μg of aRNA per sample were then hybridized to
GeneChip Mouse Genome 430 2.0 Arrays (Affymetrix) for 16 h at
45 °C in Hyb Oven 640 (Affymetrix). Washing and staining of the
GeneChips was performed according to the manufacturer's protocol
using Fluidics Station 450 (Affymetrix) and GeneChips were scanned
using the 3000 7G GeneChip Scanner with Autoloader (Affymetrix).

6. Quality control and data analysis

The distributions of the perfect match (PM) probes for each chip
were compared. The distributions of each chip were similar (Fig. 1A).
RNA degradation was examined and all samples were determined to
be adequate (Fig. 1B). A probe-level model was fitted and standard
error (SE) estimates from each gene on each array are shown in a
boxplot summary (Fig. 1C). Sample 2 (Mouse 58, wild-type female
replicate #2) showed a slightly elevated SE compared to the other
Table 1
Samples used in this analysis and deposited to GEO as GSE56520.

Sample number Mouse ID Genotype Sex RNA concentration

1 57 WT F 778.1
2 58 WT F 734.7
3 72 WT M 895.5
4 87 KO M 881.4
5 89 WT M 823.4
6 95 WT F 815.1
7 106 WT M 1197.0
8 126 KO M 783.6
9 171 KO M 768.0
10 204 KO F 672.9
11 258 KO F 765.1
12 299 KO F 427.8

WT: wildtype; KO: knockout; RIN: RNA Integrity Number.
11 samples. Log2-transformed expression values for each gene were
calculated using robust multi-array average (RMA) [6]. A principal
components analysis (PCA) was performed and the first two principal
components plotted. Biological replicates from each group clustered
together, but there was a clear separation between the 4 groups
(Fig. 1D). Linear models specifically designed for microarray analysis
[7] were fitted to the data and samples were weighted based on a
gene-by-gene algorithm designed to down-weight chips that are
deemed less reproducible, such as sample 2 [8]. The specific contrasts
ofmalewildtype versusmale Sst-KO and femalewildtype versus female
Sst-KO were computed. Probe-sets with a log2 fold change ≥1 and an
adjusted P-value of ≤0.05 were selected. P-values were adjusted for
multiple comparisons using false discovery rate [9]. Analyses were con-
ducted in the R statistical environment implementing the affy [10],
affyPLM, and limma [11] packages. Gene Ontology (GO) analysis was
performed using DAVID [12,13].

7. Results

376 annotated genes/cDNAs and 29 non-annotated sequences
that showed no sexual dimorphism in wildtype mice were found to
be differentially regulated in the liver of one or rarely both sexes of
Sst-KO compared to WT mice (Supplemental Table 1). Of these, 126
were down-regulated and 279 were up-regulated in Sst-KO mice.
Some of the more highly differentially expressed genes in this subset
have been reported to be sexually dimorphic in other publications
[14–17], and therefore may belong in the group of genes regulated by
GH, which was the topic of our previously published article [1].
Regardless, using the DAVID tool to functionally cluster all 405 of
these differentially regulated sequences by similarly annotated gene
ontology (GO) biological process terms, we found that six of the seven
significantly enriched annotation clusters were related to the immune
system and included terms such as defense response, inflammatory
response, MHC protein complex, cell chemotaxis and leukocyte migra-
tion (Supplemental Table 2). The remaining cluster was related to
carbohydrate metabolism.

8. Discussion

Our study was not designed to differentiate between direct and
indirect effects of the absence of SST on gene expression in the liver,
although there are limited reports of SST receptor expression on
hepatocytes [18]. Accumulating evidence has indicated that it is likely
not hepatocytes that account for the bulk of SST receptor expression
in the liver, but rather hepatic stellate cells (HSCs), which particularly
begin to express SST-receptors after activation by various signals [19].
Because HSCs have recently been identified as an important component
of the innate immune system [20], it is tempting to speculate that the
enriched clusters of immune response genes that we found to be
differentially expressed in the liver of Sst-KO mice are being expressed
(ng/μL) RIN File name GEO sample number

7.9 Low_057(Mouse430_2).CEL GSM1363209
7.7 Low_058(Mouse430_ 2).CEL GSM1363210
7.6 Low_072(Mouse430_2).CEL GSM1363211
7.4 Low_087(Mouse430_2).CEL GSM1363212
7.6 Low_089(Mouse430_2).CEL GSM1363213
7.9 Low_095(Mouse430_2).CEL GSM1363214
7.5 Low_106(Mouse430_2).CEL GSM1363215
7.4 Low_126(Mouse430_2).CEL GSM1363216
7.7 Low_171(Mouse430_2).CEL GSM1363217
7.9 Low_204(Mouse430_2).CEL GSM1363218
7.5 Low_258(Mouse430_2).CEL GSM1363219
7.6 Low_299(Mouse430_2).CEL GSM1363220
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Fig. 1. Quality control measures for the data set. A, Plot of perfect match chip densities. B, RNA degradation plot. C, Normalized unscaled standard errors of each sample. D, Principle
components plot, with colored ovals indicating clusters of biological replicates.
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in HSCs and not hepatocytes. Clearly, further experiments are required,
but this finding is consistent with the proposal that extra-hypothalamic
SST plays a GH-independent regulatory role in tissue-specific innate
immune system activation and the observation that a lack of SST results
in an activation of the immune system in the stomach [21].

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gdata.2015.04.029.
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