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Abstract
Neural control of movement can only be realized though the interaction between the

mechanical properties of the limb and the environment. Thus, a fundamental question is

whether anatomy has evolved to simplify neural control by shaping these interactions in a

beneficial way. This inductive data-driven study analyzed the patterns of muscle actions

across multiple joints using the musculoskeletal model of the human upper limb. This

model was used to calculate muscle lengths across the full range of motion of the arm and

examined the correlations between these values between all pairs of muscles. Musculo-

skeletal coupling was quantified using hierarchical clustering analysis. Muscle lengths

between multiple pairs of muscles across multiple postures were highly correlated. These

correlations broadly formed two proximal and distal groups, where proximal muscles of the

arm were correlated with each other and distal muscles of the arm and hand were corre-

lated with each other, but not between groups. Using hierarchical clustering, between 11

and 14 reliable muscle groups were identified. This shows that musculoskeletal anatomy

does indeed shape the mechanical interactions by grouping muscles into functional clus-

ters that generally match the functional repertoire of the human arm. Together, these

results support the idea that the structure of the musculoskeletal system is tuned to solve

movement complexity problem by reducing the dimensionality of available solutions.

Introduction

Movements are the product of interactions between neural control signals and the musculo-
skeletal dynamics that depend on limb anatomy [1]. This complex dynamical system depends
on the active and passive forces that arise directly or indirectly frommuscle contractions and
segmental inertia, and requires complex control by the neural motor system. The skeletal limb
structure can simplify the control complexity, for example locomotor dynamics is stabilized by
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advantageous passive dynamics [2]. Musculoskeletal morphology has traditionally been viewed
as an additional complexity with redundant characteristics that the central nervous system
(CNS) is required to solve [3]. However, evidence has beenmounting for the simplifying role
of muscle anatomy through increased stability due to viscoelastic properties, which help resist
perturbations [4–8]. These properties may even contribute to shaping the multidimensional
and state-dependent control parameter space for volitional movements in the “uncontrolled
manifold" theory [9]. In particular, Kutch and Valero-Cuevas have suggested that muscular
anatomy may help reduce the dimensionality of control space through mechanical coupling
even in the absence of a common neural command [10]. However, the extent and topography
of muscle coupling across more than several muscles has not been previously described. In the
current study, we have used an inductive data-driven approach to further test this idea and to
quantify the dimensionality reduction accomplished by the mechanical coupling of muscle
actions across the physiological range of arm and hand postures using a validated dynamic
musculoskeletalmodel [11–13].

Muscles have been traditionally classified into agonist and antagonist pairs using their
anatomy [14,15] or innervation and participation in sensory-evokedactions [16,17]. For
example, stimulation of sensory pathways activates ilia-psoas, tibialis anterior, and extensor
digitorum longus that together participate in flexion of hip and ankle of the lower limb [7].
Using this definition, excitation and inhibition patterns give the physiological binary mem-
bership of muscles in mutually-opposing functional groups. This idea has been extended fur-
ther to the concept of motor primitives or synergies, where a smaller subset of grouped
muscle actions can accomplish a variety of tasks [18–22]. Alternatively, the anatomical joint-
based nomenclature can be used to identify muscle actions around specific joints. For exam-
ple, the biceps brachii and triceps brachii act as antagonists around the elbow, because the
former causes elbow flexion, while the latter causes elbow extension. The latter definition
does not rely on neural activations and is purely due to the anatomy of muscle origins and
insertions on the bone and their moment arms around the joints. In this study, our goal was
to quantify mechanical coupling that underlies the basic functionality and dimensionality of
the musculoskeletal system and represents the lowest hierarchical level of movement control.
This coupling constrains neural actions and, thus, bears directly on the concept of motor
primitives or synergies.

Methods

Model

The musculoskeletalmodel based on the dynamic upper limb model created by Saul et al.
(2015)[11] was constructed in OpenSim (version 3.0, Stanford University, Stanford, CA,
USA) (Fig 1) and modified in several aspects. Separate bodies for each segment of the hand
digits were created to recreate an additional 16 DOFs of the human hand. Metacarpals of dig-
its 2 through 5 (index through little fingers) were modeled as a single body with the inertia of
a right rectangular prism. All carpometacarpal joints but the first one were represented by a
single wrist joint with 2 DOFs. These corresponded to the rotations between the fusedmeta-
carpals 2–5 and ulna coordinate systems around the x-axis for flexion/extension (Fig 1C).
Pronation and supination was achieved by the rotation of radius around ulna as in the pub-
lished model. The first carpometacarpal joint of the thumb was modeled with 2 DOFs. These
corresponded to the rotations between the first proximal phalanx and radius coordinate sys-
tems around the x-axis for flexion/extension and around the Z axis for abduction/adduction.
A single DOF (flexion/extension)was assigned to all metacarpophalangeal joints corre-
sponding to the rotations around the x-axes of the coordinate systems of the proximal
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phalanges 2–5 and the correspondingmetacarpals (Fig 1C). Phalanges were modeled as cyl-
inders with lengths and radii of a human subject. A single DOF (flexion/extension)was
assigned to all proximal and distal interphalangeal joints. The axes of rotations of all joints of
the arm, with the exception of pronation/supination of the forearm, were adjusted to corre-
spond to Euler angles between adjacent body Cartesian coordinate systems (Fig 1C) to maxi-
mize the utility of this analysis for forward and inverse dynamics, where the motion is
described in terms of changes in joint Euler angles caused by muscle and inertial torques.
The total number of model DOFs, including the arm and hand, was 23. The list of abbrevi-
ated names of musculotendinous actuators included in the model and the muscles they rep-
resent is in Table 1. Two intrinsic hand muscles, the Opponens Pollicis (OP) and Flexor
Pollicis Brevis (FPB), were added to the published model, with their origin and insertion
points estimated from Gray’s anatomy [23].

Human subjects

This research was approved by theWest Virginia University Institutional ReviewBoards
(IRBs) for Protection of Human Research Subjects (protocol number 1311129283A004).
Informed written consent was obtained on the forms approved by IRBs from 10 healthy young
human subjects. The subjects were 5 males and 5 females of mean age 26.2 ± 6.2 (standard
deviation, SD) years, mean weight 77.5 ± 14.1 kg, and mean height 1.74 ± 0.04 m. In addition
to participant height and weight, the lengths of all major arm segments represented as individ-
ual bodies in our model were measured (Table 1). These measurements were used to scale the
model (subject 0) to the dimensions of each individual (subjects 1–10). Each of the model seg-
ments and origins and insertions of all muscles were scaled proportionally to the length of each
subject’s segment [12].

Fig 1. Illustration of the model and local coordinate systems. (A) and (B) Musculotendinous paths from anatomical origins to insertions on the

skeleton are illustrated with red lines with selected labels. (C) Coordinate systems for each segment are illustrated with the color-coded cartesian

exes in red, yellow, and green for x-, y- and z-axes respectively. Euler angles around these axes represent joint angles. The illustrated posture of

the model corresponds to all joint angels at zero. The local coordinate systems are shown only for thumb and index finger. The coordinate systems

of the other digits follow the orientation of the coordinate systems for the index finger.

doi:10.1371/journal.pone.0164050.g001
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Analysis of mechanical coupling

We calculatedmusculotendinous lengths (referred to as muscle lengths) across the full range of
motion of the arm usingMATLAB (MathWorks Inc.) pipeline tools of OpenSim by permuting
postures through all joint excursion combinations within the physiological range of motion in
20% increments. The obtainedmuscle length data about each of the DOFs at each posture for
each muscle of each individually scaledmodel were then passed through a regression analysis
to explore the relationships betweenmuscle lengths for each subject. In this analysis, the corre-
lation coefficients (r) for muscle lengths between all pairs of muscles across all postures were
calculated. Due to computational limitations associated with the multidimensional datasets, a
random selection of up to 10,000 postures to describe all possible arm and hand state variations
was used for the mechanical coupling analysis (see below). Postures when both shoulder
abduction and flexion angles were above 90 degrees were excluded from the analysis due to
limitations of a gimbal joint. All correlations betweenmuscle lengths were done using 1,000
postures randomly selected from the full dataset. This number of postures was selected because
the residual unexplained variance (1—r2) at this and higher numbers of postures approached
zero (Fig 2).

The agonistic and antagonistic relationships between the muscles of each subject were quan-
tified using hierarchical clustering of the muscle length correlation matrix in MATLAB. Hier-
archal clustering was applied to all muscles and separately to only distal muscles. The criterion

Table 1. The abbreviations of muscles included in the analyses.

Muscle Abbreviation Muscle Name Muscle Abbreviation Muscle Name

DELT_A Deltoid (anterior) FCR Flexor Carpi Radialis

DELT_L(AT) Deltoid (lateral) FCU Flexor Carpi Ulnaris

DELT_P Deltoid (posterior) PALL Palmaris Longus

SSPI Supraspinatus PTER Pronator Teres

ISPI Infraspinatus PQUAD Pronator Quadratus

SSCAP Subscapularis FDS5 Flexor Digitorum Superficialis (5th digit)

TERMI Teres Minor FDS4 Flexor Digitorum Superficialis (4th digit)

TERMA Terer Major FDS3 Flexor Digitorum Superficialis (3rd digit)

PECM_R Pectoralis Major (rostral) FDS2 Flexor Digitorum Superficialis (2nd digit)

PECM_M Pectoralis Major (medial) FDP5 Flexor Digitorum Profundus (5th digit)

PECM_C Pectoralis Major (caudal) FDP4 Flexor Digitorum Profundus (4th digit)

LATD_R Latissimus Dorsi (rostral) FDP3 Flexor Digitorum Profundus (3rd digit)

LATD_M Latissimus Dorsi (medial) FDP2 Flexor Digitorum Profundus (2nd digit)

LATD_C Latissimus Dorsi (caudal) ED5 Extensor Digitorum (5th digit)

CORBR Coracobrachialis ED4 Extensor Digitorum (4th digit)

TRI_LO Triceps (long) ED3 Extensor Digitorum (3rd digit)

TRI_LAT Triceps (lateral) ED2 Extensor Digitorum (2nd digit)

TRI_M Triceps (medial) ED_M Extensor Digitorum Minimi

ANC Anconeus EIND Extensor Indicis

SUP Supinator EPL Extensor Pollicis Longus

BIC_LO Biceps Brachii (long) EPB Extensor Pollicis Brevis

BIC_SH Biceps Brachii (short) FPL Flexor Pollicis Longus

BR Brachialis APL Abductor Pollicis Longus

BRR Brachioradialis OP Opponens Pollicis

ECR_LO Extensor Carpi Radialis Longus FPB Flexor Pollicis Brevis

ECR_BR Extensor Carpi Radialis Brevis ECU Extensor Carpi Ulnaris

doi:10.1371/journal.pone.0164050.t001
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for inclusion into distal (hand-related) or proximal (shoulder-related) clusters was the level
of muscle length correlation between the muscle of interest and either the muscles spanning
the shoulder joint or the muscles spanning the wrist joint in all subjects. For clustering, the
correlation matrix was transformed into the heterogeneous variance explained (HVE) as
describednext. The transformation ensured that agonist muscle pairs grouped together, i.e.
had small distance values in proportion to shared variance, whereas antagonist muscles
appeared relatively far apart, i.e. had larger distance values. Agonist muscles were character-
ized by positive r-values, and antagonists were characterized by negative r-values. The coeffi-
cient of determination (r2) was used in the HVE equation as the measure of shared variance
between the changes in lengths of muscle pairs. The HVE for agonists was thus set to be
equal to (1—r2), while the HVE for antagonists was equal to (1 + r2). This resulted in agonist
muscle pairs with large positive r-values being defined by short distances close to 0, while
antagonist muscle pairs with large negative r-values were defined by long distances close to 2.
Zero or insignificant correlations were defined by intermediate distances close to 1. Hierar-
chical clustering was applied using the linkage function with unweighted average distance
method to the HVE matrix to identify between 2 and 20 clusters in each subject. The reliabil-
ity of clustering was evaluated based on the number of muscles that did not fall into the same
cluster across subjects. Trivial results with single-muscle clusters were excluded from the reli-
ability analysis.

Unless otherwise stated, all data is referenced by mean ± SD.

Fig 2. The difference between r2 values for the correlations between muscle lengths as a function of the

number of selected postures. Error bars show standard deviations around the mean.

doi:10.1371/journal.pone.0164050.g002
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Results

The musculoskeletalmodel comprised 52 musculotendinous actuators (model muscles) that
spanned 23 DOFs. Of the 52 actuators, 26 represented compartments of 7 muscles, e.g. 3 tri-
ceps actuators representing long, lateral, and medial heads of the triceps brachii. Thus, the
model represented the anatomical arrangement of 33 individual muscles. There were 15 actua-
tors that spanned only the shoulder joint (3 DOFs), 3 actuators that spanned both the shoulder
and elbow (4 DOFs) joints, 6 actuators that spanned only the elbow joint (2 DOFs due to flex-
ion-extension and pronation-supination), and 8 actuators that spanned both the elbow and
wrist (3 DOFs, not including pronation/supination) joints, with the remaining 20 actuators
spanning the wrist and at least 1 finger joint. Thus, most muscles were associated with several
DOFs. For example, the length of the pronator teres depends on the angles of forearm prona-
tion/supination and elbow flexion/extension shown in Fig 3. The lengths of the actuators
changed non-linearly as a function of the DOFs they controlled, as do their moment arms [24].
This implies that a constant activation of a given muscle results in a different contribution of
that muscle to the net joint torque when the arm is held at different postures or throughout the
motion. These non-linearities are the result of complex anatomical paths that the muscles take
as they wrap around each joint, particularly joints with multiple DOFs.

The action of each musculotendinous actuator in the model depends on its attachment to
the bones and the path it takes around the joint. These data are based on human anatomical
data [11]. To investigate the effect of individual skeletal proportions on mechanical coupling,
the lengths of arm segment were scaled to the values from each of 10 human subjects. This
changed the values for muscle lengths associated with each arm posture. The skeletal propor-
tions across subjects varied with SD, ranging from 5% to 27% of the average segment length
(Table 2). However, the relationships betweenmuscle lengths were highly stable across sub-
jects, as described in detail in the following sections.

As expected, the muscle lengths across muscles were highly correlated in agonistic or antag-
onistic fashion (Fig 4A). Positive correlations indicate that the muscle length increases or
decreases together, representing agonistic action across multiple arm postures (Fig 4B). Here,
the method is limited to the examination under the isometric condition that does not take into
account dynamics or history-dependentmuscle properties [25–27]. Negative correlations indi-
cate coincident increase of one muscle length while the other is decreased, representing antago-
nistic action. Not surprisingly, the lengths of all actuators representing compartments of the
same muscle were highly correlated (bright yellow squares around the unity line in Fig 4A).
Surprisingly, however, most of the muscles showed strong correlations that broadly formed
two large clusters, where proximal muscles of the arm were correlated with each other and dis-
tal muscles of the arm and hand were correlated with each other, but not as much with the
proximal cluster. For example, the length of LATD_M was highly correlated with that of
PECM_C (r2 = 0.594), but the correlation with the distal cluster was minimal (r2 = 0.004 with
FDP5). Similarly, the length of ED5 was highly correlated with that of ED_M (r2 = 0.793), but
the correlation with the proximal cluster was minimal (r2 = 0.004 with LATD_C). This is the
first time the agonistic and antagonistic actions of muscles have been quantified across the
whole workspace of the human arm.

The hierarchical clustering analysis of muscle lengths quantitatively identifiedmuscle
groups at multiple levels of detail. The first 2 clusters in all subjects represented broadly flexor
and extensor actions across all joints or DOFs (Fig 5C, dark blue and red clusters emanating
from the center). However, two groups were insufficient for the consistent classification of all
muscles across subjects. Somemuscles may be classified differently for different subsets of sub-
jects. For example, the subgroup that contains latissimus dorsi and pectoralismajor was
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clustered either with extensors in 5 out of 11 subjects or with flexors in the rest of the subjects
(see Fig 5C, subgroup marked � in two different subjects). Note that the composition of this

Fig 3. Examples of muscle lengths for the pronator teres, a single 2-DOF muscle originating on the

humerus and attaching on the radius, in two subjects. The data points (circles) correspond to muscle

lengths throughout the physiological range of motion for each DOF.

doi:10.1371/journal.pone.0164050.g003
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subgroup remained unchanged. The separate analysis of distal musculature showed the same
pattern of clusters as the analysis of all muscles. For example, the same subgroup consisting of
thumb muscles remained unchanged in both analyses (see Fig 5C, subgroup marked ^ in the
same subject).

The consistency of muscle cluster assignment across subjects changes as a function of the
number of clusters selected in the analysis (Fig 6). The number of unclassifiedmuscles was gen-
erally high whenmuscles were divided into 3 to 8 clusters, which means less consistent clusters
across subjects (Fig 6A). This followed by a plateau of 9 to 13 more consistent clusters, in
which the same muscle groups were identified across subjects. Further subdivision into more
than 13 clusters generated increasingly more trivial results with single-muscle clusters, which is
evidencedby increasing normalized number of unclassifiedmuscles (Fig 6A, right plot). When
the inclusion threshold for cluster assignment across subjects was increased from 50% (muscle
belongs to the same cluster in 50% of subjects) to 100% (muscle belongs to the same cluster in
all subjects), the number of unclassifiedmuscles changed for the different numbers of clusters.
All muscles were classified into the same clusters in at least half of all subjects when 2 or 9–16
clusters were selected (Fig 6A, dark blue line). The increase in the inclusion threshold to 100%,
i.e. the muscle had to belong to the same cluster across all subjects, increased the peak number
of unclassifiedmuscles from 15 to 30 (Fig 6A red line on left plot). The most reliable number
of clusters, based on the minimal number of unclassifiedmuscles across all thresholds, was 11
(Fig 6A, black arrows). Normalizing the number of unclassifiedmuscles to cluster size did not
change this estimate (Fig 6A, right). Similar trends were seen in the reliability of clustering of
distal muscles (Fig 6B). Here, the most reliable number of clusters was 6 (Fig 6B, black arrows).
This analysis identified the minimum number of reliable clusters, which are illustrated on the

Table 2. The summary of anthropometric measurements. All distance measurements, unless indicated

otherwise in brackets, were made between the estimated centers of joint rotation.

Segment name Length (m) Length (% of subject height)

Thorax 0.217 ± 0.032 12.5 ± 1.9

Shoulder (between clavicle and scapula acromial tip) 0.194 ± 0.016 11.2 ± 0.8

Humerus 0.279 ± 0.026 16.1 ± 1.4

Ulna 0.262 ± 0.014 15.1 ± 0.8

Radius 0.262 ± 0.014 15.1 ± 0.8

Hand (mean metacarpal length of phalanges 2–5) 0.085 ± 0.009 4.9 ± 0.5

First metacarpal 0.046 ± 0.009 2.7 ± 0.5

First proximal phalanx 0.0369 ± 0.004 2.1 ± 0.3

First distal phalanx 0.0276 ± 0.004 1.6 ± 0.2

Second proximal phalanx 0.046 ± 0.005 2.7 ± 0.2

Second middle phalanx 0.028 ± 0.003 1.6 ± 0.1

Second distal phalanx 0.023 ± 0.002 1.3 ± 0.1

Third proximal phalanx 0.048 ± 0.009 2.8 ± 0.5

Third middle phalanx 0.033 ± 0.004 1.9 ± 0.2

Third distal phalanx 0.024 ± 0.002 1.4 ± 0.1

Forth proximal phalanx 0.043 ± 0.010 2.5 ± 0.0

Forth middle phalanx 0.031 ± 0.005 1.8 ± 0.2

Forth distal phalanx 0.023 ± 0.002 1.3 ± 0.0

Fifth proximal phalanx 0.035 ± 0.008 2 ± 0.4

Fifth middle phalanx 0.023 ± 0.006 1.3 ± 0.3

Fifth distal phalanx 0.012 ± 0.003 1.1 ± 0.2

doi:10.1371/journal.pone.0164050.t002
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Fig 4. Examples of the correlations between muscle lengths in a single subject. Only significant

correlations are plotted (p < 0.05). (A) Pearson correlation coefficient (r) between muscle lengths of all

muscle pairs. Blue colors indicate negative correlations; yellow colors indicate positive correlations. (B)

Histogram of r-values for each subject across all muscle pairs. The bar plots are binned with 0.2 increments,

and only significant values were included in the analysis.

doi:10.1371/journal.pone.0164050.g004
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Fig 5. Hierarchical clustering methodology and examples for two subjects. (A) Geometric illustration of heterogenous variance

explained (HVE). HVE distance is determined by the correlations of musculotendon length between muscle pairs determined by the

equation in (B). (B) The equation for calculating HVE distance. The negative regressions (r-) indicate opposite or antagonistic actions of

muscle pairs, when the positive ones (r+) correspond to the synergistic or agonistic actions. Insert shows a histogram of HVE values for

one subject across all muscle pairs. (C) Examples of hierarchical clustering for individual subjects. Clustering across all muscles is

shown in the top two polar dendrograms. The bottom plot shows clustering across only the distal muscles for one of the subjects. Lines

emanating from the center indicate the distance between muscle clusters calculated from HVE. The main agonist-antagonist division can

be established using a high clustering threshold (2 clusters with dark red and dark blue lines), and further subdivisions are revealed by

the progressive lowering of the threshold. Example matching clusters are marked by outside brackets with * or ^.

doi:10.1371/journal.pone.0164050.g005

Fig 6. Reliability of clustering across subjects. (A) The average number of unclassified muscles is shown as a

function of the number of clusters. Each colored line corresponds to the level of stringency for the variability in

classification across subjects, e.g. 100% stringency corresponds to the same classification in all subjects. The

right panel shows the same values normalized to the average number of muscles in all clusters. (B) The same

analysis as in A for distal muscles only. Vertical black arrow indicates the nontrivial minimum for the number of

clusters (11 clusters for all and 6 clusters for distal muscles), which represents the most reliable number of muscle

clusters.

doi:10.1371/journal.pone.0164050.g006
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mean polar dendrogram across all subjects in Fig 7. These clusters of muscles that span multi-
ple joints represent the simplest actions that can be accomplished throughmechanical
coupling.

Discussion

In this work, we have described for the first time the low-dimensional structure of agonistic or
antagonistic mechanical actions, termed the mechanical coupling, of major arm and hand mus-
cles across their physiological range of motion.We demonstrated that a low-dimensional struc-
ture emerges even from the musculoskeletal anatomy without the presence of common neural
feedforward or feedback signals (Fig 7). We found that there exists an optimal range for the
number of clusters that reliably group muscles according to actions (Fig 6). Thus, these results
may help us address the unresolved controversies associated with the definition of motor

Fig 7. Mean hierarchical clustering across all subjects. The polar dendrogram illustrates hierarchical

clustering as described in Fig 5C. Inserts along the perimeter illustrate the directions of motion (green arrows)

produced by the activation of muscles in the model shown in Fig 1. Only muscles that belong to the corresponding

cluster are shown on each insert.

doi:10.1371/journal.pone.0164050.g007
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primitives by detailing the lowest level in the bottom-up organization of the motor control sys-
tem. This mechanical coupling betweenmuscles defines the natural repertoire of actions that
the musculoskeletal system can produce in presence of inertial and gravitational forces, exter-
nal perturbations, and neural control signals. Therefore, our results provide further evidence to
support the idea that musculoskeletal anatomy helps to reduce the dimensionality of control
space through the mechanical coupling [4–8,10].

One prevalent theoretical explanation of how the nervous system resolves limb control
problems is based on the idea of motor primitives, i.e. groups of muscles sharing the same com-
mon source of neural activation [19–22]. Inherent in this concept is the idea that motor primi-
tives reduce the complexity of neural control signals by enabling the production of any
movement from a smaller selection of control actions [19,20]. However, the theory of motor
primitives, or synergies, defined this way has recently come under increased scrutiny due to the
indivisible interaction and mutual dependency between neural control of muscle activations
and biomechanics of the resulting movement [28]. These interactions and dependenciesmay
emerge in the synergy analyses when limb movement engages sensory feedback frommechani-
cally coupled muscle groups [8] or, alternatively, constitute evidence for common feedforward
drive within neural code [29–31]. The common neural drive would also originate if the neural
networks are embeddingmovement dynamics for processing motor commands. The concept
of central pattern generators (CPG) in the spinal cord, in particular, is a representative example
of low-dimensional neural processing for rhythm generation that is coupled to mechanical
oscillations between limbs and the environment to produce locomotion [6]. Also, the evolving
predominant view is that neural processing can be represented by a dynamical system acting
through available neuromuscular elements to generate appropriate signals for desiredmove-
ments [32]. Taken together, neural activity within the hierarchical CNS contains the represen-
tation of downstream processing that may reflect the low-dimensional representations of
targeted mechanisms resulting in neural signals consistent with the idea of common drive.

The neuromechanical tuning may be used to redefinemotor primitives in terms of individ-
ual actions being controlled. The hierarchal structure of both the neural motor system and the
mechanical coupling implies that the control complexity can be broken down into specific
actions produced by common signals to muscle groups at different levels of the identified
mechanical coupling hierarchy. Then, CPGs in the spinal cord, which are modeled as a dynam-
ical system [1], could be viewed as neural motor primitives that are entrained with the inverted
pendulum oscillator formed by the mechanical interactions of limbs with the ground [6,33,34].
Because the entraining originates in the sensors associated with muscles, the musculoskeletal
organization has bearing on this unit of control. The CPG generates antagonistic activity that
results in gross mechanical oscillatory actions through interactions between antagonistic
groups of muscles [35]. The CPGs are also thought to contribute to armmotor control
[6,33,34,36,37]. The antagonistic groups observed in our analysis as the first two clusters in the
mechanical coupling diagrammay reflect the same concept (Fig 5C). When dexterous move-
ments are required, e.g. to step over obstacles during locomotion or reaching, the gross CPG
motor primitive must be fractioned into smaller components specific to the task [30]. In our
analysis, this would be equivalent to following the polar dendrogram from the center with gross
representations to peripherywith fractured fine representations (Fig 7). The neighboring fine
motor primitives in our analysis could be combined to represent functionalmovements.
Defensive limb movements can be generated by three combinations of 10, 5, and 6 groups;
feedingmovement can arise from the recruitment of all groups in 6–8; and the manipulation
movements can be generated by four combinations 2, 6, and 11, followed by 7 for grasping.
While these combinations are qualitatively similar to those observed in response to the long-
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train intracorticalmicrostimulation of the motor cortex [38–40], the link between neural activ-
ity and the composition of coupled muscle groups remains to be tested in future studies.

Another result in this study is the salient separation betweenmuscle motor primitives of
proximal and distal arm joints. This is unexpected, because the subsets of proximal and distal
muscles span the same elbow joint and contribute to pronation/supination DOF. Only sparse
correlations between the pairs of muscles spanning primarily proximal and primarily distal
joints are present in our study (Fig 4). This result indicates that the anatomical arrangement of
muscles is consistent with the idea of two distinct control targets: proximal arm and distal
hand groups. Coincidentally, the spatiotemporal separation between the activation of proximal
and distal muscles is present in goal-directed reaching movements that are traditionally sepa-
rated into two phases: gross armmotion to transport the hand to the desired location and fine
hand motion to manipulate objects. It has also been suggested that these phases are controlled
separately by the nervous system [41,42]. Such muscle organization and the possible separation
within neural control pathways may be the result of evolutionarily-driven expansion of distal
musculature to enable the increased dexterity of object manipulation characteristic of primates.
The spatiotemporal separation of muscle activity during limb transfer, generally controlled by
proximal muscles, and limb placement, generated by distal musculature, is also evident in the
regulation of evolutionarily connected phases of reaching movement and precise modifications
in quadruped stepping. Moreover, these separate temporal phases are correlated to the activity
of distinct corticospinal circuits [30].

Our analysis uses the incidence of length excursions in different postures as a measure of
functional similarity in muscle actions. The analysis is based on sampling representative pos-
tures within the physiological range of motion (ROM); yet, this posture space may not be func-
tionally homogenous. It included both likely and unlikely joint configurations based on the
frequency of observing their representation in daily use [43,44]. For these subsets of joint con-
figurations there may exist distinct relationships within subsets of muscles. The method of uni-
form sampling used here may not capture the coupling or uncoupling among the muscle pairs
within these subsets of likely and unlikely postures. Then there may also be a subset of muscles
with changing relationships within different postures. Because these muscle pairs would have
low correlations in our analysis, the only groups that could be affected would be those associ-
ated with the weak relationships between antagonistic muscles acting on scapular (groups 3 &
5 of Fig 7). Fig 4 shows that these are the only large groups with r-values within medium to low
correlations, i.e. between -0.5 and 0.5 values, that may be affected. It is tempting to speculate
that the proximal armmuscles may change their functional affiliation based on the familiarity
with task. This could be reflected in different biomechanical advantages or affordances that
influencemovement planning [45]. This question will be addressed in the future research. In
the presented analysis, the correlations across postures indicate the shared dependence on joint
constraints to define functionally similar muscles over the full physiological ROM that includes
all possible limb postures with the exclusion of extremes.

Severalmethods are commonly used to derive motor primitives frommuscle activity, and
all rely on extracting shared signal redundancy among neural discharge and/or muscle activity
[21,30,46–49]. Cumulatively, these studies support the idea that muscle motor primitives are
reflected in the neural activity; however, the confounding factors may offer alternative explana-
tions for coupled activity [8,10,50]. The mechanical coupling derived from the correlations of
muscle lengths across physiological postures qualitatively matches the groups observed in the
decomposition analyses. For example, the biceps long, brachioradialis, brachialis, and pronator
teres are in the same muscle group 6 (Fig 7) and are also part of theW1 synergy identifiedwith
time-varying synergy analysis [51]. Similarly, the teres major and latissimus dorsi are part of a
single muscle group 3 and posterior deltoid is a part of an adjacent group 5 identified through
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the mechanical coupling analysis (Fig 7) and are also part of theW5 synergy identifiedwith
time-varying synergy analysis [51]. This result is consistent with observations that the underly-
ing musculoskeletal dynamics can constrain the space of neural commands to a low-dimen-
sional subspace identifiedwith decompositionmethods [10]. Thus, the existence of the
mechanical coupling of muscles generally agrees with the findings of alternative methods.

In conclusion, our analysis of arm and hand muscles is a quantitative description of the
functional organization within the musculoskeletal system that contributes to the concept of
motor primitives. The organization of movement derived from the musculoskeletal architec-
ture offers a novel perspective on the motor control problem solved by CNS.
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